Supplement: A Robust Zero-Sum Game Framework for Pool-based Active Learning

A Proof of Theorem 1

The first part of the Theorem follows Theorem 1 in [8], and the second part follows Corollary 3.2 in [8].

B Proof of Theorem 3 and Step Size Setting

Proof. Following Lemma 1 of [26], for any $\mathbf{p} \in \Delta_n$ and $\mathbf{w} \in \Omega$ we have

$$\frac{1}{T} \mathbf{E} \left[\sum_{t=1}^{T} \mathbf{p}^{\top} \bar{\ell}(\mathbf{w}_{t}) - \mathbf{p}_{t}^{\top} \bar{\ell}(\mathbf{w}) \right] \leq \frac{\|\mathbf{w} - \mathbf{w}_{1}\|_{2}^{2}}{T\eta} + \frac{\eta}{2} G^{2} + \frac{1}{T} \mathbf{E} \left[\sum_{t=1}^{T} \bar{\ell}(\mathbf{w}_{t})^{\top} (\mathbf{p} - \mathbf{p}_{t}) \right]$$

Next, we bound the last term in the above inequality.

$$\mathbf{E}\left[\sum_{t=1}^{T} \bar{\ell}(\mathbf{w}_{t})^{\top}(\mathbf{p} - \mathbf{p}_{t})\right] = \mathbf{E}\left[\sum_{t=1}^{T} \hat{\mathbf{v}}_{t}^{\top}(\mathbf{p} - \mathbf{p}_{t})\right] + \mathbf{E}\left[\sum_{t=1}^{T} (\bar{\ell}(\mathbf{w}_{t}) - \hat{\mathbf{v}}_{t})^{\top}(\mathbf{p} - \mathbf{p}_{t})\right]$$

Following the analysis of mirror descent on \mathbf{p}_t (e.g., Lemma 2 in [26]), we have

$$\mathbb{E}\left[\sum_{t=1}^{T} \hat{\mathbf{v}}_{t}^{\top}(\mathbf{p} - \mathbf{p}_{t})\right] \leq \frac{D(\mathbf{p}, \mathbf{p}_{1})}{\alpha} + \alpha \sum_{t=1}^{T} \|\bar{\mathbf{v}}_{t}\|_{\infty}^{2} \leq \frac{D(\mathbf{p}, \mathbf{p}_{1})}{\alpha} + T\alpha M^{2}$$

In addition,

$$\mathbb{E}\left[\sum_{t=1}^{T} (\bar{\ell}(\mathbf{w}_t) - \hat{\mathbf{v}}_t)^{\top} (\mathbf{p} - \mathbf{p}_t)\right] \le \mathbb{E}\left[\sum_{t=1}^{T} MR \|\mathbf{w}_t - \mathbf{w}_*\|_2\right]$$
$$\le \mathbb{E}\left[\sum_{t=1}^{T} MR (\|\mathbf{w}_t - \widehat{\mathbf{w}}\|_2 + \|\widehat{\mathbf{w}} - \mathbf{w}_*\|_2)\right]$$

$$\leq TMR \cdot O(1/n^{\beta}) + \mathbf{E}\left[\sum_{t=1}^{T} MR\hat{c}(\mathcal{L}(\mathbf{w}_{t}) - \mathcal{L}(\widehat{\mathbf{w}}))\right]$$
$$\leq TMR \cdot O(1/n^{\beta}) + TMR\hat{c}\mathbf{E}[(\mathcal{L}(\mathbf{w}_{\tau}) - \mathcal{L}(\widehat{\mathbf{w}}))]$$

where the first inequality uses that $1/\exp(-Y\mathbf{w}^{\top}\mathbf{x})$ is R/4-Lipchitz continuous function, $\bar{\ell}(\mathbf{w}_t; \mathbf{x}_i) \in [0, M]$ and $\|\mathbf{p} - \mathbf{p}_t\|_1 \leq 2$. Combining the above inequalities together, we have

$$\mathbf{E}[\mathbf{p}^{\top}\bar{\ell}(\mathbf{w}_{\tau})] - \max_{\mathbf{p}\in\Delta_{n}} \mathbf{p}^{\top}\bar{\ell}(\widehat{\mathbf{w}}) \leq \frac{4r^{2}}{T\eta} + \frac{\eta}{2}G^{2} + \frac{D(\mathbf{p},\mathbf{p}_{1})}{\alpha T}$$

+ $\alpha M^{2} + MR \cdot O(1/n^{\beta}) + MR\widehat{c}\mathbf{E}[(\mathcal{L}(\mathbf{w}_{\tau}) - \mathcal{L}(\widehat{\mathbf{w}}))]$

Let **p** be the vector that maximizes $\mathbf{p}^{\top} \overline{\ell}(\mathbf{w}_{\tau})$, and suppose $D(\mathbf{p}, \mathbf{p}_{1}) \leq \mathcal{D}$, $\eta = 2\sqrt{2}r/(G\sqrt{T})$ and $\alpha = \sqrt{\mathcal{D}/(M^{2}T)}$, then

$$\mathbb{E}[(\mathcal{L}(\mathbf{w}_{\tau}) - \mathcal{L}(\widehat{\mathbf{w}}))] \leq \frac{4\sqrt{2}rG}{\sqrt{T}} + 4\sqrt{\mathcal{D}}\frac{M}{\sqrt{T}} + MR \cdot O\left(\frac{1}{n^{\beta}}\right)$$

For constrained problems, we have $\mathcal{D} = \rho/n$. For regularized problems, we can use the bound $D(\mathbf{p}, \mathbf{p}_1) \leq \log(n)$ for KL divergence and $D(\mathbf{p}, \mathbf{p}_1) \leq 2$ for Euclidean divergence.

C Dataset Statistics

Table 1: Statistics of Datasets			
Dataset	# Feature	# Training	# Testing
svmguide3	22	1243	41
breast-cancer	9	200	77
twonorm	20	400	7000
ringnorm	20	400	7000
flare solar	9	666	400
heart	13	170	100
german	20	700	300
diabetis	8	468	300
duke breast-cancer	7129	38	4
madelon	500	2000	600
MNIST	28 * 28	55000	10000
CIFAR-10	32 * 32 * 3	50000	10000