
An Optimal Algorithm for Stochastic and Adversarial Bandits

Julian Zimmert Yevgeny Seldin
University of Copenhagen
Copenhagen, Denmark

Abstract

We derive an algorithm that achieves the op-
timal (up to constants) pseudo-regret in both
adversarial and stochastic multi-armed ban-
dits without prior knowledge of the regime
and time horizon. The algorithm is based
on online mirror descent with Tsallis entropy
regularizer. We provide a complete charac-
terization of such algorithms and show that
Tsallis entropy with power α = 1/2 achieves
the goal. In addition, the proposed algorithm
enjoys improved regret guarantees in two in-
termediate regimes: the moderately contam-
inated stochastic regime defined by Seldin
and Slivkins [22] and the stochastically con-
strained adversary studied by Wei and Luo
[26]. The algorithm also achieves adversarial
and stochastic optimality in the utility-based
dueling bandit setting. We provide empiri-
cal evaluation of the algorithm demonstrat-
ing that it outperforms Ucb1 and Exp3 in
stochastic environments. In certain adver-
sarial regimes the algorithm significantly out-
performs Ucb1 and Thompson Sampling,
which exhibit almost linear regret.

1 Introduction

Stochastic (i.i.d.) and adversarial multi-armed ban-
dits are two fundamental sequential decision making
problems in online learning [24; 19; 17; 9; 10]. When
prior information about the nature of environment is

available, it is possible to achieve O(
∑
i:∆i>0

log(T )
∆i

)

pseudo-regret in the stochastic case and O(
√
KT )

pseudo-regret in the adversarial case [6; 7], and both
results match the lower bounds up to constants, see
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[13] for a survey.1 The challenge in recent years has
been to achieve the optimal regret rates without prior
knowledge about the nature of the problem.

One approach pursued by Bubeck and Slivkins [14] and
later refined by Auer and Chiang [8] is to start an al-
gorithm under the assumption that the environment is
i.i.d. and constantly monitor whether the assumption
is satisfied. If a deviation from the i.i.d. assumption is
detected, the algorithm performs an irreversible switch
into adversarial operation mode. This approach recov-
ers the optimal bound in the stochastic case, but suf-
fers from an additional logarithmic factor in the regret
in the adversarial case. Furthermore, the time hori-
zon needs to be known in advance. The best known
doubling schemes lead to extra multiplicative logarith-
mic factors in either the stochastic or the adversarial
regime [11].

Another approach pioneered by Seldin and Slivkins
[22] alters algorithms designed for adversarial bandits
to achieve improved regret in the stochastic setting,
without losing the adversarial guarantees. In this line
of work, Seldin and Lugosi [21] have achieved an any-

time regret ofO(
∑
i:∆i>0

log(T )2

∆i
) in the stochastic case

while preserving optimality in the adversarial case. A
related approach by Wei and Luo [26] provides an any-
time regret bound scaling with log T in the stochastic
case, but besides a suboptimal problem-dependent fac-
tor of O( K

min∆i>0 ∆i
), it is also suboptimal by a loga-

rithmic factor in the adversarial regime. Seldin and
Slivkins [22] and Wei and Luo [26] also obtained im-
proved regret guarantees in a number of intermediate
regimes between stochastic and adversarial bandits.

The question of existence of a universal trade-off pre-
venting optimality in both worlds simultaneously has
remained open for a while. Auer and Chiang [8]

1To be precise, the O(
∑

i:∆i>0
log(T )

∆i
) stochastic regret

rate is optimal when the means of the rewards are close
to 1

2
, see [17; 15; 16] for refined lower and upper bounds

otherwise. However, the refined analysis assumes that the
means are fixed, whereas we only assume that the gaps are
fixed, but the means are allowed to fluctuate arbitrarily,
see Section 2 for details.
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Regime Upper Bound
Lower Bound Learning Rate

lim
α→0

Sto.†∗ O(1) Θ (∆i)
∗

Adv. O
(√

log(T )
)

Θ

(√
log(t)
t

)
α = 1

2 Sto.† & Adv. O(1) 1√
t

lim
α→1

Sto.†∗ O(log(T )) Θ
(

log(t)
∆it

)∗
Adv. O

(√
log(K)

)
Θ
(

1√
t

)
†novel results, ∗oracle knowledge of ∆i is required

Table 1: Complete characterization of Online Mir-
ror Descent algorithms regularized by Tsallis Entropy;
α=1 corresponds to the EXP3 algorithm.

have shown that any algorithm obtaining the optimal
stochastic pseudo-regret bound cannot simultaneously
achieve the optimal high-probability adversarial regret
bound or optimal expected regret bound for adaptive
adversaries.2 In addition, Abbasi-Yadkori et al. [1]
have shown that in the pure exploration setting it is
also impossible to obtain the optimal rates in both
stochastic and adversarial regimes.

We show that for the pseudo-regret it is possible to
achieve optimality in both regimes with a surprisingly
simple algorithm. Additionally, we provide improved
regret guarantees for two intermediate regimes and ex-
tend the results to utility-based dueling bandits. The
algorithm is based on online mirror descent with regu-
larization by Tsallis entropy with power α. We name
it α-Tsallis-Inf or simply Tsallis-Inf, where INF
stands for Implicitly Normalized Forecaster [6]. The
proposed algorithm is anytime: it requires neither the
knowledge of the time horizon nor doubling schemes.

The paper is structured in the following way: In Sec-
tion 2 we provide a formal definition of the problem
setting, including adversarial and stochastically con-
strained adversarial environments. Stochastic environ-
ments are a special case of the latter. In Section 3
we briefly review the framework of online mirror de-
scent. We follow the techniques of Bubeck [12] to
adapt the family of algorithms based on regulariza-
tion by α-Tsallis Entropy [25; 3] to anytime setting.
Section 4 contains the main theorems. We show that
α = 1

2 provides an algorithm that is optimal in both
adversarial and stochastically constrained adversarial
regimes; the latter implies optimality in the stochastic
regime. Furthermore, we show that any α ∈ [0, 1)
could potentially achieve the optimal regret bound
against stochastically constrained adversaries, but it
requires oracle access to the (unknown) gaps for tuning

2This does not contradict our result, because we bound
the pseudo-regret, which is weaker than the expected re-
gret.

the learning rate. A summary of the results is provided
in Table 1. In Section 5 we show that 1

2 -Tsallis-
Inf also achieves the optimal regret rate in the mod-
erately contaminated stochastic regime of Seldin and
Slivkins [22]. In Section 6 we apply 1

2 -Tsallis-Inf to
dueling bandits. Section 7 contains the proofs of our
main theorems. In Section 8 we provide an empirical
comparison of Tsallis-Inf with baseline stochastic
and adversarial bandit algorithms from the literature.
We show that in stochastic environments 1

2 -Tsallis-
Inf outperforms UCB1 and EXP3, but lags behind
Thompson Sampling, whereas in certain adversarial
environments it significantly outperforms UCB1 and
Thompson Sampling, which suffer almost linear re-
gret, and also outperforms EXP3. To the best of our
knowledge, this is also the first evidence that Thomp-
son Sampling is vulnerable outside stochastic envi-
ronments. We conclude with a summary in Section 9.

2 Problem setting

At time t = 1, 2, . . . , the agent chooses an arm It ∈
{1, . . . ,K} out of a set of K arms. The environment
picks a loss vector `t ∈ [0, 1]K and the agent observes
and suffers only the loss of the arm played, `t,It . In
the (adaptive) adversarial setting, the adversary se-
lects the losses arbitrarily, potentially based on the
history of the agent’s actions (I1, . . . , It−1) and the ad-
versary’s own internal randomization. In the stochasti-
cally constrained adversarial setting [26] the adversary
is required to pick the best arm i∗ and to sample losses
from distributions that maintain a fixed gap to the best
arm, E [`t,i − `t,i∗ ] =: ∆i ≥ 0. We emphasize that the
means, as well as other parameters of the distribu-
tions of all arms are allowed to change with time and
may depend on the agent’s past actions I1, . . . , It−1.
Stochastic environments are a special case of stochasti-
cally constrained adversarial setting, where the means
are fixed throughout the game.

We measure the performance of an algorithm in terms
of pseudo-regret:

RegT :=E

[
T∑
t=1

`t,It

]
−min

i
E

[
T∑
t=1

`t,i

]

=E

[
T∑
t=1

(
`t,It − `t,i∗T

)]
,

where i∗T ∈ arg mini E
[∑T

t=1 `t,i

]
is defined as a best

arm in expectation in hindsight and the expecta-
tion is taken over internal randomization of the algo-
rithm and the environment. For deterministic obliv-
ious adversaries the definition of pseudo-regret coin-
cides with the expected regret defined as E[RegT ] :=



Julian Zimmert, Yevgeny Seldin

E
[
mini

∑T
t=1 (`t,It − `t,i)

]
. In the stochastically con-

strained adversarial setting a best arm is fixed, i∗T = i∗

for all T (if there is more than one best arm we can
pick one arbitrarily), and the pseudo regret can be
rewritten as

RegT =

T∑
t=1

∑
i

∆iP [It = i] .

3 Online Mirror Descent

We recall a number of basic definitions and facts from
convex analysis. The convex conjugate3 of a function
f : RK → R is defined by

f∗(y) = max
x∈RK

{〈x, y〉 − f(x)} .

