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Abstract

We study the problem of allocating stocks to
dark pools. We propose and analyze an opti-
mal approach for allocations, if continuous-
valued allocations are allowed. We also
propose a modification for the case when
only integer-valued allocations are possible.
We extend the previous work on this prob-
lem (Ganchev et al., 2009) to adversarial sce-
narios, while also improving on their results
in the iid setup. The resulting algorithms are
efficient, and perform well in simulations un-
der stochastic and adversarial inputs.

1 Introduction

In this paper we consider the problem of allocating
stocks to dark pools. As described by Ganchev et al.
(2009), dark pools are a recent type of stock exchange
that are designed to facilitate large transactions. A
key aspect of dark pools is the censored feedback that
the trader receives. At every round the trader has a
certain number V t of shares to allocate amongst K
different dark pools. The dark pool i trades as many
of the allocated shares vi as it can with the available
liquidity. The trader only finds out how many of these
allocated shares were successfully traded at each dark
pool, but not how many would have been traded if
more were allocated.

It is natural to assume that the actions of the trader
affect the volume available at all dark pools at later
times. Similarly, it seems natural that at a given
time, the liquidities available at different venues should
be correlated: we would expect counterparties to dis-
tribute large trades across many dark pools, simul-
taneously affecting their liquidity. Furthermore, in
a realistic scenario, these variables are governed not
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only by the trader’s actions, but also by the actions
of other competing traders, each trying to maximize
profits. Since the gain of one trader is at the expense
of another, this problem naturally lends itself to an ad-
versarial analysis. Generalizing the setup of Ganchev
et al. (2009), we assume that the sequences of volumes
and available liquidities are chosen by an adversary
who knows the previous allocations of our algorithm.

We propose an exponentiated gradient (henceforth
EG) style algorithm that has an optimal regret guar-
antee against the best allocation strategy in hindsight.
Our algorithm uses a parametrization that allows it to
handle the problem of changing constraint sets easily.
Through a standard online to batch conversion, this
also yields a significantly better algorithm in the iid
setup studied in Ganchev et al. (2009). However, the
EG algorithm has the drawback that it recommends
continuous-valued allocations. We describe how the
problem of allocating an integral number of shares
closely resembles a multi-armed bandit problem. As
a result, we use ideas from the Exp3 algorithm for ad-
versarial bandit problems (Auer et al., 2003) to design
an algorithm that produces integer-valued allocations
and enjoys a regret of order T 2/3 with high probabil-
ity. While this regret bound holds in an adversarial
setting, it also implies an improvement on Ganchev
et al. (2009) in an iid setting.

In the next section we will describe the problem setup
in more detail and survey previous work. We will de-
scribe the EG algorithm for continuous allocations and
prove its regret bound and optimality in Section 3. In
Section 4 we describe the algorithm for integer valued
allocations. Section 4.3 discusses implementation is-
sues. Finally we present experiments comparing our
algorithms with that of Ganchev et al. (2009) using
the data simulator described in their paper.

2 Setup and Related Work

We generalize the setup of Ganchev et al. (2009).
A learning algorithm receives a sequence of volumes
V 1, . . . V T where V t ∈ {1, . . . , V }. It has K available
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venues, amongst which it can allocate up to V t units
at time t. The learner chooses an allocation vti for the
ith venue at time t that satisfies

∑K
i=1 v

t
i ≤ V t.

Each venue has a maximum consumption level sti.
The learner then receives the number of units rti =
min(vti , s

t
i) consumed at venue i. We allow the se-

quence of volumes and maximum consumption levels
to be chosen adversarially, i.e. V t, sti can depend on
{v1
i , . . . , v

t−1
i }Ki=1. We measure the performance of our

learner in terms of its regret

RT = max
T∑
t=1

K∑
i=1

min(uti, s
t
i)−min(vti , s

t
i)

where the outer maximization is over the vector opt ∈
{1, . . . ,K}V and

uti =
V t∑
v=1

I(optv = i),

i.e., we compete against any strategy that chooses a
fixed sequence of venues opt1, . . . , optV and always al-
locates the vth unit to venue optv.

