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1 Proof of General CIBP Termination

In the main paper, we discussed that the cascading Indian buffet process (CIBP) for fixed and finite α and β
eventually reaches a restaurant in which the customers choose no dishes. Every deeper restaurant also has
no dishes. Here, we show a more general result, for IBP parameters that vary with depth: α(m) and β(m).

Let there be an inhomogeneous Markov chainM with state space N. Let m index time and let the state
at time m be denoted K(m). The initial state K(0) is finite. The probability mass function describing the
transition distribution for M at time m is given by the following equation:
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Theorem 1.1. If there exists some ᾱ < ∞ and β̄ < ∞ such that ∀m, α(m) < ᾱ and β(m) < β̄,
then limm→∞ p(K(m) = 0) = 1.

Proof. Let N+ be the positive integers. The N+ are a communicating class for the Markov chain (it is
possible to reach any member of the class from any other member) and each K(m) ∈ N+ has a nonzero
probability of transitioning to the absorbing state K(m+1) = 0, i.e., p(K(m+1) = 0 |K(m)) > 0, ∀K(m). If,
conditioned on nonabsorption, the Markov chain has a stationary distribution (is quasi-stationary), then it
reaches absorption in finite time with probability one. This is the requirement that, conditioned on having
not yet reached a restaurant with no dishes, the number of dishes in deeper restaurants will not explode.

The quasi-stationary condition can be met by showing that N+ are positive recurrent states. We use the
Foster–Lyapunov stability criterion (FLSC) to show positive-recurrency of N+. The FLSC is met if there
exists some function L(·) : N+ → R+ such that for some ε > 0 and some finite B ∈ N+,
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for all K(m) > 0. Thus, the first condition is satisfied for any B that satisfies the condition for ᾱ and β̄.
That such a B exists for any finite ᾱ and β̄ can be seen by the equivalent conditionᾱK(m)∑
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As the first term is roughly logarithmic in K(m), there exists some finite B that satisfies Eqn 6. The second
FLSC condition is trivially satisfied by the observation that Poisson distributions have a finite mean.
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