We use

IA(x) :=

{
0, if x ∈ A
∞, otherwise

to denote the characteristic function of a closed and
convex set A ⊂ RK . Hence, (f + IA)∗(y) =
maxx∈A {〈x, y〉 − f(x)}. By standard results from
convex analysis [20], for differentiable and convex f
with invertible gradient (∇f)−1 it holds that

∇(f + IA)∗(y) = arg max
x∈A
{〈x, y〉 − f(x)} ∈ A.

3.1 General Framework

The traditional online mirror descent framework
[23] uses a fixed regularizer Ψ, with certain reg-
ularity constraints. The update rule is wt+1 =
∇Ψ∗(−

∑t
s=1 as`s), where

∑t
s=1 as`s is a weighted

sum of past losses. This setting has been general-
ized to time-varying regularizers Ψt [18], where the
updates are given by wt+1 = ∇Ψ∗t (−

∑t
s=1 `s). Note

that this formulation uses no weighting as of the losses.
In the bandit setting we do not observe the com-
plete loss vector `t. Instead, an unbiased estimator
ˆ̀
t : EIt∼wt

[
ˆ̀
t

]
= `t is used for updating the cumula-

tive losses. At every step, we need to choose a proba-
bility distribution over arms wt, so we add I∆K to the
regularizers Ψt, thereby ensuring that wt ∈ ∆K .

The algorithm is provided in Algorithm 1. Note
that this framework is equivalent to what Abernethy
et al. [2] call Gradient-Based Prediction (Gbp),
where they replace ∇(Ψt + I∆K )∗ with suitable func-
tions ∇Φt : RK → ∆K . We adopt the notation of
Φt := (Ψt + I∆K )∗.

3Also known as Fenchel conjugate.

Algorithm 1: Online Mirror Descent (OMD) for ban-
dits
Input: (Ψt)t=1,2,...

1 Initialize: L̂0 = 0K (the zero vector of dimension K)
2 for t = 1, . . . do

3 choose wt = ∇(Ψt + I∆K )∗(−L̂t−1)
4 sample It ∼ wt
5 observe `t,It
6 construct ˆ̀

t

7 update L̂t = L̂t−1 + ˆ̀
t

3.2 OMD with Tsallis Entropy
Regularization

We now consider a family of algorithms that is param-
eterized by the (negative) α-Tsallis entropy: Hα(x) :=

1
1−α (1−

∑
i x

α
i ). Constant terms in Ψt do not change

the gradient ∇Φt. We change the scaling of α-Tsallis
entropy and drop all constant terms, resulting in
the following time-dependent regularizers: Ψt,α(w) :=

−
∑
i
wαi
αηt,i

. This family of algorithms is a subset of Inf

[6], which we call α-Tsallis-Inf. When the learning
rate ηt,i is constant over time and arms, the algorithm
is equivalent to the Gbp algorithm proposed by Aber-
nethy et al. [3].

As it has been observed earlier [3; 4], α-Tsallis-Inf
includes Exp3 and algorithms based on the log-barrier
potential as special cases. This can be easily seen by
taking the limit of the properly scaled and shifted reg-
ularizers:

lim
α→1

1

1− α
(1−

∑
i

xαi ) =
∑
i

xi log(xi),

lim
α→0

1

α
(K −

∑
i

xαi ) = −
∑
i

log(xi).

We use importance sampling to construct the loss es-
timates ˆ̀

t,i = 1t(i)
`t,i
wt,i

, where 1t(i) is used as a short-

hand for the indicator function 1 (It = i).

4 Main results

In this section we present regret bounds for Tsallis-
Inf in adversarial and stochastically constrained ad-
versarial regimes. The latter also provides bounds for
the stochastic regime, since it is a special case.

4.1 Adversarial Regime

Tsallis-Inf has been previously analyzed by Aber-
nethy et al. [3] and Agarwal et al. [4]. Abernethy et al.
provide a finite-time analysis for α ∈ (0, 1], while Agar-
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wal et al. analyze the case of α = 0. The main con-
tribution of the following theorem is that it provides
a unified and anytime treatment of all α ∈ [0, 1]. The
bound recovers the constants from Abernethy et al.
without the need of tuning the learning rate by the
time horizon T .

Theorem 1. For any α ∈ [0, 1], and any adversar-
ial bandit problem the pseudo-regret at any time T
of Tsallis-Inf with the learning rate ηt,i = ηt =√

(1−α)(K1−2α−K−α)(1−t−α)
αt satisfies

RegT ≤ 2

√
min

{
1

α− α2
,

log(K)

α
,

log(T )

1− α

}
KT + 1.

The proof is postponed to section 7.

4.2 Stochastically Constrained Adversarial
Regime

We show that with a carefully tuned learning rate
Tsallis-Inf can achieve log(T ) regret rate in stochas-
tically constrained adversarial environments. This en-
sures the same regret scaling in stochastic environ-
ments as a special case. At the moment, for any α 6= 1

2
the algorithm requires oracle access to the gaps for tun-
ing the learning rates. We leave it to future research
to explore the possibility of replacing the true gaps
with gap estimates, as in Seldin and Lugosi [21]. For
α = 1

2 we provide a tuning of the learning rate that
requires no knowledge of the gaps and achieves the op-
timal problem-dependent constant of

∑
i 6=i∗

1
∆i

in the
regret bound.

The learning rates in this section are ηt,i =
Θ(∆1−2α

i t−α). Note that for α = 1
2 the learning rates

for all arms are identical, ηt,i = ηt, and do not depend
on the gaps. Therefore, taking α = 1

2 circumvents
the need of tuning the learning rates based on the un-
known gaps, which has hindered progress in prior work
[26].

The rationale behind the selection of the learning rate
is the following. The target regret of Θ(

∑
i6=i∗

log t
∆i

)
dictates that suboptimal arms should be explored at a
rate of Θ( 1

∆2
i t

) per round. Exploring more than that

leads to excessive regret from the exploration alone.
Exploring less is also prohibitive, because it leads to
an overly high probability of misidentifying the best
arm. Tsallis-Inf pulls suboptimal arms at a rate of

about (ηt,i(L̂t,i− L̂t,̂i∗t ))−
1

1−α . Since E
[
L̂t,i − L̂t,̂i∗t

]
=

∆it, it seems straightforward to use a learning rate

that ensures (ηt,i∆it)
− 1

1−α = Θ
(

1
∆2
i t

)
. However,

previous techniques to analyze the regret faced ma-

jor obstacles. Since x−
1

1−α is a convex function,

E
[
(ηt,i(L̂t,i − L̂t,̂i∗t ))−

1
1−α

]
≥ (ηt,i∆it)

− 1
1−α . There-

fore, control of the exploration rate requires control of
the variance of (L̂t,i − L̂t,̂i∗t ). Due to importance sam-

pling, the variance of L̂t,i is of order
∑t
s=1

1
ws,i

, where

ws,i is the probability of pulling arm i at round s. If
the suboptimal arms are pulled according to the opti-
mal rate of 1

∆2
i t

, then the variance is of order Θ(∆2
i t

2).

This is prohibitively large, because the square root of
the variance is of the same order as the expected differ-
ence of the cumulative losses and standard tools, such
as Bernstein’s inequality, do not guarantee concentra-
tion of L̂t,i − L̂t,̂i∗t

around ∆it. Therefore, in prior

work authors have increased the targeted rate of ex-
ploration, thereby decreasing the variance at the cost
of multiplicative log T factor(s) in the regret [22; 21].

We circumvent this challenge with a novel way of
bounding the regret. Following a refined analysis anal-
ogous to the adversarial case, we demonstrate a self-
bounding property of the regret, leading to our main
theorem that bounds the regret of 1

2 -Tsallis-Inf in
adversarial and stochastically constrained adversarial
regimes simultaneously.

Theorem 2. For learning rates ηt,i = ηt =
√

1
t ,

the pseudo-regret of 1
2 -Tsallis-Inf in any adversarial

bandit problem satisfies:

RegT ≤ 4
√
KT + 1.

If the optimal arm i∗T is unique throughout the game
and there exists a gap vector ∆, such that the pseudo
regret at time T satisfies

µE

∑
i6=i∗

T∑
t=1

wt,i∆i

 ≤ RegT , (1)

then the pseudo-regret further satisfies

RegT ≤
∑
i 6=i∗

4 log(T ) + 68

µ∆i
+ 4
√
K.

The proof is postponed to section 7.

Remark 1. In stochastically constrained adversar-
ial environments and stochastic bandits as their spe-

cial case RegT = E
[∑

i 6=i∗
∑T
t=1 wt,i∆i

]
by definition

and µ = 1. The relaxed condition in equation (1) is
required for extension of the results to contaminated
stochastic bandits.

Remark 2. Uniqueness of the best arm is a technical
condition we had to use in our proofs, but our experi-
ments show that it can most likely be eliminated. We
leave elimination of this condition for future work.
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As a direct corollary, we obtain an asymptotic regret
bound for the standard multi-armed bandits (MAB),
which shows that 1

2 -Tsallis-Inf is optimal (up to
constants) in both stochastic and adversarial environ-
ments simultaneously.

Corollary 1. The asymptotic regret of 1
2 -Tsallis-

Inf with learning rates ηt =
√

1
t in a stochastic K-

armed MAB with a unique best arm i∗ satisfies

lim inf
t→∞

Regt
log(t)

≤
∑
i 6=i∗

4

∆i
.

The worst case lower bound for Stochastic MAB with
Bernoulli losses is achieved when the mean losses are
close to 1

2 . Let E[`t,i] = 1
2 + ∆i and let ∆ denote the

vector of gaps, then for any consistent algorithm

lim
||∆||→0


∑
i6=i∗

1

∆i

−1

lim inf
t→∞

E
[
Regt

]
log(t)

 ≥ 1

2
.

This can be derived from the well known divergence
dependent lower bound [17] (see Appendix B). There-
fore, the asymptotic regret upper bound of 1

2 -Tsallis-
Inf is suboptimal by a factor of 8, which is arguably
a small price for a significant gain in robustness. We
leave it to future work to close the gap or prove that it
is impossible to do so without losing adversarial guar-
antees.

Finally, we present a full characterization of Tsallis-
Inf with α ∈ [0, 1] in the stochastic setting. We
let t = max{e, t}. For learning rates ηt,i =

∆1−2α
i

32α

8

(
1−t−1+α

t

)α
for i 6= i∗ and ηt,i∗ =

mini6=i∗ ηt,i we prove the following theorem.

Theorem 3. For any α ∈ [0, 1] and any stochastically
constrained adversarial regime with a unique best arm,
there exists an arm-dependent learning rate schedule,
such that the pseudo-regret of Tsallis-Inf at any
time T satisfies

RegT ≤
∑
i 6=i∗

(
56 min{ 1

1−α , log(T )} log(T )

∆i

+
144 log( 8

∆i
)2

∆i

)
+ 2.

A proof is provided in Appendix E.

Remark 3. We reemphasize that for α 6= 1
2 the re-

sult in Theorem 3 requires knowledge of the gaps ∆i

for tuning the learning rate. For α = 1
2 this knowledge

is not required. Therefore, at the moment Theorem 3
is primarily interesting from the theoretical perspec-
tive of characterization of behavior of Tsallis-Inf
in stochastically constrained adversarial environments,
whereas α = 1

2 is the only practically interesting value.

5 Moderately Contaminated
Stochastic Regime

In many real world examples the systems behave
mostly stochastically, but not all the time. In such
situations it is desirable to stay close to the log(T )
bound instead of resorting to the weaker

√
T worst-

case regret guarantee. In order to model such situa-
tions Seldin and Slivkins [22] have defined the moder-
ately contaminated stochastic regime. In this regime,
the adversary picks some round-arm pairs (t, i) (“lo-
cations”) before the game starts and assigns the loss
values there in an arbitrary way. The remaining losses
are generated according to the stochastic regime. A
contaminated stochastic regime is called moderately
contaminated after τ rounds, if for all t ≥ τ the to-
tal number of contaminated locations for each subop-
timal arm up to time t is at most t∆i

4 and the number
of contaminated locations for the best arm is at most
min∆i

t∆i

4 . By this definition, it follows directly that

1

2
E

 T∑
t=1

∑
i 6=i∗

wt,i∆i

 ≤ RegT
for T ≥ τ . Therefore, by Theorem 2, 1

2 -Tsallis-Inf

with ηt =
√

1
t has O(log(T )) regret guarantee simul-

taneously with O(
√
KT ) worst-case regret.

6 Dueling Bandits

In the sparring approach to stochastic utility-based
dueling bandits [5] each side in the sparring can be
modeled by stochastically constrained adversarial en-
vironment. This makes it a perfect application domain
for 1

2 -Tsallis-INF. The problem is defined by K arms
with utilities ui ∈ [0, 1]. At each round, the agent has
to select two arms, It and Jt, to “duel”. The feedback
is the winner Wt of the “duel”, which is chosen accord-
ing to P[Wt = It] =

1+uIt−uJt
2 . The regret is defined

by the distance to the optimal utility:

RegT =

T∑
t=1

2ui∗ − E

[
T∑
t=1

(uIt + uJt)

]
.

In an adversarial version of the problem, the utilities
ui are not constant, but time dependent, ut,i, and se-
lected by an adversary. The regret in this case is the
difference to the optimal utility in hindsight:

RegT = max
i

T∑
t=1

2ut,i − E

[
T∑
t=1

(ut,It + ut,Jt)

]
.

Ailon et al. [5] proposed the Sparring algorithm, in
which two black-box MAB algorithms spar with each
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other. The first algorithm selects It and receives the
loss `t,It = I (Wt 6= It). The second algorithm selects
Jt and receives the loss `t,Jt = I (Wt 6= Jt). They have
shown that the regret is the sum of individual regret
values for both MABs, thereby recovering O(

√
KT )

regret in the adversarial case, if MABs with O(
√
KT )

adversarial regret bound are used. The stochastic case
for each black-box MAB is a system with stochastically
constrained adversary. Since no algorithm has been
known to achieve log(T ) for this problem, Ailon et al.
[5] provide no analysis of Sparring in the stochastic
case. Applying Theorem 1 and Theorem 2, we imme-
diately get

Corollary 2. Sparring with two independent ver-

sions of 1
2 -Tsallis-Inf with learning rates ηt =

√
1
t

suffers a regret of

RegT ≤ O

( ∑
i:∆i>0

log(T )

∆i

)
+O(K)

in the stochastic case and

RegT ≤ O
(√

KT
)

in the adversarial case.

7 Proofs

In this section, we provide proofs of Theorems 1 and 2.
A proof of Theorem 3 along with proofs of all lemmas
in this section are provided in the Appendix.

7.1 Proof of Theorem 1

Lemma 1. For any α and any learning rate schedule
the loss of Tsallis-Inf at any time t satisfies

`t,It ≤
ηt,It

2(1− α)wt,It
α

+ Φt(−L̂t−1)− Φt(−L̂t).

Lemma 2. For any α and any arm-independent non-
increasing learning rate schedule the sum of potential
differences of Tsallis-Inf satisfies

T∑
t=1

Φt(−L̂t−1)− Φt(−L̂t) ≤
(K1−α − 1)(1− T−α)

αηT

+(1− T−1)L̂T,i∗T +
T−1

K − 1

∑
i 6=i∗T

L̂T,i.

Proof of Theorem 1. Using Lemma 1 and Lemma 2,
we can bound the sum of the agent’s losses as

T∑
t=1

`t,It ≤
T∑
t=1

ηt
2(1− α)wt,It

α
+

(K1−α − 1)(1− T−α)

αηT

+(1− T−1)L̂T,i∗T +
T−1

K − 1

∑
i 6=i∗T

L̂T,i.

Subtracting the optimal loss Li∗T , taking expectation

over both sides and using E[Li∗T ] = E[L̂T,i∗T ] leads to

RegT = E

[(
T∑
t=1

`t,It

)
− Li∗T

]

≤ E

[
T∑
t=1

ηt
2(1− α)wt,It

α

]
+

(K1−α − 1)(1− T−α)

αηT

+E

−T−1L̂T,̂i∗T
+

T−1

K − 1

∑
i 6=i∗T

L̂T,i

 .
The first expectation can be expressed as

E
[∑T

t=1
ηt

2(1−α)wt,It
α

]
= E

[∑T
t=1

∑
i

1t(i)ηt
2(1−α)wt,It

α

]
.

We note that the conditional expectation of 1t(i)
(conditioned on all the randomness prior to selection

of It) is wt,i. Therefore, E
[∑T

t=1

∑
i

1t(i)ηt
2(1−α)wt,It

α

]
=

E
[∑T

t=1

∑
i
ηtwt,i

1−α

2(1−α)

]
≤
(∑T

t=1 ηt

)
Kα

2(1−α) , where we

use that wi = K−1 maximizes
∑
i wt,i

1−α. We use

that 0 ≤ E[L̂T,i] ≤ T to obtain

RegT = E

[(
T∑
t=1

`t,It

)
− Li∗T

]

≤

(
T∑
t=1

ηt

)
Kα

2(1− α)
+ 1 +

(K1−α − 1)(1− T−α)

αηT
.

(2)

Finally, we plug in the learning rate ηt =√
(1−α)(K1−2α−K−α)(1−t−α)

αt , bound
∑T
t=1

√
1−t−α
t ≤∑T

t=1

√
1−T−α

t ≤ 2
√
T (1− T−α) and get

RegT ≤ 2

√(
1−Kα−1

1− α

)(
1− T−α

α

)
KT + 1.

The first factor is bounded by
√

1
1−α and

monotonically increasing in α with the limit

limα→1

√
1−Kα−1

1−α =
√

log(K) (details in Lemma 5 in

the Appendix). By the same argument, the second fac-

tor is bounded by
√

1
α and monotonically decreasing

in α with the limit limα→0

√
1−T−α

α =
√

log(T ).

7.2 Proof of Theorem 2

Lemma 3. The loss at time t of 1
2 -Tsallis-Inf with

learning rates ηt =
√

1
t satisfies

`t,It ≤
∑
i6=It

4ηtwt,i
wt,It

+ Φt(−L̂t−1)− Φt(−L̂t).
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Lemma 4. The expected sum of potentials of 1
2 -

Tsallis-Inf with learning rates ηt =
√

1
t satisfies

E

[
T∑
t=1

Φt(−L̂t−1)− Φt(−L̂t)

]

≤ E

 T∑
t=1

∑
i 6=i∗

√
wt,i
t

+ E[Li∗ ] + 2
√
K.

Proof of Theorem 3. The adversarial part follows di-
rectly from line (2) in the previous proof. For the
second part of the theorem, we start by bounding the
expectation of `t,It . By using Lemma 1 when It 6= i∗

and Lemma 3 otherwise we have for all t:

`t,It ≤
∑
i 6=i∗

(
1t(i)ηt,i√

wt,i
+

41t(i
∗)ηt,iwt,i
wt,It

)
+Φt(−L̂t−1)− Φt(−L̂t).

We note again that the conditional expectation of 1t(i)
is wt,i. Therefore, taking the expectation and plugging

in the learning rate ηt,i =
√

1
t , we obtain:

E[`t,It ] ≤ E

∑
i 6=i∗

(
1t(i)ηt,i√

wt,i
+

41t(i
∗)ηt,iwt,i
wt,It

)
+E

[
Φt(−L̂t−1)− Φt(−L̂t)

]
= E

∑
i6=i∗

√
wt,i + 4wt,i√

t

+ E
[
Φt(−L̂t−1)− Φt(−L̂t)

]
.

In the initial time period we are using Lemma 1 for
all actions, including It = i∗, and in the same way as
above obtain:

E[`t,It ] ≤ E

[∑
i

√
wt,i√
t

]
+ E

[
Φt(−L̂t−1)− Φt(−L̂t)

]

≤ E

∑
i 6=i∗

√
wt,i√
t

+
1√
t

+ E
[
Φt(−L̂t−1)− Φt(−L̂t)

]
.

Summing over t, using the first bound for t ≥ T0 :=
dmax∆i>0

256
µ2∆2

i
e, the second bound otherwise and then

applying Lemma 4:

E

[
T∑
t=1

`t,It

]
≤ E

[
T∑
t=1

∑
i 6=i∗

√
wt,i + I(t>T0)4wt,i√

t

]

+

T0∑
t=1

1√
t

+ E

[
T∑
t=1

Φt(−L̂t−1)− Φt(−L̂t)

]

≤
∑
i6=i∗

E

[
T0∑
t=1

2
√
wt,i√
t

+

T∑
t=T0+1

2
√
wt,i + 4wt,i√

t

]
+2
√
T0 + 2

√
K + E[Li∗ ].

We are using the inequality a
√
x + cx ≤ bx + a2

4(b−c) ,

which holds for all a, b, x > 0 and c < b (see Lemma 8
in the Appendix). Subtracting the optimal expected
loss E[Li∗ ] on both sides

RegT ≤ 2
√
K +

∑
i6=i∗

E

[
T0∑
t=1

(
µ∆i

2
wt,i +

2

µ∆it

)

+

T∑
t=T0+1

(
µ∆i

2
wt,i +

2

(µ∆i − 8
√
t−1)t

)]
+ 2
√
T0

=
∑
i 6=i∗

T∑
t=1

E

[
µ∆i

2
wt,i +

2

µ∆it

]
+ 2
√
K + 2

√
T0

+
∑
i6=i∗

T∑
t=T0+1

16
√
t
−1

µ∆i(µ∆i − 8
√
t−1)t

.

Since for any t ≥ min∆i>0
256
µ2∆2

i
: µ∆i− 8

√
t−1 ≥ µ∆i

2 ,

T∑
t=T0+1

16
√
t
−1

µ∆i(µ∆i − 8
√
t−1)t

≤
T∑

t=T0+1

32

µ2∆2
i

√
t3

≤ 32

µ2∆2
i

√
T0

≤ 2

µ∆i
.

Bounding
√
T0 by

∑
i 6=∆i

16
µ∆i

and using RegT ≥
µ
∑T
t=1

∑
i 6=i∗ E [µ∆iwt,i]:

RegT ≤
RegT

2
+
∑
i 6=i∗

2 log(T ) + 34

µ∆i
+ 2
√
K.

Subtracting 1
2RegT on both sides and multiplying by

2 concludes the proof.

8 Experiments

We evaluate the classical Ucb1(α = 1.5) and Thomp-
son Sampling4 for stochastic bandit algorithms and
Exp3 as an algorithm optimized for adversarial envi-
ronments. We also evaluate Broad and Exp3++ as
state-of-the-art all-purpose algorithms. The pseudo-
regret is estimated by 1000 repetitions experiments
and we plot the standard deviation of our regret es-
timation in a shaded area. We always show the first
10000 time steps in a linear plot and then the time
horizon from 104 to 107 in a separate log-log plot.

The first two experiments illustrate the superiority of
Tsallis-Inf. In both experiments, we use the same
number of arms K = 8 and the same gap for all sub-
optimal arms ∆ = 0.125.

4Other algorithms, such as KL-UCB and MOSS, per-
form comparably to Thompson Sampling in our experi-
ments and, therefore, omitted.
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Figure 1: Comparison of several bandit algorithms
with K = 8 and ∆ = 1/8 under a) stochastic and b)
stochasticaly constrained adversary regime. The left
side is in linear scale and the right is in log-log scale.

The first experiment shown in Figure 1.a) is a standard
stochastic MAB, where the mean rewards are given by
(1 + ∆)/2 and (1−∆)/2, respectively. Unsurprisingly,
Thompson Sampling exhibits the lowest regret fol-
lowed by Tsallis-Inf and then Ucb1. Exp3++ is a
clear improvement over Exp3, however T = 107 is not
large enough to reach the log(T )2 regime. Broad suf-
fers from extremely large leading factors in the regret
and is out of question for practical applications.

The second experiment shown in Figure 1.b) is iden-
tical in the number of arms and gaps, however the
means are not fixed. The mean loss of (optimal arm,
any sub-optimal arm) switches between (1−∆, 1) and
(0,∆), while staying unchanged for phases that are
increasing exponentially in length. Both Ucb1 and
Thompson-Sampling suffer almost linear regret. To
the best of our knowledge, this is the first empirical
evidence clearly showing that Thompson Sampling
is unsuitable for the adversarial regime. All other algo-
rithms are almost unaffected by the shifting of means,
with Tsallis-Inf being the only algorithm that ob-
tains log(T ) regret with practical leading factors.

In the Appendix we provide an additional experiment
that addresses the main shortcoming of our proof,
namely, that the stochastic guarantee requires unique-
ness of the best arm. We use the same gap as before,
but only 1 suboptimal arm. The experiment is re-
peated with increasing number of copies of the best
arm, see Figure 2 in the Appendix. We observe that
the regret decreases with the growth of the number of
suboptimal arms. Therefore, we conjecture that the

requirement of uniqueness is merely an artifact of the
analysis.

9 Discussion

We have presented a complete characterization of on-
line mirror descent algorithms regularized by Tsallis
entropy. As the main contribution, we have shown that
the special case of α = 1

2 achieves optimality in both
adversarial and stochastic regimes, while being obliv-
ious to the environment at hand. Thereby, we have
closed logarithmic gaps to lower bounds, which were
present in existing best-of-both-worlds algorithms. We
introduced a novel proof technique based on the self-
bounding property of the regret, circumventing the
need of controlling the variance of loss estimates.
We have provided empirical evidence that our algo-
rithm is competitive with UCB1 in stochastic environ-
ments and significantly more robust than UCB1 and
Thompson Sampling in non i.i.d. settings. Finally,
we have shown that our results extend to two inter-
mediate settings from prior literature, stochastically
constrained adversaries and moderately contaminated
stochastic regimes, as well as the utility-based dueling
bandit problem.

A weak point of the current proof is the requirement of
uniqueness of the best arm in stochastic and stochas-
tically constrained adversarial settings. Our experi-
ments suggest that this is most likely an artifact of
the analysis and we aim to address this shortcoming
in future work.

Another open question is whether it is possible to
achieve optimality in problem-independent constants.
We have reduced the multiplicative gap with the lower
bound down to a factor of 8. There is a potential of re-
ducing the gap to a factor of 4 by using loss estimators

with smaller variance, such as ˆ̀
t,i =

(`t,i−z)
wt,i

1t(i) + z.

However, this requires careful analysis, since parts of
the proof rely on non-negative (or lower bounded)
losses. On the other hand, it might be more suitable
to compare the upper bound with the best achievable
regret in the stochastically constrained adversarial set-
ting. To the best of our knowledge, there is no refined
lower bound known for this problem.

An additional direction for future research is the appli-
cation of Tsallis-Inf to further problems. The fact
that the algorithm relies solely on importance weighted
losses makes it a suitable candidate for partial moni-
toring games.
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Figure 2: Increasing number of copies of the best arm

A Additional experiment

We use a single suboptimal arm with mean loss of 1+∆
2 .

All other arms are optimal with mean loss 1−∆
2 . We

run the experiment with 1000 repetions and increase
the number of arms. The figure clearly shows that the
regret does not suffer if the optimal arm is not unique.

A.1 Implementation notes

It might seem problematic that
∑
i wt,i =

∑
i(ηt(L̂,i−

x))−2 = f(x) = 1 does not have a closed form solu-
tion for x or w. In fact this is not a problem since
x can be easily approximated by Newton’s Method,
reaching a sufficient precision in very few iterations
(see Algorithm 2). In our experiments, Tsallis-Inf

Algorithm 2: 1
2 -TsallisInf update procedure for w

and x

Input: x, L̂t
1 repeat

2 ∀i : wt,i ← (ηt(L̂t,i − x))−2

3 x← x− (
∑
i wti − 1)/(2ηt

∑
i w

3
2
t,i)

4 until convergence

is competitive with Exp3 in run-time complexity and
is significantly faster than Thompson Sampling.

B Asymptotical lower bound

Lai and Robbins [17] showed the following lower bound
for any consistent algorithm, when the optimal arm
has mean reward 1

2 and suboptimal arms have the gaps
∆i:

lim
t→∞

Regt
log(t)

≥
∑

∆i>0

∆i

kl( 1
2 + ∆i,

1
2 )
.

The kl term can be bounded by

∀∆i ∈ [0, 0.5] : 2∆2
i ≤ kl(

1

2
+ ∆i,

1

2
) ≤ 2∆2

i + 3∆3
i ,

which can be verified by taking the taylor expansion
at ∆i = 0. Therefore

1

2

∑
∆i>0

1

∆i
≥
∑

∆i>0

∆i

kl( 1
2 + ∆i,

1
2 )
≥
∑

∆i>0

1

2∆i + 3∆2
i

=
1

2

∑
∆i>0

1

∆i
−
∑

∆i>0

3
2∆i

2∆i + 3∆2
i

≥ 1

2

∑
∆i>0

1

∆i
− 3

4
K.

The statement follows now from
lim||∆||→0

(∑
∆i>0 ∆−1

i

)−1 3
4K = 0.

C Technical Lemmas

Lemma 5. For any y > 0, x > 0, the function 1−y−x
x

is non-increasing in x and has the limit

lim
x→0

1− y−x

x
= log(y),

therefore 1−y−x
x ≤ min{x−1, log(y)}.

Proof. Taking the derivative and using the inequality
z ≤ ez − 1:

∂

∂x

(
1− y−x

x

)
=

log(y)y−xx− (1− y−x)

x2

≤ (elog(y)x − 1)y−x − (1− y−x)

x2
= 0.

The limit by L’Hôpital’s rule is

lim
x→0

1− y−x

x
= lim
x→0

log(y)y−x

1
= log(y).

Lemma 6. For any x < 1, y > 0:

(1− x)−y ≤1 + yx

+

{
y(1+y)

2 x2(1− x)−max{y,1} if x ≥ 0
y(1+y)

2 x2 if x < 0
.

Proof. Assuming x ≥ 0: Taking the Taylor series at
x = 0, we have

(1− x)−y =

∞∑
t=0

xt
t−1∏
s=0

s+ y

s+ 1

(1− x)−y − 1− yx

=

∞∑
t=0

xt
t−1∏
s=0

s+ y

s+ 1
− 1− yx

=

∞∑
t=2

xt
t−1∏
s=0

s+ y

s+ 1
=

∞∑
t=0

xt+2
t+1∏
s=0

s+ y

s+ 1

=
y(y + 1)

2
x2
∞∑
t=0

xt
t−1∏
s=2

s+ y

s+ 1
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For y ≥ 1:

∞∑
t=0

xt
t−1∏
s=2

s+ y

s+ 1
≤
∞∑
t=0

xt
t−1∏
s=0

s+ y

s+ 1
= (1− x)−y,

while for y ≤ 1:

∞∑
t=0

xt
t−1∏
s=2

s+ y

s+ 1
≤
∞∑
t=0

xt = (1− x)−1.

The case x ≤ 0 follows immediately from the third
derivative being positive for all x < 1.

Lemma 7. The following inequalities hold:

max
x∈[0,1]

(ax)−x = e
1
ae

max
x∈[0,1]

(x)−x = e
1
e ≤ 3

2

max
x∈[0,1]

x log(−x) =
1

e
≤ 1

2

Proof. The second and third inequality follow directly
from the first. The derivative of (ax)−x is (− log(ax)−
1)x−x, which is positive for x < 1

ae and negative for
x > 1

ae . Therefore the maximum is obtained for x =
(ae)−1.

Lemma 8. For any a, b, x > 0:

a
√
x ≤ bx+

a2

4b

Furthermore for any c < b:

a
√
x+ cx ≤ bx+

a2

4(b− c)

Proof. A simple quadratic expansion shows:

bx− a
√
x = b((

√
x− a

2b
)2 − a2

4b2
) ≥ −a

2

4b
.

Rearranging leads to the lemma. The second part is
obtained by substituting b by b − c and adding cx on
both sides.

C.1 Properties of the potential function

Lemma 9. Denote w∗ = (w∗1 , . . . , w
∗
K)T = ∇Φt(−L̂s)

for any s > 0. (We will set s either to t − 1 or t in
later proofs.) Then w∗ takes the form

w∗i =
(
ηt,i(L̂s,i + x)

) 1
α−1

,

where for any j it holds x = −L̂s,j + η−1
t,j (w∗j )α−1.

Proof. At the optimal value of
〈
w,−L̂s

〉
−Ψt(w), the

derivative in each coordinate is equal (K.K.T. condi-
tion). That means

∃x ∈ R : ∀i − L̂s,i + ηt,i
−1(w∗i )α−1 = x,

∃x ∈ R : ∀i w∗i = (ηt,i(L̂s,i + x))
1

α−1 .

Since this also holds for w∗j , we have

w∗j = (ηt,j(L̂s,j + x))
1

α−1 ,

x = −L̂s,j + η−1
t,j (w∗j )α−1.

Definition 1. Let xt(L̂s) ∈ R denote the unique value

x that satisfies
(
∇Φt(−L̂s)

)
i

=
(
ηt,i(L̂s,i + x)

) 1
α−1

.

For L̂t−1, we drop the brackets and simply use xt for
xt(L̂t−1).

Lemma 10. Denote w∗ = ∇Φt(−L̂s) and L̂mins :=
mini L̂s,i, then the potential Φt(−L̂s) is

Φt(−L̂s) =
∑
i

(1− α)(w∗i )α

αηt,i
+ xt(L̂s)

= min
x>−L̂mins

{(∑
i

(1− α)ηt,i
−1

α(ηt,i(L̂s,i + x))
α

1−α

)
+ x

}
.

Proof. Plugging the optimal value into the potential
function:

Φt(−L̂s) =
∑
i

(
−L̂s,iw∗i + ηt,i

−1 (w∗i )α

α

)

=
∑
i

(
(−L̂s,i − xt(L̂s))w∗i

+ηt,i
−1 (w∗i )α

α

)
+
∑
i

w∗i xt(L̂s)

=
∑
i

(
−ηt,i−1(w∗i )α−1w∗i + ηt,i

−1 (w∗i )α

α

)
+ xt(L̂s)

=
∑
i

(
(1− α)(w∗i )α

αηt,i

)
+ xt(L̂s),

which concludes the first part of the proof. For the
second identity the constraint x > −L̂mins ensures that
the term in the denominator is positive for all i. The

function f(x) =

(∑
i

(1−α)ηt,i
−1

α(ηt,i(L̂s,i+x))
α

1−α

)
+x is convex

in x (which can be verified by taking the second deriva-
tive), which means that the minimum is achieved when
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the first derivative is 0:

∂

∂x

((∑
i

(1− α)ηt,i
−1

α(ηt,i(L̂s,i + x))
α

1−α

)
+ x

)

=

(∑
i

−(ηt,i(L̂s,i + x))
1

α−1

)
+ 1 = 0.

The equation is 0 for x = xt(L̂s), when it becomes
(
∑
i−w∗i ) + 1 = 0.

Lemma 11. For any time t let xmint = −L̂mint − xt,
then it holds for any α and any learning rate schedule
that

`t,It ≤Φt(−L̂t−1)− Φt(−L̂t)

+ min
0≥x>xmint

{
ηt,Itwt,It

2−α(x+ ˆ̀
t,It)

2

2(1− α)

+
∑
i6=It

ηt,iwt,i
2−αx2

2(1− α)(1 + ηt,iwt,i1−αx)max{ α
1−α ,1}

}
.

(An equivalent expression for xmint is xmint :=

min
{
x
∣∣∣∀i : 1 + ηt,iwt,i

1−α(x+ ˆ̀
t,i) ≥ 0

}
.)

Proof. Since all losses are non-negative, we can easily
see that xt(L̂t) ≤ xt(L̂t−1). Assume the opposite holds
xt(L̂t) > xt(L̂t−1), then

∑
i

(ηi(L̂t,i + xt(L̂t)))
1

α−1 <
∑
i

(ηi(L̂t,i + xt(L̂t−1)))
1

α−1

≤ (ηi(L̂t−1,i + xt(L̂t−1)))
1

α−1 = 1,

which is a contradiction since the sum must be equal
to 1. Applying Lemma 10 with the refined range, we

have

Φt(−L̂t)− Φt(−L̂t−1)

= min
xt≥x>−L̂mint

{∑
i

(1− α)ηt,i
−1

α(ηt,i(L̂t,i + x))
α

1−α
+ x

}

−

(∑
i

(1− α)(wt,i)
α

αηt,i
+ xt

)

= min
0≥x>xmint

{∑
i

(1− α)ηt,i
−1

α(ηt,i(L̂t−1,i + xt + x+ ˆ̀
t,i))

α
1−α

+x+ xt

}
−

(∑
i

(1− α)(wt,i)
α

αηt,i
− xt

)

= min
0≥x>xmint

{∑
i

(1− α)ηt,i
−1

α(wt,iα−1 + ηt,i(x+ ˆ̀
t,i))

α
1−α

+x

}
−

(∑
i

(1− α)(wt,i)
α

αηt,i

)

= min
0≥x>xmint

{(∑
i

(1− α)wt,i
α

αηt,i

(
(1 + ηt,iwt,i

1−α(x

+ ˆ̀
t,i))

α
α−1 − 1

))
+ x

}
. (3)

Since x ≤ 0, for i 6= It: x − ˆ̀
t,i = x ≤ 0. Applying

Lemma 6, then for any i 6= It it holds:

(1 + ηt,iwt,i
1−α(x+ ˆ̀

t,i))
α
α−1 − 1

≤ −αηt,iwt,i
1−α(x+ ˆ̀

t,i)

1− α

+
αηt,i

2wt,i
2−2α(x+ ˆ̀

t,i)
2

2(1− α)2(1 + ηt,iwt,i1−α(x+ ˆ̀
t,i))

max{ α
1−α ,1}

.

(4)

Furthermore we have x ≥ −L̂mint − xt ≥ −L̂mint −
L̂mint−1 ≥ −ˆ̀

t,It . Therefore x + ˆ̀
t,It ≥ 0. Applying

Lemma 6 again, we have

(1 + ηt,Itwt,It
1−α(x+ ˆ̀

t,It))
α
α−1 − 1

≤ −αηt,Itwt,It
1−α(x+ ˆ̀

t,It)

1− α

+
αη2

t,It
wt,It

2−2α(x+ ˆ̀
t,It)

2

2(1− α)2
. (5)
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Inserting (4) and (5) into (3) leads to

Φt(−L̂t)− Φt(−L̂t−1) ≤ min
0≥x>xmint

{∑
i

−wt,i(x+ ˆ̀
t,i)

+
∑
i 6=It

ηt,iwt,i
2−α(x+ ˆ̀

t,i)
2

2(1− α)(1 + ηt,iwt,i1−α(x+ ˆ̀
t,i))

max{ α
1−α ,1}

+
ηt,Itwt,It

2−α(x+ ˆ̀
t,It)

2

2(1− α)
+ x

}

= −`t,It + min
0≥x>xmint

{
ηt,Itwt,It

2−α(x+ ˆ̀
t,It)

2

2(1− α)

+
∑
i 6=It

ηt,iwt,i
2−αx2

2(1− α)(1 + ηt,iwt,i1−αx)max{ α
1−α ,1}

}
.

Rearranging finishes the proof.

Lemma 12. For any α, any learning rate schedule
and any v, u ∈ ∆K , the sum of potential differences is
bounded by

T∑
t=1

Φt(−L̂t−1)− Φt(−L̂t) ≤
∑
i

(
w1,i

α − vαi
αη1,i

+

T∑
t=2

(
ηt,i
−1 − ηt−1,i

−1
) wt,iα − vαi

α

+
vαi − uαi
αηT,i

)
+
〈
u, L̂T

〉
.

Proof. wt,i is defined as arg maxw∈∆K

{〈
w,−L̂t−1

〉
−

Ψt(w)
}

. Therefore

Φt(−L̂t−1) = −
〈
wt,i, L̂t−1

〉
−Ψt(wt,i)

= −
〈
wt, L̂t−1

〉
+
∑
i

wt,i
α

ηt,iα
.

Furthermore, by the definition of the potential for any
w̃ ∈ ∆K it holds:

−Φt(−L̂t) = − max
w∈∆K

{〈
w,−L̂t

〉
−Ψt(w)

}
≤
〈
w̃, L̂t

〉
+ Ψt(w̃) =

〈
w̃, L̂t

〉
−
∑
i

w̃αi
ηt,iα

.

Setting w̃ to wt+1 for t < T , to u for t = T and using

L̂0 = 0, then the sum of potential differences is:

T∑
t=1

Φt(−L̂t−1)− Φt(−L̂t) ≤
T∑
t=1

(
−
〈
wt, L̂t−1

〉
+
∑
i

wt,i
α

ηt,iα

)
+

T−1∑
t=1

(〈
wt+1, L̂t

〉
−
∑
i

wt+1,i
α

ηt,iα

)
+
〈
u, L̂T

〉
−
∑
i

uαi
ηT,iα

≤
∑
i

(
w1,i

α

αη1,i
+

T∑
t=2

(
ηt,i
−1 − ηt−1,i

−1
) wt,iα

α

+
−uαi
αηT,i

)
+
〈
u, L̂T

〉
.

The proof is finished by noting that all v terms in the
Lemma telescope out to 0.

D Support Lemmas for section 7

D.1 Adversarial Case

Proof of Lemma 1. We begin by bounding the min
term in Lemma 11:

min
0≥x>xmint

{
ηt,Itwt,It

2−α(x+ ˆ̀
t,It)

2

2(1− α)

+
∑
i 6=It

ηt,iwt,i
2−αx2

2(1− α)(1 + ηt,iwt,i1−αx)max{ α
1−α ,1}

}
(x=0)

≤ ηt,It(wt,It
ˆ̀
t,It)

2

2(1− α)wt,It
α
.

Bounding wt,It
ˆ̀
t,It = `t,It ≤ 1 and plugging this into

Lemma 11 finishes the proof.

Proof of Lemma 2. We use Lemma 12, where we set
v = w1. Since the learning rate for all arms are
identical, we have: w1 := arg maxw∈∆K −Ψ(w) =

arg maxw∈∆K

∑
i
wα

α . Therefore
∑
i
wt,i

α−w1,i
α

α ≤ 0.
The learning rate is non-increasing in time, so (ηt

−1−
ηt−1

−1) ≥ 0.

T∑
t=1

Φt(−L̂t−1)− Φt(−L̂t) ≤
∑
i

(
w1,i

α − w1,i
α

αη1

+

T∑
t=2

(
ηt
−1 − ηt−1

−1
) wt,iα − w1,i

α

α

+
w1,i

α − uαi
ηT

)
+
〈
u, L̂T

〉
≤
∑
i

w1,i
α − uαi
αηT

+
〈
u, L̂T

〉
.
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For u we are following the trick of Agarwal et al. [4]

setting ui∗T = 1 − T−1 and ui = T−1

K−1 for i 6= i∗T . The

explicit form of w1 is w1,i = K−1:

T∑
t=1

Φt(−L̂t−1)− Φt(−L̂t)

=
K1−α

αηT
− (K − 1)1−αT−α + (1− T−1)α

αηT

+ (1− T−1)L̂T,i∗T +
T−1

K − 1

∑
i 6=i∗T

L̂T,i.

It remains to bound K1−α − (K − 1)1−αT−α − (1 −
T−1)α. Since xα and x1−α are concave functions:

K1−α + Tα ≤ (K − 1)1−α + (1− α)(K − 1)−α

+(T − 1)α + α(T − 1)α−1

≤ (K − 1)1−α + (T − 1)α + 1,

where the last line uses (T − 1)α−1, (K − 1)−α ≤ 1.
Therefore,

K1−α − (K − 1)1−αT−α − (1− T−1)α

= K1−α + T−α(−(K − 1)1−α − (T − 1)α)

≤ K1−α + T−α(−K1−α − Tα + 1)

= (K1−α − 1)(1− T−α).

D.2 Stochastic Case

Proof of Lemma 3. If wt,It ≤ 3
4 then∑

i 6=It

wt,i = 1− wt,It ≥
1

4

=
1√
12

√
3

4
≥ 1

4

√
wt,It ,

and the lemma follows directly from Lemma 1:

`t,It ≤
ηt,It
√
wt,It

wt,It
+ Φt(−L̂t−1)− Φt(−L̂t)

≤
∑
i 6=It

4ηt,Itwt,i
wt,It

+ Φt(−L̂t−1)− Φt(−L̂t).

It remains to show that the lemma holds true if wt,It >
3
4 . In that case for any i 6= It:

√
wt,i

wt,It
≤

√
1
4

3
4

=
2

3
. (6)

We now apply Lemma 11. The term xmint is the small-

est x such that that the terms 1+ηt
√
wt,i(x+ ˆ̀

t,i) ≥ 0

for all i. We show that xmint < −ˆ̀
t,It , by proving that

the mentioned terms are positive. For i = It this is
trivially true. Otherwise we have

1 + ηt
√
wt,i(−ˆ̀

t,It + ˆ̀
t,i) = 1− ηt

√
wt,i ˆ̀t,It

≥ 1− ηt
√
wt,i

wt,It
≥ 1− 2ηt

3
≥ 1

3
.

Having established that−ˆ̀
t,It > xmint , Lemma 11 with

α = 1
2 leads to

min
0≥x>xmint

ηt

√
wt,It

3(x+ ˆ̀
t,It)

2 +
∑
i 6=It

ηt
√
wt,i3x

2

1 + ηt
√
wt,ix

(x=−ˆ̀
t,It )

≤
∑
i 6=It

ηt
√
wt,i3 ˆ̀2

t,It

1− ηt
√
wt,i ˆ̀t,It

≤
∑
i 6=It

3ηt

√
wt,i3 ˆ̀2

t,It

(6)

≤
∑
i6=It

2ηtwt,i
`t,It

.

Rearranging finishes the proof.

Proof of Lemma 4. Using v = u = ei∗ in Lemma 12:

T∑
t=1

Φt(−L̂t−1)− Φt(−L̂t) ≤

(∑
i w1,i

α − 1α

αη1
+

1α − 1α

αηT

+

T∑
t=2

(
ηt
−1 − ηt−1

−1
) ∑

i wt,i
α − 1α

α

)
+
〈
ei∗ , L̂T

〉
≤
∑
i6=i∗

2

(
√
w1,i +

T∑
t=2

(
√
t−
√
t− 1)

√
wt,i

)
+ L̂T,i∗ .

We are using maxw∈∆K

∑
i

√
wi =

√
K ≥
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maxw∈∆K

∑
i6=i∗
√
wi and

√
t+ 1−

√
t ≤ 1

2
√
t
:

T∑
t=1

Φt(−L̂t−1)− Φt(−L̂t)

≤
∑
i6=i∗

(
√
w1,i + 2

T∑
t=2

(
√
t+ 1−

√
t)
√
wt,i

)
+ L̂T,i∗

+
∑
i6=i∗

(
√
w1,i + 2

T∑
t=2

(−
√
t+ 1 + 2

√
t−
√
t− 1)

√
wt,i

)

≤
∑
i6=i∗

(
√
w1,i +

T∑
t=2

1√
t

√
wt,i

)
+ L̂T,i∗

+
√
K + 2

√
K

T∑
t=2

(−
√
t+ 1 + 2

√
t−
√
t− 1)

=
∑
i6=i∗

T∑
t=1

√
wt,i
t

+ L̂T,i∗

+
√
K + 2

√
K(
√
T −
√
T + 1 +

√
2−
√

1)

≤
∑
i6=i∗

T∑
t=1

√
wt,i
t

+ L̂T,i∗ + 2
√
K.

E Proof of Theorem 3

The learning rate schedule in this section is ηt,i =

∆1−2α
i

32α

8

(
1−t−1+α

t

)α
for i 6= i∗ and ηt,i∗ =

mini6=i∗ ηt,i.

Lemma 13. For the learning rate schedule defined in
Section E, it holds for any t ≥ maxi 6=i∗

64
∆2
i
: If the arm

chosen at time t is the optimal arm It = i∗, then

`t,It ≤
2

1− α
∑
i6=It

ηt,iwt,i
1−α

wt,It
+ Φt(−L̂t−1)− Φt(−L̂t).

Proof. Analogous to the proof of Lemma 4, if wt,It ≤ 3
4

then ∑
i 6=It

wt,i = 1− wt,It ≥
1

4
≥ wt,It

3
.

We assume that It = i∗ and ηt,It = ηt,i∗ ≤ ηt,i, so∑
i 6=It

ηt,iwt,i
1−α ≥ ηt,It(

∑
i 6=It

wt,i)
1−α ≥ ηt,Itwt,It

1−α

31−α .

and the lemma follows directly from Lemma 1:

`t,It ≤
ηt,It
√
wt,It

wt,It
+ Φt(−L̂t−1)− Φt(−L̂t)

≤
∑
i 6=It

31−αηt,iwt,i
2(1− α)wt,It

+ Φt(−L̂t−1)− Φt(−L̂t)

It remains to show that the lemma holds true if wt,It >
3
4 .

Step 1 We show that for wt,It > 3
4 and t >

maxi 6=i∗
64
∆2
i
, the term (1 − ηt,i

wt,i
1−α

wt,It
)max{ α

1−α ,1} is

bounded away from 0 for any arm i 6= It.(
1− ηt,i

wt,i
1−α

wt,It

)max{ α
1−α ,1}

≥
(

1− ηt,i
1

41−α

3
4

) 1
1−α

=

(
1− ηt,i

4α

3

)max{ α
1−α ,1}

≥ 1− ηt,i
1− α

4α

3
.

Plugging in the learning rate ηt,i =

∆1−2α
i

32α

8

(
1−t−1+α

t

)α
:

≥ 1−
(1− ( 64

∆2
i
)−1+α)α

1− α
128α

24
∆1−2α
i

(
64

∆2
i

)−α
= 1−

(
1− ( 64

∆2
i
)−1+α

1− α

)α
(1− α)α−1 2α

24
∆i.

Using Lemma 5 to bound
1−( 64

∆2
i

)−1+α

1−α and Lemma 7:(
1− ηt,i

wt,i
1−α

wt,It

)max{ α
1−α ,1}

≥ 1− log(
64

∆2
i

)α
2α

16
∆i

≥ 1− log(64) + 2 log(∆−1
i )∆i

8
≥ 1− log(64) + 1

8
≤ 1

4
.

We are now bounding the min term of Lemma 11

min
0≥x>xmint

{
ηt,Itwt,It

2−α(x+ ˆ̀
t,It)

2

2(1− α)

+
∑
i6=It

ηt,iwt,i
2−αx2

2(1− α)(1 + ηt,iwt,i1−αx)max{ α
1−α ,1}

}
(x=−ˆ̀

t,It )

≤
∑
i 6=It

ηt,iwt,i
2−α ˆ̀2

t,It

2(1− α)(1− ηt,iwt,i1−α ˆ̀
t,It)

max{ α
1−α ,1}

≤
∑
i 6=It

2ηt,iwt,i
2−α

(1− α)wt,It
2
≤
∑
i 6=It

2ηt,iwt,i
1−α

(1− α)wt,It
.

Lemma 14. For ηi = ∆1−2α
i

32α

8 , the sum of initial
probabilities satisfies∑

i 6=i∗

w1,i
α

ηi
≤
∑
i6=i∗

8

∆i
.

Proof. The initial probabilities are the arg max of∑
i
w1,i

α

αηi
. Since they need to sum up to one, the deriva-

tive must be equal according to the K.K.T. conditions.

∃x ∈ R :
w1,i

α−1

ηi
= x. (7)
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Since
∑
i w1,i = 1, the probabilities given by

w1,i =
ηi

1
α−1∑

i ηi
1

α−1

.

Plugging this in and using ηi = ∆1−2α
i

32α

8 leads to

∑
i6=i∗

w1,i
α

ηi
=

∑
i6=i∗ ηi

α
α−1−1(∑

i ηi
1

α−1

)α ≤
∑
i 6=i∗

ηi
1

α−1

1−α

=
8

32α

∑
i6=i∗

∆
1−2α
α−1

i

1−α

≤
∑
i 6=i∗

8

∆i
.

Lemma 15. The expected sum of potentials satisfies
for the learning rate schedule defined in Section E:

E

[
T∑
t=1

Φt(−L̂t−1)− Φt(−L̂t)

]

≤ E

T−1∑
t=1

∑
i 6=i∗

(
ηt+1,i

−1 − ηt,i−1
) wt+1,i

α − αwt+1,i

α


+E[Li∗ ] + 1 +

∑
i 6=i∗

8 log(T )

∆i
.

Proof. We first extend Lemma 12. Telescoping out the
sums of v shows that for any v1, ..., vT ∈ ∆K :

T∑
t=1

Φt(−L̂t−1)− Φt(−L̂t) ≤
∑
i

(
w1,i

α − vαi
αη1,i

+

T∑
t=2

(
ηt,i
−1 − ηt−1,i

−1
) wt,iα − vαi

α

+
vαi − uαi
αηT,i

)
+
〈
u, L̂T

〉
=
∑
i

(
w1,i

α − vα1,i
αη1,i

+

T−1∑
t=1

vαt,i − vαt+1,i

αηt,i
+
vαT,i − uαi
αηT,i

+

T∑
t=2

(
ηt,i
−1 − ηt−1,i

−1
) wt,iα − vαt,i

α

)
+
〈
u, L̂T

〉
.

Setting now vt = (1−t−
1

1−α )ei∗+t−
1

1−αw1 and u = vT .

Note that v1 = w1. The functions Ψt(w) = −
∑
i
wαi
αηt,i

are convex with w1 as their minimizer. Therefore∑
i
−uαi
αηt,i

= Ψ(u) ≤ Ψ(ei∗) = − 1
αηt,i∗

:

T∑
t=1

Φt(−L̂t−1)− Φt(−L̂t) ≤
∑
i

(
T−1∑
t=1

vαt,i − vαt+1,i

αηt,i

+

T∑
t=2

(
ηt,i
−1 − ηt−1,i

−1
) wt,iα − (ei∗)αi

α

)
+
〈
u, L̂T

〉
.

Bounding the first sum: We use the inequality:
(1 + t−1)

α
1−α ≤ 1 + α

1−α t
−1 ⇒ t−

α
1−α ≤ (t+ 1)−

α
1−α +

α
1−α t

−1(t+ 1)−
α

1−α .

∑
i

vαt,i − vαt+1,i

αηt,i
=
∑
i 6=i∗

(t−α − (t+ 1)−α)w1,i
α

αηt,i

+
(1− t−1(1− w1,i∗1

))α − (1− (t+ 1)−1(1− w1,i∗1
))α

αηt,i∗

≤
∑
i6=i∗

(t+ 1)−
α

1−αw1,i
α

tηt,i
=

(
tα(t+ 1)−

α
1−α

(1− t−1+α
)α

)∑
i 6=i∗

w1,i
α

tηi
.

Using Lemma 14 and observing that t = 1 minimizes
the leading factor:

T−1∑
t=1

∑
i

vαt,i − vαt+1,i

αηt,i
≤ 2−

α
1−α

(1− e−1+α)α

T−1∑
t=1

∑
i 6=i∗

8

t∆i

≤
(
2(1− e−1+α)1−α)− α

1−α
∑
i 6=i∗

8 log(T )

∆i
.

Finally we show that the leading term is bounded by
1. It is sufficient to show that (1− e−1+α)1−α ≥ 1

2 for
all α ∈ [0, 1]. 1 − ex is a concave function, therefore
it holds for x ∈ [0, 1] : 1 − e−x ≥ x(1 − e−1), since
equality holds for x ∈ {0, 1}. Therefore

(1− e−x)x ≥ (x(1− e−1))x ≥ 1

(x(1− e−1))−x

Lem. 7
≥ 1

e
1

(1−e−1)e

= e
1

1−e ≥ 1

2
.

Using x = 1− α shows
(
2(1− e−1+α)1−α)− α

1−α ≤ 1.

Bounding the second sum: Since xα is con-

cave, we have wt,i∗t
α =

(
1−

∑
i 6=i∗ wt,i

)α
≤ 1 −

α
∑
i6=i∗ wt,i. Using that ηt,i∗

−1− ηt−1,i∗
−1 ≥ ηt,i−1−

ηt−1,i
−1, we have

∑
i

(
ηt,i
−1 − ηt−1,i

−1
) wt,iα − Iα(i∗=i)

α

≤
∑
i 6=i∗

(
ηt,i
−1 − ηt−1,i

−1
) wt,iα

α

−
∑
i 6=i∗

(
ηt,i∗

−1 − ηt−1,i∗
−1
) αwt,i

α

≤
∑
i 6=i∗

(
ηt,i
−1 − ηt−1,i

−1
) wt,iα − αwt,i

α
.
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Bounding the final term:〈
u, L̂T

〉
≤ L̂T,i∗ + T−

α
1−α

∑
i

w1,iL̂,i

L̂T,i∗+ ≤ T−1
∑
i

w1,iL̂t,i

E
[〈
u, L̂T

〉]
≤ E[Li∗ ] + 1,

where the last step uses E[L̂T,i] = E[L̂T ] ≤ T . Com-
bining everything finishes the proof.

Proof of Theorem 3. We start by bounding `t,It . By
using Lemma 1 when It 6= i∗ and Lemma 13 otherwise
we have for all t > T0 = bmini

64
∆2
i
c:

`t,It ≤
1

2(1− α)

∑
i 6=i∗t

(
1t(i)ηt,i
wt,iα

+
31t(i

∗
t )ηt,iwt,i

1−α

wt,i∗t

)
+Φt(−L̂t−1)− Φt(−L̂t).

We note that the conditional expectation of 1t(i) (con-
ditioned on all the randomness prior to selection of It)
is wt,i. Therefore, summing over t and taking expec-
tation we obtain:

E [`t,It ] =
2

1− α
E

∑
i6=i∗t

ηt,iwt,i
1−α


+ E

[
Φt(−L̂t−1)− Φt(−L̂t)

]
.

Analogously, we have for t < T0:

E [`t,It ] ≤
1

2(1− α)
E

[∑
i

ηt,iwt,i
1−α

]

+ E

[
T∑
t=1

Φt(−L̂t−1)− Φt(−L̂t)

]

≤ 1

2(1− α)
E

∑
i 6=i∗

ηt,iwt,i
1−α


+

ηt,i∗

2(1− α)
+ E

[
Φt(−L̂t−1)− Φt(−L̂t)

]
.

Summing over t:

E

[
T∑
t=1

`t,It

]
≤ 2

1− α
E

 T∑
t=1

∑
i 6=i∗

ηt,iwt,i
1−α


+

T0∑
t=1

ηt,i∗

2(1− α)
+ E

[
T∑
t=1

Φt(−L̂t−1)− Φt(−L̂t)

]
.

(8)

Bounding the first expectation: Since w1−α is a
concave function of w, it can be upper bounded by the
first order Taylor approximation:

wt,i
1−α ≤ w∗1−α + (1− α)w∗−α(wt,i − w∗)

= αw∗1−α + (1− α)w∗−αwt,i.

Taking w∗ = 32
∆2
i t

(with ηt,i = ∆1−2α
i

32α

8

(
1−t−1+α

t

)α
):

2

1− α
E

[
T∑
t=1

ηt,iwt,i
1−α

]

=
2

1− α
32α

8
E
[ T∑
t=1

(
1− t−1+α

t

)α
(∆i)

1−2α

(

α

(
32

∆2
i t

)1−α

+ (1− α)

(
32

∆2
i t

)−α
wt,i

)]

= E
[ T∑
t=1

(
1− t−1+α

)α
1− α

(
8α

∆it
+

(1− α)

4
∆iwt,i

)]

≤
α
(
1− T−1+α

)α
1− α

8 log(T )

∆i
+ E

[
T∑
t=1

∆iwt,i
4

]
. (9)

Finally, we bound the leading factor of the log term
with Lemma 5 and Lemma 7:

(1− T−1+α)αα

1− α
= α

(
1− T−1+α

1− α

)α
(1− α)−1+α

≤ 3

2
min{ 1

1− α
, log(T )}.

Bounding the second expectation in (8): Ac-
cording to Lemma 15, we have

E

[
T∑
t=1

Φt(−L̂t−1)− Φt(−L̂t)

]

≤ E

T−1∑
t=1

∑
i 6=i∗

(
ηt+1,i

−1 − ηt,i−1
) wt+1,i

α − αwt+1,i

α


+ E[Li∗ ] + 1 +

∑
i 6=i∗

8 log(T )

∆i
. (10)

Since wα is a concave function of w it can be upper
bounded by the first order Taylor approximation:

wt,i
α ≤ w∗α + αw∗α−1(wt,i − w∗)

= (1− α)w∗α + αw∗α−1wt,i.
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Taking w∗ = 32
∆2
i t

(with ηt,i = ∆1−2α
i

32α

8

(
1−t−1+α

t

)α
):

E

[
T−1∑
t=1

(
ηt+1,i

−1 − ηt,i−1
) wt+1,i

α − αwt+1,i

α

]

≤ E
[ T−1∑
t=1

(
(t+ 1)α

(1− (t+ 1)
−1+α

)α
− tα

(1− t−1+α
)α

)

·8∆2α−1
i

α32α

(
(1− α)

(
32

∆2
i t

)α
+α

(
32

∆2
i t

)α−1

wt+1,i − αwt+1,i

)]
≤ E

[ T−1∑
t=1

(
(t+ 1)α − tα

(1− t−1+α
)α

)∑
i 6=i∗

(
8(1− α)

α∆itα

+
∆iwt+1,i

4tα−1

(
1−

(
32

∆2
i t

)1−α
))]

.

By Taylor’s approximations (t+ 1)α ≤ tα + αtα−1:

≤ E
[ T−1∑
t=1

(
αtα−1

(1− t−1+α
)α

)(
8(1− α)

α∆itα

+
∆iwt+1,i

4tα−1

(
1−

(
1

t

)1−α
))]

≤ E
[ T−1∑
t=1

(
1− α

(1− e−1+α)α
8

∆it
+

∆iwt+1,i

4

1− t−1+α(
1− t−1+α

)α)]

≤ 1− α
(1− e−1+α)α

8 log(T )

∆i
+ E

[ T∑
t=1

∆iwt,i
4

]

≤ 8 log(T )

∆i
+ E

[ T∑
t=1

∆iwt,i
4

]
. (11)

The last step follows from the leading factor
1−α

(1−e−1+α)α being bounded by 1. For x ≤ 0 : exp(x) ≤
1 + x+ x2

2 :

1− α
(1− e−1+α)α

≤ 1− α
(1− α− (1−α)2

2 )α

=
(1− α)(1− α− (1−α)2

2 )1−α

(1− α− (1−α)2

2 )
=

(1− α− (1−α)2

2 )1−α

1− 1−α
2

=

1− α− (1−α)2

2(
1− 1−α

2

) 1
1−α

1−α

≤

(
1− α− (1−α)2

2
1
2

)1−α

≤ (1)
1−α

= 1.

Combining (10) and (11):

E

[
T∑
t=1

Φt(−L̂t−1)− Φt(−L̂t)

]

≤ E[Li∗ ] + 1 +
∑
i6=i∗

16 log(T )

∆i
+ E

[
T∑
t=1

∆iwt,i
4

]
.

(12)

Bounding the middle term in (8) The learning
rate ηt,i∗ is by definition smaller than ηt,i∗ . Since

T0 ≥ 64, we can use the loose estimation
∑T
t=1 t

−α ≤
2
∫ T0

1
t−α dt:

ηt,i∗

2(1− α)
≤ ηt,i

2(1− α)
=

∆1−2α
i

32α

8

(
1−t−1+α

t

)α
2(1− α)

T0∑
t=1

ηt,i∗

2(1− α)
≤

T0∑
t=1

∆1−2α
i 32α(1− T−1+α

0 )α

16(1− α)tα

≤
∫ T0

t=1

∆1−2α
i 32α(1− T−1+α

0 )α

8(1− α)tα
dt

=
∆1−2α
i 32α(1− T−1+α

0 )α(T 1−α
0 − 1)

8(1− α)2

=
32αT 1−α

0 (1− T−1+α
0 )2α

8∆2α−1
i (1− α)2

=
64
(

32
64

)α ( 1−T−1+α
0

1−α

)2α

8∆i(1− α)2−2α

≤ 8 log(T0)α

2∆i
(1− α)−2+2α ≤ 18 log(T0)2

∆i

≤
∑
i 6=i∗

72 log( 8
∆i

)2

∆i
, (13)

where the last line uses Lemma 5 and Lemma 7.

Combining everything: We put (9), (12) and (13)
into (8). Subtracting E[Li∗ ] on both sides:

E

[
T∑
t=1

`t,It

]
≤
∑
i 6=i∗

(
12 min{ 1

1−α , log(T )} log(T )

∆i

+E

[
T∑
t=1

∆iwt,i
4

]
+

16 log(T )

∆i
+ E

[
T∑
t=1

∆iwt,i
4

]

+
72 log( 8

∆i
)2

∆i
+

)
+ E[Li∗ ] + 1

RegT ≤
RegT

2
+
∑
i 6=i∗

(
28 min{ 1

1−α , log(T )} log(T )

∆i

+
72 log( 8

∆i
)2

∆i

)
+ 1.

Rearranging and multiplying by 2 finishes the proof.