The works most closely related to ours are Ganchev
et al. (2009) and Huh and Rusmevichientong (2009).
In the first paper, the authors consider the sequence
of volumes V 1, . . . , V T and allocation limits sti to be
distributed in an iid fashion. They propose an algo-
rithm based on Kaplan-Meier estimators. Their algo-
rithm mimics an optimal allocation strategy by esti-
mating the tail probabilities of sti being larger than a
given value. They show that the allocations of their
algorithm are ε-suboptimal with probability at most
1 − ε after seeing sufficiently many samples. Theo-
rem 1 in Ganchev et al. (2009) shows that, if the sti is
chosen iid, then the optimal strategy always allocates
the ith unit to a fixed venue. This justifies our defi-
nition of regret in comparison to this class of strate-
gies. In Huh and Rusmevichientong (2009) the authors
consider a stochastic gradient desscent algorithm for 1
venue when the demands are drawn in an i.i.d. fasion.
They also discuss integral allocations through round-
ing, but assume side information to get different rates
of convergence than us.

The ideas used in our paper draw on the rich liter-
ature on online adversarial learning. The algorithm
of Section 3 is based on the classical EG algorithm
(Littlestone and Warmuth, 1994). When playing in-
tegral allocations, we describe how the multi-armed
bandits problem is a special case of our problem for
V = 1. For the general case, we describe an adap-
tation of the Exp3 algorithm (Auer et al., 2003) for
adversarial multi-armed bandits. To provide regret
bounds that hold with high probability, we use a vari-
ance correction similar to the Exp3.P algorithm (Auer

et al., 2003). Our lower bounds use techniques sim-
ilar to lower bound arguments for experts prediction
and multi-armed bandits. The efficient implementa-
tion of our algorithm relies on greedy approximation
techniques in Hilbert spaces.

3 Optimal algorithm for fractional
allocations

Although the dark pools problem requires us to allo-
cate an integral number of shares at every venue, we
start by studying the simpler case where we can al-
locate any positive value for every venue, so long as
they satisfy

∑K
i=1 v

t
i ≤ V t. We note that the reward

function rti = min(vti , s
t
i) is concave in allocations vti .

Maximization of concave functions is well understood,
even in an adversarial scenario through approaches
such as online gradient ascent. We note that in this
problem, the algorithm has access to the subgradient
of the reward function. To see this, we define

gti =
{

1 if rti = vti
0 if rti < vti

(1)

Then it is easy to check that gti can be constructed
from the feedback we receive, and it lies in the sub-
gradient set ∂rt

i

∂vt
i
. Hence, we can run a standard on-

line (sub)gradient ascent algorithm on this sequence
of reward functions. However, the allocations vti are
chosen from a different set St = {~vt :

∑K
i=1 v

t
i ≤ V t}

at every round. Using standard online gradient ascent
analysis, we can demonstrate a low regret only against
a comparator that lies in the intersection of all these
constraint sets ∩Tt=1St. However the regret guarantee
can be rather meaningless if V t is extremely small at
even a single round. Ideally, we would like to compete
with an optimal allocation strategy like Ganchev et al.
(2009). A slightly different parameterization allows us
to do exactly that.

Let us define ∆V
K = {(x1, . . . , xV ) :

∑K
i=1 x

v
i =

1 ∀v ≤ V } to be the Cartesian product of V simplices,
each in RK . Then we can construct an algorithm for
allocations as follows: for each unit v = {1, . . . , V }, we
have a distribution over the venues {1, . . . ,K} where
that unit is allocated. At time t, the algorithm plays
vti =

∑V t

v=1 x
v
t,i. It is clear that this allocation satisfies

the volume constraint.

The comparator is now defined as a fixed point u ∈
∆V
K . We compete with the strategy that plays ac-

cording to vti =
∑V t

v=1 u
v
i . Then the best comparator

u is equivalent to the best fixed allocation strategy
opt ∈ {1, . . . ,K}V . It is also clear that if we can com-
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pete with the best strategy in an adversarial setup, on-
line to batch conversion techniques (see Cesa-Bianchi
et al. (2001)) will give a small expected error in the
case where the volumes and maximum consumptions
are drawn in an iid fashion.

3.1 Algorithm and upper bound

An online exponentiated gradient ascent algorithm for
this setup is presented in Algorithm 1.

Algorithm 1 Exponentiated gradient algorithm for
continuous-valued allocations to dark pools

Input learning rate η, bound on volumes V .
Initialize xv1,i = 1

K for v ∈ {1, . . . , V }, i ∈
{1, . . . ,K}.
for t = 1, . . . , T do

Set vti =
∑V t

v=1 x
v
t,i.

Receive rti = min{vti , sti}.
Set gti as defined in Equation (1).
Set gvt,i = gti if v ≤ V t, 0 otherwise.
Update xvt+1,i ∝ xvt,i exp(ηgvt,i).

end for

It can be shown that the algorithm enjoys the following
regret guaranteee.

Theorem 1. For any choices of the volumes V t ∈
[0, V ] and of the maximum consumption levels sti, the

regret of Algorithm 1 with η =
√

lnK
(e−2)T over T rounds

is O(V
√
T lnK).

Proof. The regret is defined as

RT = max
u∈∆V

K

T∑
t=1

K∑
i=1

min

 V t∑
v=1

uvi , s
t
i

− T∑
t=1

K∑
i=1

min
(
vti , s

t
i

)

≤
T∑
t=1

V t∑
v=1

(uv − xvt )> gvt .

Following the proof of Theorem 11.3 from Cesa-
Bianchi and Lugosi (2006), we define νvi = ηgvt,i −
η(gvt )>xvt . Also, we note that the gradient is zero for
v > V t. So we can sum over v from 1 to V rather than
V t. Then we bound the regret as

T∑
t=1

V∑
v=1

[
(uv − xvt )>gvt −

1
η

ln

(
K∑
i=1

xvt,i exp(νvi )

)

+
1
η

ln

(
K∑
i=1

xvt,i exp(νvi )

)]
.

Some rewriting and simplification gives the bound

1

η

T∑
t=1

V∑
v=1

[
K∑
i=1

uvi ln

(
exp

(
ηgvt,i

)∑K
i=1 exp

(
ηgvt,i

))+ ln

(
K∑
i=1

xvt,ie
νv

i

)]

=
1

η

T∑
t=1

V∑
v=1

[
uvi ln

(
xvt+1,i

xvt,i

)
+ ln

(
K∑
i=1

xvt,i exp(νvi )

)]

≤ 1

η

V∑
v=1

[
KL(uv||xv1) +

T∑
t=1

ln

(
K∑
i=1

xvt,i exp(νvi )

)]
.

Here, the last line uses the definition of KL-divergence
and the fact that the telescoping terms cancel out.
Now gvt,i ≤ 1 so that νvi ≤ η. If η ≤ 1, then it is
easy to verify that exp(νvi ) ≤ 1 + νvi + (e − 2) (νvi )2

.

We also note that
∑K
i=1 x

v
t,iν

v
i = 0.

Also, each of the KL divergence terms in the above
display is equal to lnK. This is because the optimal
comparator will have a 1 for exactly one venue for each
unit v. As we choose xv1 to be uniform over all venues,
we get the KL divergence between a vertex of the K-
simplex and the uniform distribution which, is lnK.

Hence we bound the regret as

1
η
V lnK +

1
η

T∑
t=1

V∑
v=1

ln

(
K∑
i=1

xvt,i

(
1 + νvi + (e− 2) (νvi )2

))

≤ 1
η
V lnK +

1
η

T∑
t=1

V∑
v=1

(e− 2)η2

=
1
η
V lnK + (e− 2)ηV T ≤ 3V

√
T lnK,

where the last step follows from setting η =
√

lnK
(e−2)T .

3.2 Lower bound and minimax optimality

We will now show that the online exponentiated gra-
dient ascent algorithm in Algorithm 1 has the best
regret guarantee possible. We start by noting that a a
regret bound of O(

√
T lnK) is known to be optimal for

the experts prediction problem (Haussler et al., 1998;
Abernethy et al., 2009). Hence we can show the opti-
mality of our algorithm for V = 1 by reducing experts
prediction problem to the dark pools problem. Recall
that in the experts prediction problem, the algorithm
picks an expert from 1, . . . ,K according to a proba-
bility distribution pt at round t. Then it receives a
vector of rewards ρt with ρt,i ∈ [0, 1], i = 1, . . . ,K.
In order to describe a reduction, we need to map the
allocations of an algorithm for the dark pools problem
to the probabilities for experts, and map the rewards
of experts to the liquidities at each venue.

We consider a special setting where Vt = 1 at all times.
Since Vt = 1, the allocations of any dark pools algo-
rithm are probabilities– they are non-negative and add
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to 1. Hence we set pt,i = vti . We also set the liquid-
ity sti = ρt,ipt,i. Then the net reward of a dark pools
algorithm at round t is:
K∑
i=1

min(sti, v
t
i) =

K∑
i=1

min(ρt,ipt,i, pt,i) =
K∑
i=1

ρt,ipt,i,

where the last line follows from the observation that
0 ≤ ρt,i ≤ 1. Hence the net reward of the dark pools
problem is same as the expected reward in the experts
prediction problem. Using the known lower bounds on
the optimal regret in experts prediction problems, we
get:

max
s1,...,sT

max
u∈∆K

T∑
t=1

K∑
i=1

[
min

(
ui, s

t
i

)
−min(vti , s

t
i)
]

= max
ρ1,...,ρT

max
i

T∑
t=1

ρt,i − K∑
j=1

ρt,jpt,j


= Ω(

√
T lnK).

We also note that the regret in the experts prediction
problem scales linearly with the scaling of the rewards.
Hence, if the rewards take values in [0, V ], then the
worst case regret of any algorithm is guaranteed to be
Ω(V
√
T lnK).

For arbitrary V , we let V t identically equal to V . We
would now like to reduce the experts prediction prob-
lem where every expert’s reward is a value in [0, V ].
At every round, we receive a vector of allocations vti
and set pt,i = vti/V . We receive the rewards ρt,i
from the experts problem, and assign the liquidities
sti = ρt,ipt,i ∈ [0, V ]. Furthermore,

min(sti, v
t
i) = V min

(
sti
V
, pt,i

)
= ρt,ipt,i.

The last step relies on observing that ρt,i ≤ V so that
ρt,ipt,i/V ≤ pt,i. Now we can argue that the regrets
of the two problems are identical as before. Hence the
optimal regret in the dark pools problem is at least
Ω(V
√
T lnK). As Algorithm 1 gets the same bound up

to constant factors in a harder adversarial setting than
used in the lower bounds, we conclude that it attains
the minimax optimal regret up to constant factors.

4 Algorithm for integral allocations

While the above algorithm is simple and optimal in
theory, it is a bit unrealistic as it can recommend we
allocate 1.5 units to a venue, for example. One might
choose to naively round the recommendations of the
algorithm, but such a rounding would incur an addi-
tional approximation error which in general could be
as large as O(T ). In this section we describe a low
regret algorithm that allocates an integral number of
units to each venue.

To get some intuition about an algorithm for this sce-
nario, consider the case when V = 1. Then the al-
gorithm has to allocate 1 unit to a venue at every
round. It receives feedback about the maximum al-
location level sti only at the venue where vti = 1. This
is clearly a reformulation of the classical K-armed ban-
dits problem. An adaptation of Algorithm 1 that uses
the Exp3 algorithm (Auer et al., 2003) would hence at-
tain a regret bound of O(

√
TK lnK) for V = 1. Con-

trasting this with the bound of Theorem 1 for V = 1,
we can easily see that the regret for playing integral
allocations can be higher than that of continuous allo-
cations by a factor of up to

√
K. Indeed we will now

show a modification of the Exp3 approach that works
for arbitrary values of V . We will also show a lower
bound. The upper bound shows that our algorithm
incurs O(T 2/3) regret in expectation, which does not
match the Ω(

√
T ) lower bound. However, it is still a

significant improvement on Ganchev et al. (2009) as
we will discusss later.

4.1 Algorithm and upper bound

We need some new notation before describing the algo-
rithm. For a fractional allocation vti , we let f ti = bvtic
and dti = vti − bvtic.

Now suppose we have a strategy that wants to allocate
vti units to venue i at time t. Suppose that we instead
allocate uti = f ti units with probability 1−dti and uti =
f ti + 1 units with probability dti. Using the fact that
the maximum consumption limits are integral too
E min(uti, s

t
i) = dti min(f ti + 1, sti) + (1− dti) min(f ti , s

t
i)

=
{

sti if sti ≤ f ti
f ti + dii if sti ≥ f ti + 1

= min(vti , s
t
i).

Thus, playing an integral allocation uti according to
such a scheme would be unbiased in expectation. Of
course we need to ensure that we don’t violate the
constraint

∑K
i=1 u

t
i ≤ V t in this process. To do so, we

let
∑K
i=1 d

t
i = Vt −

∑K
i=1 f

t
i = m. Then we will use a

distribution over subsets of {1, . . . ,K} of size m that
has the property that ith element gets sampled with
probability dti. For all the elements in the sampled
subset, we set uti = f ti + 1. It is clear that if there is
such a distribution, then we will have the unbiasedness
needed above. It will also ensure feasibility of uti if vti
was a feasible allocation. Our next result shows that
such a distribution always exists.
Theorem 2. Let 0 ≤ dti < 1,

∑K
i=1 d

t
i = m for m ≥

1. Then there is always a distribution over subsets
of {1, . . . ,K} of size m such that the ith element is
sampled with probability dti.

Proof. Proof is by induction on K. For the case
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K = 2,m = 1, we sample the first element with
probability dt1. If it is not picked, we pick element
2. It is clear that the marginals are correct estab-
lishing the base case. Let us assume the claim holds
up to K − 1 for all m ≤ K − 1. Consider the in-
ductive step for some K,m. We are given a set of
marginals, 0 ≤ dti < 1,

∑K
i=1 d

t
i = m. We would

like a distribution p on subsets of size m of {1, . . . ,K}
that matches these marginals. We partition these sub-
sets into two groups; those that do and do not con-
tain the first element. We correspondingly partition
p = (p1, p2). Let N1 =

(
K−1
m−1

)
and N2 =

(
K−1
m

)
be

the number of subsets in the two cases. Then we want∑N1
i=1 p(i) =

∑N1
i=1 p1(i) = dt1 in order to get the right

marginal at element 1. Hence, we can write p1 = dt1q1,
p2 = (1−dt1)q2 for some distributions q1 and q2 on N1

and N2 subsets respectively. Now we write

dti =
(

(m− 1)dt1
m− dt1

+
m(1− dt1)
m− dt1

)
dti (2)

for i > 1. Then
K∑
i=2

(m− 1)
m− dt1

dti = m− 1,
K∑
i=2

m

m− dt1
dti = m (3)

are marginals on subsets of size m − 1 and m respec-
tively of {1, . . . ,K − 1}, and are in [0, 1] as

∑K
i=2 d

t
i =

m− dt1. Hence there exist distributions q1 and q2 that
attain these marginals using the inductive hypothesis.
We set p1 = dt1q1, p2 = (1− dt1)q2. Then Equations 2
and 3 together imply that we get the correct marginals
for every element.

For any allocation sequence vt, let p(dt) be the prob-
ability distribution over subsets of {1, . . . ,K} guaran-
teed by Theorem 2. For some constant γ ∈ (0, 1], let
d̄t,i = (1−γ)dti+

γm
K . Then let p(d̄t,i) be a distribution

over subsets that samples the ith venue with probabil-
ity d̄t,i. We can construct this by mixing p(dti) which
exists by Theorem 2 with a uniform distribution over
subsets of size m. Also, we let Ṽt,i ≤ Vt be the largest
index v0 such that

∑v0
v=1 x

v
t,i ≤ f ti . We define a gradi-

ent estimator:

g̃vt,i =

 I(sti ≥ f ti )−
I(st

i=ft
i )I(ut

i=dvt
ie)

d̄t,i
if v ≤ Ṽt,i

I(st
i≥v

t
i)I(ut

i=dvt
ie)

d̄t,i
if Ṽt,i + 1 ≤ v ≤ V t.

(4)

To see why this gradient estimator is good, we first
note that the gradient of the objective function at vti
can be written as

gvt,i = I(sti ≥ vti) = I(sti ