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A Proof of the Main Results

Let {Xk}k=01,. k be the discrete-time time-inhomogeneous Markov chain generated by Algorithm 1, and let
X (kn) be the Langevin dynamics (1.1) at time k7, which satisfies X (0) = X. Consider the target distribution
7 = exp(—vF(x))/ [ exp(—vF(x))dx, we decompose the 2-Wasserstein distance W, (P(Xy), ) into the following
two terms based on triangle inequality.

Wa(P(Xk),m) < Wa(P(Xy), P(X (kn))) + Wa(P(X (kn), ). (A1)

The first term in (A.1) stands for the discretization error between the continuous-time Langevin dynamics at time
kn and the k-th iteration of SVRG-LD in 2-Wasserstein distance. The second term describes the convergence
of the probability density of Markov process {X (kn)}:>0 to its stationary distribution, and is referred to as the
ergordicity of a Markov process. In what follows, we aim at establishing upper bounds for these two terms,
respectively.

A.1 Proof of Theorem 4.3

We first study the discretization error between the distribution of continuous Markov process at time kn and
that of the discrete iterate at the k-th update in Algorithm 1.

Lemma A.1. Under Assumptions 4.1 and 4.2, consider {X k}kzo,lw, k generated by Algorithm 1 with initial
point Xy = 0. The 2-Wasserstein distance between distributions of the iterate Xy in Algorithm 1 and the point
X (kn) in the Langevin dynamic sequence (1.1) is upper bounded by

6ym2M?(n — B)
B(n—1)

20 1/4
+ 3fyM2) (M?D% + GHkn® + (MnM—(”B) + M2d> knz} ,

Wo(P(Xy), P(X (k) < Da [( B(n—1)

where Dy = 41/3/2 + (2b + d/v)kn and Dy = \/2(1 + 1/b)(a + G2 + d /7).

In what follows, we show that the continuous-time process {X (¢)},>0 converges to its stationary distribution
with linear rate.

Lemma A.2. Under Assumptions 4.1 and 4.2, the continuous-time Markov chain X (¢) generated by Langevin
dynamics (1.1) converges exponentially to the stationary distribution =, i.e.,

Wa(P(X (t),7)) < Dye” 775,

where both D4 and Ds are in the order of exp (O(y + d)).

It can be seen that the 2-Wasserstein distance diminishes exponentially fast, and the crucial factor that determines
the rate is the parameter in the exponential term, i.e., Ds. It is worth noting that D5 has an exponential
dependence on vy and d.

Proof of Theorem 4.3. In previous parts, we have shown the upper bounds on terms W, (P(Xk), P(X(kn))) and
Wo (P(X(k:n), ﬂ')) in (A.1), thus we are ready to prove the main theorem 4.3. It can be seen that by combining
Lemmas A.1 and A.2, together with the triangle inequality and the fact that (n — B)/(n — 1) < 1, we have

Wa(P(X), ) < Wa(P(xk), P(X (kn))) + Wa(P(X (kn), )

2m2 om 1/4 e

where

Dy = Dy =4y/3/2+ (2b + d/7)kn,
Dy = 3yM?*(M*D% + G?) = 3yM?(2M?(1 + 1/b)(a + G* + d/y) + G?),
Dy = M?d.

This completes the proof. O
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A.2 Proof of Theorem 4.6

Similar to the proof of SVRG-LD, we first present the following lemma that characterizes the discretization error
between the continuous Markov process at time k7 and the discrete iterate at the k-th update in Algorithm 2.
Lemma A.3. Under Assumptions 4.1 and 4.2, consider {X}}r=0,1,...,x generated by Algorithm 2 with initial
point Xy = 0. The 2-Wasserstein distance between distributions of the iterate Xy in Algorithm 1 and the point
X (kn) in the Langevin dynamic sequence (1.1) is upper bounded by

144n2(n — B)M?
B3(n—1)

A dn(n — B)M?d 5\, 5"
+ 3M2> (M’D% + G*)ykn® + <—"(" M, Mzd> knz] :

Wa(rx0), POX ) < D[ B 1)

where D4 = 44/3/2 + (2b+ d/v)kn and Dp = 1/2(1 + 1/b)(a + G* + d /7).

In terms of the sequence of continuous-time Langevin dynamics { X (t)};>0, Lemma A.2 is also applicable. Thus
we are able to complete the proof by combining Lemmas A.2 and A.3.

Proof of Theorem 4.6. Straightforwardly, combining Lemmas A.3 and A.2 together with triangle inequality, and
use the fact that (n — B)/(n — 1) < 1, we obtain

48n2 4 1/4 ok
<D [Dz (_n + 1> kn® + D (_n + 1> k”lQ} + Dye "B ;

B3 B2
where D1, Dy, D3, Dy and Ds are identical to those in Theorem 4.3. This completes the proof. O
B Proof of Corollaries
In this section, we provide the proofs of our corollaries in Section 4.

Proof of Corollary 4.4. In order to ensure the e-accuracy in 2-Wasserstein distance, we set

D, {m(%ﬂ + 1)kn3 + Dg(%m + 1)1@772} . %
K €

Dye 705 = 5 (B.1)

Based on the second equation in (B.1), it can be derived that
2D
T 2 ky = vDs log (—4)
€
Then, note that if we have a + b = ¢ for positive constants a, b and ¢, it either follows that ¢ < 2a or ¢ < 2b.
Then we have the following according to the first equation in (B.1),

et !
> mi .
= {\/BQD%DQ(QmQ/B F 1)1 32D D5 (2m/B + 1)T}
Combine the above two results, we have

2 2D4 2m?2 2D* 2
LT §7D510g( D4)<\/3 DDy m /BT 32D1Ds( T/BH)T)_
€ € €

From Lemma A.2, we know that D5 = exp (5(7 + d))), thus the required iteration number k exponentially
depends on dimension d and inverse temperature . Then, we focus on figuring out dependence on €. Ignoring
constants that have no dependence in € and only polynomially depends on v and d, we have

/B2 m N
kzO( /32 +1—|— /B4+1)-exp(0(’y+d)).

€ €



Difan Zou, Pan Xu, Quanquan Gu

Note that we have to compute full gradient for k/m times, thus the total gradient complexity is
kn
Ty <kB+n(k/mv1) <kB+ —+n.
m

Obviously, minimizing T} requires mB = n. Then, the gradient complexity becomes

~ /mB~1/2 B+ B ~
T, < 2kB+n = 0" o Ef 1) - exp (O(y + d)).

Let B = O(n'/?), we straightforwardly obtain

_ 3/4 1/2 _
T, = O(n—l— ne—z + n?) -exp (O(y +4d)),

which completes the proof. a

Proof of Corollary 4.7. Analogous to the proof of Corollary 4.4, we set

48n> 3 4n 9 Ve
D1|:D2<F+1>k?7 +D3<§+1>k}n] 25

_ _kn €
D46 TPs = 5

From the second equation, we obtain

2D
knz’yD5log< 4>.

€

Let T' = kn, the first equation yields that

et et
> mi .
1= i {\/32D‘1‘D2(48n2 /B3 1 1)T° 32D D5 (4n/B2 + l)T}

Then the required number of iterations satisfies

€ el 4

2D4> <\/32D%D2(48n2/B3 +OT 32D4Dy(4n/ B2 + 1)T>
; .

T
k—<7D510g(
n

From Lemma A.2, we know that D5 = exp (O(y + d))), the complexity k£ must exponentially depends on
dimension d and inverse temperature . Then, we focus on figuring out the dependence on €. Ignoring constants
that have no dependence in ¢, we have

~(n/B3%% +1 B2 +1
k:()(n/ i + +n/ 4+ >
€ €

Then the corresponding gradient complexity is

_ 1/2
Tg=n+kB=o(n+n/32 +”/B4+B>'

€ €

Plugging the dependence on d and -, we complete the proof.

C Proof of Technical Lemmas

In this section, we prove the technical lemmas in Appendix A.
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C.1 Proof of Lemma A.1l

We first lay out the following 5 lemmas which is useful for proving Lemma A.1.

Lemma C.1. For all x € R4 and i = 1,...,n, we have
IVSi(x)ll2 < M|x]2 + G.
Moreover, it follows that
IV fi(x)[I5 < 2M||x|3 + 2G.

Lemma C.2. Under Assumptions 4.1 and 4.2, for sufficiently small step size 7, suppose the initial point is
chosen at X = 0, the expectation of the £2 norm of the iterates generated by Algorithm 1 is bounded by

B[l X, 3] < z<1 n 5) ( e ;> 5 .

Lemma C.3. (Bolley and Villani, 2005) For any two probability measures P and @, if they have finite second
moments, the following holds,

Wi(Q, P) < A(v/Dkr(QIIP) + v/ Dkr(Q||P)),

where A = 2inf)5¢ \/1/)\(3/2 + log Ep[er*II2]), where x satisfies probability measure P.

Lemma C.4. Under Assumptions 4.1 and 4.2, for sufficiently small step size n and 5 > 2/m, we have
log Elexp(|| X (1)[13)] < | Xol[3 + (2b + d/7)kn,

where we consider the fact that n < 1, and require that v > 4.

Lemma C.5. Under Assumption 4.1, we have the following upper bound on the variance of semi-stochastic
gradient Vy, in the SVRG-LD update,

M?(n — B)

—VR|X, - X2

E(|[Vi — VE(X3)|3] <

In order to analyze the long-time behaviour of the error between the discrete-time algorithm and continuous-
time Langevin dynamics, we follow the similar technique used in Dalalyan (2016); Raginsky et al. (2017); Xu
et al. (2018), in which a continuous-time Markov process {D(t)};>0 is introduced to describe the numerical
approximation sequence { X}, }x=o.1,... x. Define

dD(t) = —b(D(t))dt + /2y 1dB(t), (C.1)

where b(D(t)) = > ,2, Vil{t [nk,n(k +1))}. Integrating (C.1) on interval [nk,n(k + 1)) yields

D(n(k +1)) = D(nk) —=nVF(D(nk)) + /21y~ - €k,

where €, ~ N(0,I;54) and %k is the semi-stochastic gradient at k-th iteration of VR-SGLD. This implies that
the distribution of random vector (X1,..., Xy,...) is equivalent to that of (D(n),...,D(nk),...). Note that
(C.1) is not a time-homogeneous Markov chain since the semi-stochastic gradient b(D(t)) also depends on some
historical iterates. However, Gyongy (1986) showed that one can construct an alternative Markov chain which
enjoys the same one-time marginal distribution as that of D(t), which is formulated as follows,

dD(t) = —b(D(t))dt + /2y 1dB(t),

where g(ﬁ(t)) = E[b(D(t))|D(t) = D(t)]. Then we let P, denote the distribution of D(t), which is identical to
that of D(t). Recall the SDE of Langevin dynamics, i.e.,

AX(t) = —q(X (t))dt + /2y~ 1dB(%),
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where ¢(X (t)) = VF(X (t)) and define by Q; the distribution of X (¢). Now, we have constructed two continuous
continuous process. Thus, the Radon-Nykodim derivative of P; with respective to Q; can be obtained by the
Girsanov formula

dPs = (D —b(D(s))" D(s))|2ds
D) = e { [ abs) - wD(s)) Bl / (D) - oD s .
This suggests that the KL divergence between P, and Q; has the following form
Dical@lP) =& og (D)) | = 7 [ BllatDie) - D) s, (©2)

This result gives us an opportunity to estimate the 2-Wasserstein distance Ws (P(X w P(X (kn))), since we are
able to apply KL divergence D, (Qy||Pry) to generate an upper bound based on Lemma C.3. Now, we are
going to complete the proof for Lemma A.1 in the following.

Proof of Lemma A.1. Denote Py, Qy as the probability density functions of X3 and X (kn) respectively. By
Lemma C.3, we know that the 2-Wasserstein distance is upper bounded as follows,

Wa(Qr, Pr) < A/ D n(Qkl|Pe) + v/ Dic(Qrl| Pr))-
Moreover, by data-processing theorem in terms of KL divergence, we have

kn ~ ~
Dict(QullP) < Di(@uglIPir) = T [ Ella(B(s)) ~ oD s

v [
=7 [ Ellas) - w0 s

where the second equality holds due to the fact that D(s) and D(s) have same one-time distribution. Note that
D(kn) is generated based on Xj. By definition, we know that b(D(s)) is a step function and remains constant
when s € [nk,n(k + 1)) for any k, and ¢(D(s)) is a continuous function for any s. Based on this observation, it
follows that

nk
| Ella(D) ~ o) Bas

k (w+1) ‘
=y / ' E[|V, — VE(D(s))|l3]ds
v=0""Y

m
k—1 n(v+1)
<2 3 B9, - VFOG)IE +2Z/ E[|IVE(D(n)) ~ V(D(s)) 3] ds.
where the second inequality is due to Jensen’s inequality and the convexity of function || - ||, and VF(X,) =

VF(D(vn)) denotes the gradient of F'(-) at X,. Combine the above results we obtain

Dicr(Qx||Py) < Z IV — VF(X,)3]
k— n(v+1)
I [ BN R - TP s 3
v=0" "7

where the first term on the R.H.S. can be further bounded by

s m—

k—1
S 9, - VEO < 2SS Bl — VF X)L
i=0 j=0

v=0 2
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where we use the fact that k = sm + ¢ < (s + 1)m for some ¢ = 0,1,...,m — 1. Applying Lemma C.5, the inner
summation satisfies

m—1 N
E[||Vim+3 VF im-+j ||
j=0 ]=0

m1M2
B(r

]E||sz+] X0, (C.4)
Note that we have

E[| Ximj — jfv(i)||2
Z (VS Kima) = Vi (X)) + VE(X D)) Z /_63
=0 u=0

j—1

) i 4dnd
< 5 S B o Kisa) = Vi (K + TR 2] + 3 42
u=0 u=0 v
= dnd
<3 B (IV firn Kimng ) 3 4 1V fisp XD+ [[VE(XD)13)) +Z .
u=0 u=0
2 9 212 2 4jnd
< 365°n° (M DB+G)+T» (C.5)

where the first and second inequalities follow from Young’s inequality and the last one follows from Lemma C.1
and Lemma C.2, and Dg = /2(1 + 1/b)(a + G? + d/~). Submit (C.5) back into (C.4) we have

m—1 m—1 .
~ 4M?(n — B o Jnd
E[Vim+j = VE(Xim+5)lI3] < M- 5) “*(M?DE + G*) + —
, ; B(n—1) 0%
j=0 j=0
AM?(n — B) 3,2(7727)2 2y, mnd

Submitting (C.6) into (C.3) yields

k—1

~ 4kM?*(n — B mnd
STE[IV, - VF(X,)[3] < ﬁ <3m2n2(M2DQB LG+ —7) (€.7)
v=0

Next, we are going to upper bound the second term on the R.H.S of (C.3). According to the smoothness
assumption on F'(x), we have

E[|VF(D(vn)) — VF(D(s))[|3) < M?E[|[D(s) — D(vn)||3],

which yields that

k=1 en(v+1)
v=0"v1
k=1 n(v+1)
= Z/ M?E[||D(s) — D(vn)||3]ds
v=0 V"
k=1 rn(v+1) ) -
:§/n M%“”WMWMH%;#ﬂwS

M23 A2 2kM2 d
<RM TG
ZE 1VlI3] (C8)




Difan Zou, Pan Xu, Quanquan Gu

By Lemma C.1, we know that

B8 = 5[ 118 ¥ (V.00) - VAXE) + VFED)) }

in€l}

< BE[(M]|X,[l2 + G)? + 2(M | X 9|y + G)?]
< 6MZE[|| X, [[3] + 12N?E[| X )|[3] + 18G?
< 18M?D% + 18G?,

where Dg = /2(1 +1/b)(a + G? +d/~) is defined in Lemma C.2, and the last second inequality follows from
the fact that (M| X, |2 + G)? < 2M?|| X, |3 + 2G?. Thus, combining (C.3), (C.8), (C.7), we arrive at

2knyM?(n — B)

D1 (Qxl|Pr) < B 1)

(:amzrﬁ(J\[zD?3 + G+ —m;’d>

N[22

+ %(6M2kn3(M2D2B +G%) + —2ka ! d)

[ 6m*M?*(n — B)
B B(n—1)

2dmM?(n — B)
B(n—1)

+ 37M2> (M?D% + G*knf®
+ M2d> kn? (C.9)
Combining (C.9) and Lemma C.3, assume that Dg 1 (Qg||Pk) < 1, and choose A = 1 in Lemma C.3 we obtain

W2 (P(Xk), P(X (kn)))

6ym*M?(n — B) 2 272 2v7.,3 2dmM?(n — B) 2 2 v
<D 3yM?* | (M*D —_— + M
< A[( Bln—1) + 3y ( 5+ Gk + Bin—1) + M=d |kn ,

where Dy = 2A = 4,/3/2 + (2b + d/v)kn since || Xo||2 = 0. O

C.2 Proof of Lemma A.2

In the following, we adopt the method in Bakry et al. (2013) to show the exponential ergodicity of Langevin
diffusion (1.1). In detail, following Bakry et al. (2013), we show the exponential decay in terms of KullbackLeibler
divergence (KL divergence) between the probability measure P¥ () and the stationary distribution 7, characterize
the convergence rate of Langevin dynamics, and link the 2-Wasserstein distance and KL divergence using Otto-
Villani theorem (Bakry et al., 2013). We first present the following lemma, which is necessary for the estimation
of constant D3 in Lemma A.2.

Lemma C.6. (Raginsky et al. (2017)) Consider Langevin diffusion (1.1), under Assumptions 4.1 and 4.2, its
stationary distribution 7 satisfies the logarithmic Sobolev inequality with constant C, i.e., for any function h
such that [p, h|log hldr < co and [;, h*dm = 1, we have

d
/Rd 2h?log hdr < 2T’ /R |Vh|3dr, (C.10)

where T' = exp (5(7 +d)).

Proof of Lemma A.2. By Lemma C.6, the stationary distribution 7 satisfies logarithmic Sobolev inequality with
constant I'. According to Bakry et al. (2013) (Theorem 5.2.1), we know that for Langevin diffusion (1.1), the
KL divergence between probability measure of X (t) and the stationary distribution 7 satisfies the following
inequality for any ¢ > 0,

D(PL()|w) < D(PY()|m)e” . (C.11)

where T is the constant in logarithmic Sobolev inequality. It can be seen that the above result gives the form
of exponential decay, and the corresponding rate relies on the constant I', which is specified in Lemma C.6.
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Moreover, according to Bakry et al. (2013) (Theorem 9.6.1), it can be seen that if (C.10) holds for stationary
distribution m with constant I', we have the following hold for probability measure P} (),

Wa(PL(),m) < (/2T - D(PL(-)|), (C.12)

where Wh(u, v) is the 2-Wasserstein distance between probability measures u and v. Submit (C.12) into (C.11),

we have the following
WalTL()m) < \/20 - DTl -

Let Dy = \/21" -D(P(X(0)))||r) and D5 =T, we have

Wi (Ph(), ) < Dye” 75,

which completes the proof.

C.3 Proof of Lemma A.3

We first lay out the following Lemmas which will be used to prove Lemma A.3

Lemma C.7. Under Assumptions 4.1 and 4.2, for sufficiently small step size 7, suppose the initial point is
X = 0, the expectation of the squared ¢ norm of the iterates generated by Algorithm 2 is bounded by

1 d
B[l Xxllg] < 2(1 n 5) ( e ;> _ Dy

Lemma C.8. Under Assumption 4.1, we have the following upper bound on the variance of semi-stochastic
gradient Vj, in the SAGA-LD update,

B -

E[| Vi — VF(X4)[3] < %

Similar to the proof of Lemma A.1, we have two continuous Markov chains, one of them is generated by the
Langevin dynamics, i.e.,
dX (t) = —q(X(t))dt + /2y~ 1dB(t),

where ¢(X(t)) = Vf(X(t)), and the other one, denoted as {H(t)};>0, follows from the iterate sequence
{ Xk} k=0.1.. i generated by Algorithm 2, and takes the following form

dH (t) = —h(H(t))dt + /27— 1dB(t),

where the drift term h(H(t)) = V is defined in Algorithm 2. Similar to SVRG-LD, {H (t) }+>0 does not form
a Markov Chain since the drift term h(H (t)) depends on some history iterates {H(7),7 < t}. However, we

can again construct a Markov chain {H (t)}+>0 which possesses the identical one-time distribution of {H (t)}¢>o.
{H (t)}:>0 is defined by the following SDE

dH (t) = —h(H(t))dt + /2y~ 1dB(t),

where h(H (t)) = E[h(H (t)) \ﬁ(t) = H (t)]. Let P; and Q; denote the distributions of H (t) and X (t) respectively.
Using the Radon-Nykodim derivative of P; with respect to Q;, we obtain the following formula in terms of the
KL divergence between P, and Qy,

V)

Dics @) = [ tog (S0 )] =3 [ EllaE () ~ ()],

Then we are going to complete the proof.
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Proof of Lemma A.3. Note that h(H (s)) is a step function and remains constant when s € [vn, (v + 1)n] for any
v, then we have

kn _ N kn
/0 E[llg(H (s)) — h(H(s))]3] =/0 E[llg(H (s)) — h(H(s))|3]

k-1

~(v+1)n -

=3 [ IS vEEE)E

v=0""U"

k=1 (v+D)n ~
<2y [ BN, - VPR

v=0"""

(v+1)n
123" / E[|VF(H (vn) — VE(H(s))]3], (C13)
v=0 """

where the first equality holds since H (s) and H (s) has identical distribution, and the inequality is by Young’s
inequality and the fact that X, = H(vn). In terms of the first term on the R.H.S of the above inequality, the
following holds according to Lemma C.8,

< =By
B(n —1)

Note that G;, = V£, (X,) for some u satisfying 0 < u < v. Then we have

E[|V, — VF(X,)|3] < E[|Vfi,(Xo) - Gi,lI3].

E[I9, ~ VFOXIE] = BV (%) ~ V. (X
n 2
< BRI, - X (C14)
Note that
27}

B[ X, — X, 2l = [

/]

2u —v>ZE[||%||§] T w

< 36(u — v)2n2(M2D% + G?) + M,

where the first inequality follows from Jensen’s inequality, and the second inequality is by Young’s inequality
and Lemma C.7, where Dp = \/2(1 + 1/b)(a + G? + d/v). Then we have

4(u —v)nd
E[| X, — Xul|2] = BE[| X, — X,|3lu,v] < E[36(u — v)2>(M2D% + G*) + %].
Let ¢ =1 — (1 —1/n)® be the probability of choosing a particular index, then
4dnd
E[|| X, — X.[3] < 367%(M? D} + G*)E[(u —v)?] + % [(u—v)]
v—1 4 dv—l
= 360°(M2DE + G Y (0 =11 =0l + ==Y (011 - )l
t=0 7 =0
<36n°(M°DE + G *(1—q)' g+ el > t1-gqf g
Y
t=0 =0

20172 2 2
< 2n* (M 12)B+G ) +@'
q qay
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From Dubey et al. (2016) we know that ¢ = 1 — (1 — 1/n)® > B/(2n), thus
288n2n?(M?D% + G?) n 8nnd

B2 By’
In the following, we are going to bound the second term on the R.H.S of (C.13). Based on the definition of
H (s), the following holds,

(C.15)

(v+1)n (v+1)n
/ E[|[VF(N(un)) — VF(H(s))|2]ds < / MPE[|[H(s) — H(un)|3)ds

n un

(v+1)n - 2s — v
-/ M2(<s o[, )2 + %)d

n

M?n? 2M2n%d

< E[|[V.[3] +

2M2 2
< 6M2P(M2D% + G?) + 77’ d (C.16)

where the last inequality follows from Lemma C.7. Then, plugging (C.16), (C.15), (C.14) into (C.13), we arrive
at

kn
Dicr(Qil|Pr) < 2 / E[[lg(H (s) — h(H(s))|3]

4
v [kn*n(n — B)M? [ 288nn(M?D% + G?)  8d 919 99 o 2d
< = — M M*D —
_2[ B(n— 1) B —l—7 kn 6m( B+G)+7
144n*(n — B)M? 9 99 9 3 dn(n — B)M?d 9 9
= M=) (M*D k —_—+ M .
< Bin—1) +3 )( 5+ G7)vkn +( B n—1) + d)kzn
Apply Lemma C.3, and choose A = 1 in Lemma C.3 we obtain
Wa(P(X5), P(X (kn)))
144n%*(n — B)M? 9 279 9 3 4n(n — B)M?d 5 9 1/4
< R S —
_DA{< B -1 +3M* |(M*D% + G*)vkn® + Bn—1) + M*d | kn ,

where Dy = 41/3/2 + (2b +d/~)kn.

D Proof of Auxiliary Lemmas in Appendix C
In this section, we prove the technical lemmas in Appendix C.

D.1 Proof of Lemma C.1

Proof. Let G = max;=1,. || fi(0)|, then we have
IVfix)ll2 < IVfi(x) = Vfi(0)[l2 + [[Vfi(0) ]2 < M]|x[|2 + G,
where the first inequality follows from triangle inequality and the second inequality follows from Assumption 4.1.

This completes the proof. O

D.2 Proof of Lemma C.2

Proof. We prove the bound for E[||X}||2] by mathematical induction. Since V, = 1/B iven (Vi (Xy) —
Vfi (X®) + VF()?(“"))), we have

~ 8 ~ 2
E[| Xis113] = E[| X5 — nVill3] +/ %Euxk V)] + 7”E[||ek||%]

2nd

= E[| X — Vi3] + ot (D.1)
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where the second equality follows from the fact that €, is independent of X}, and standard Gaussian.

We prove it by induction. First, consider the case when k = 1. Since we choose the initial point at Xy = 0, we
immediately have

~ 8n = 2n
E[[|X1(3) = E[[| Xo — nVo 3] + 4/ TEKXO —nVo.€0)] + VE[Ileng]

2nd
= n’E[|VF(Xo)3] + —

<ipc? 4+ 2
g
where the second equality holds due to the fact that Vo =VF (Xo) and the inequality follows from Lemma C.1.

For sufficiently small 77 we can easily make the conclusion holds for E[|| X]/3].

Now assume that the conclusion holds for all iteration from 1 to k, then for the (k + 1)-th iteration, by (D.1) we
have,

2nd

E[|| Xp41]13] = E[| X5 — Vi3] + (D.2)
For the first term on the R.H.S of (D.2) we have
E[| X — nV||3) = B[| Xk — 1V F(Xx)|3] + 20E(X — nVF(X}), VF(Xy) = Vi)
+0E[|VF(Xy) — Vi3]
= E[| X — nVF(X)|l3] +n’E[|[VF(Xx) — Vi3], (D.3)

T 1>

where the second equality holds due to the fact that E[%k] = VF(X}). For term 17, we can further bound it by
E[| X5, — 0V E(Xy)|I3] = B[l Xkll3] — 20E[( Xk, VE(X)))] + °E[[[VE(Xy)|[3]
< E[|| Xk|3] + 2n(a — 0E[|| X [13)) + 20°(M?E[[| X5 13] + G*)
= (1 —2nb + 20> M®)E[|| X1||3] + 2na + 27*G?, (D.4)
where the inequality follows from Lemma C.1 and triangle inequality. For term 75, by Lemma C.5 we have

M?(n — B) =~
w1 ElIXe - XV, <

2M?(n — B)

) —Vil2 <
E[VF(X)) — Vil < B(n—1)

(BIX]15 +EIX3).

Submit the above bound back into (D.1) we have

-B
< (1- 202 (14— 2
Ef| Xis1]3) < (1 2b+ 20°M? (1 + B(n_l)))E[”Xk”z]
20 M2 (n

2
B(n — '

I)B)E\W(S)Hi+2na+2n2G2+ (D.5)

Note that by assumption we have EHX]HE < Cyforall j=1,...,k where Cy = 2(1 + 1/b) (a +G? + d/'y), thus
(D.5) can be further bounded as:

2(n — B)
B(n—1)

2nd

E[|| Xrs13] < <1 —2nb + 27)2M2(1 - )) Cy + 2na + 2n°G* + - (D.6)

Cx

For sufficient small n that satisfies

. b
7 < min (1» 2M?(1+2(n— B)/(B(n—1))) )7
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there are only two cases we need to take into account:
If Cy <0, then from (D.6) we have

. 2nd
B[ Xps1]13] < 2na +20°G? + ==

¥
d

<2<a+G2+—).
o

na +n>G? + %l
2(n—B
nb — n2M2(1 + B((nn_lg>

2
<- <a +G? + é).
b v
Combining (D.7) and (D.8), we have

1 d
EllXely <2(1+3) (a4 62+ 2).

If 0 < C <1, then iterate (D.6) and we have

E[ll Xk ]3] < O3 Xol3 +

Thus we show that when E[||X;||3],7 = 1,...,k are bounded, E[|| X4+1//3] is also bounded. By mathematical

induction we complete the proof.

D.3 Proof of Lemma C.5

O

Proof. Since by Algorithm 1 we have V, = (1/B) iven (Vi (Xk) =V (X®) + VF(E(/(S))), therefore,

BIIY: - VP01 ~ B 3 3 (9480 - V&) + VPE®) - F(X,)

i €1y

Let vi = VF(x) ~ VEEO) — (Y, (06) ~ Vi, (K)).

1 S| 1
EHE > vilx)|| = @E{ Yoo vix) v (X)} + EEIIW(X)IIS
i€y, 2 i;éi' {i,i' YT,
— a7 | w9 + Bl
154!

B-1 5 1 )
Bm_l [Zw Tvi( }— BTy BVl + FEIVGOIE

n—B
=— " E|vi(x)|?
TSR

where the last equality is due to the fact that + %" | v;(x) = 0.

Therefore, we have

IV — VP(xo) ] < s Bl
— B IV i) = VA ()~ BV i (1) = V£, G
< GBIV ) = VA RIS
< 20 D, -3

(D.9)

(D.10)

where the second inequality holds due to the fact that E[||x — E[x]||3] < E[||x|3] and the last inequality follows

from Assumption 4.1. This completes the proof.

O



Difan Zou, Pan Xu, Quanquan Gu

D.4 Proof of Lemma C.6
Although the similar proof has been shown in Raginsky et al. (2017), we provide a refined version to make this
paper self-contained.

In order to prove Lemma C.6, we need the following three lemmas.
Lemma D.1. (Raginsky et al. (2017)) In terms of the Langevin dynamics (1.1), under Assumption 4.2, we have
the following upper bound on the expectation E[|| X (¢)||3]

EIX ]3] < X3 + T 0 o)

Lemma D.2. ( Bakry et al. (2008)). Suppose that there exists constants kg, \g > 0, R > 0 and a C? function
V :R% — [1,00) such that

LV (w) < =XV (W) + ko1{|w|]2 < R},

where the operator £ is It6 differential operator. Then the stationary distribution, i.e., m, satisfies a Poincaré
inequality with constant

1
Cp < A_O (1 + Cpk0R2eoscR(g)> N

where C), > 0 is a universal constant and Oscg(f) := max|w|,<r f(W) — min|,<r f(W).
Lemma D.3. (Cattiaux et al. (2010)) Suppose the following conditions hold:

1. There exist constants k, A > 0 and a C? function V : R? — [1,00) such that

LV (w)
V(w)

< k= Alwl3

for all w € R%.
2. 7 satisfies a Poincaré inequality with constant c,.

3. There exists some constant K > 0, such that V2f > —KT.

Let C~’1 and 52 be defined, for some € > 0, by

~ 2(1 K ~ 2(1 K 2
=3 (2 f) e mna a=3(Ee ) (k0 [ i),

Then 7 satisfies a logarithmic Sobolev inequality with constant I' = Cy + (52 +2)cp.

Based on the above two lemmas, we are able to complete the proof.

Proof of Lemma C.6. We first give the upper bound of the constant ¢, in Poincaré inequality. Following from
Lemma D.2, we can establish a Lyapunov function V' (w) and then derive a upper bound of ¢,. In this proof, we
apply the same Lyapunov as Raginsky et al. (2017). Let V(w) = e=0Iwl3/4 and we have

LV (w)=—y(VV,VF) +V?V : 1

by? byd | (by)?
_ <_ (W, VE) 4+ =15 4 TIIWII%)‘/

where the last inequality follows from Assumption 4.2. Thus, let R? = 4(d + ay)/(by), we have

a a 2 .
evw) < - v e (25 - B ) vl < )
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Let

L I ,

we immediately have
LV (w) < =XV (W) + ko1{||w]||2 < R}.
Under Assumption 4.1, it follows that
M 2

F(x) = F(y) <(VE(y),x —y) + S llx =¥l

for any x,y € R%. By taking y = 0, we obtain that there exists a constant Ky > 0, such that
M
F(x) < F(0) + (VF(0),x) + —-[Ix[I3 < Ko(1 + [[x]5), (D.12)

where

Ky — max{F(O) + %HVF(O)HZ Ml }

22
By (D.12), we have
Oscr(yF) < 2yKo(1 + R?).
Thus, based on Lemma D.2, the stationary distribution 7 satisfies a Poincaré inequality with constant

1 4Cp(d + av) (8Ko +b)(d + av) )

<
= by(d + a) by

exp (27]( o+ b

Next, we are going to prove the upper bound of constant T" in logarithmic Sobolev inequality. According to
(D.11), we know that

LV (w)
V(w

< k= Alwl3

holds with

hld+ay) 4 - &)

k= 5 , an 1

In addition, for function f(x) = vF(x), we have V2f > —M~I according to Assumption 4.1. Then substitute
the above parameters into Lemma D.3, choose € = %, we obtain

~  2b% +8M?
Ci=———
M~b?
Moreover, from Lemma D.1, constant 52 is bounded by

G, < 6]\I(db+ a'y)7

Submitting 51 and 52 back to Lemma D.3, we have

2b2% + 8M2 6M(d +
< +p< (ba7)+2>’

note that ¢, = 65(7+d), we also have I' = 65(7+d), which completes the proof. O
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D.5 Proof of Lemma C.7

Proof of Lemma C.7. The proof for Lemma C.7 is quite similar to that for Lemma C.2. Based on the update
form of X}, in Algorithm 2, we have

~ ~ 2nd
E[|| X+13] = E[| X5 — 1V + v/2n/ver]|3] = E[| Xy — nVil[3] + —.
Similar to (D.3), we further have
E[|| Xy — nVill3] = E[| X5 — nVE(X0)[3] + n°E[| VF(Xk) — Vi|[3). (D.13)

Compared with the argument in (D.3), the first term on the R.H.S of the above inequality can be upper bounded
in the same way as we did in (D.4), which is stated as follows,

E[|| X = nVE(Xp)[I3] < (1 = 2nb + 20> M?)E[|| Xy [[3] + 2na + 21°G?.
Regarding the second term on the R.H.S of (D.13), we have the following based on Lemma C.5

n—B
B(n—1)

n—B

E[|VF(Xk) — Vill3] < B(n—1)

E[|V ;. (Xk) — Gy, |13] = E(|V £, (X&) — Vi, (Xu) ]3],

where u is an index satisfying v < k. Applying smoothness assumption we have

B 2
%E[ka — X, |[3]

< 2(E[| X13) + E[ X 13]),

E[|VF(Xy) — Vi3]

IN

where the second inequality follows from Young’s inequality and the fact that B > 1. Now, we are able to upper
bound E[|| X} 1//3] as follows

2nd
E[| Xp41[13] < (1= 2nb + 20 M?)E[[| X 13] + 2na + 2°G* + 20*(E[|| XlI3] + E[| Xu13])) + -
< (1— 20+ 22 (M + 4)) ma{E[| Xe B B X3} + 20(a + d/r) + 2°G?
Then we apply induction to prove that E[|| X|[3] < 2(14+1/b)(a+G?+d/v). It is easy to verify that E[|| X||3] = 0

satisfies the argument. Then we assume that the argument holds for all iterates from 0 to k. Note that u < k,
which implies that

. . 1 5 d
max(B| XL Bl X 3} < 2(1+ 3 ) (a+67 4 ),
Then, for sufficiently small 5 such that

b
<mingl, ————-+=
n_mm{ ’2(M2+4)}’

it follows that

E[|| Xka]l3] < 2{(1 —nb)(l + %) +n] (a+G2 + g)
SQ(l—l—%—nb) <a+G2+%>

1
§2(1+5><G+G2+é)»
gl

which indicates that E[|| Xk, 1||2] also satisfies the argument. Thus we are able to complete the proof. O
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D.6 Proof of Lemma C.8

Proof. Since by Algorithm 2 we have V), = 5 2en (Vi (Xk) — G + k), therefore,

_ 1 L 2
E[|Vi — VF(X})[3] = EHE i;ﬁ (Vfi,(Xk) — Gy, + 8 — VF(Xy))

2

Let v; =V, (X) — éik + gr — VF(X}), following the same procedure in (D.9) we have

2

IEH% ;W(X) - Brzn;_Bl)]EHVi(X)H%'
Therefore, we have
E[||Vi, — VF(xx)|3] = é%/—iﬂlwll%
_ B?n;_Bl)E”v Fir (X3) — Gy — (VF(X) — 80)[3
< B?n;_Bl)IEHVfik(Xk) -G, 3,

where the inequality holds due to the fact that E[||x — E[x]||3] < E[||x||3], which completes the proof.



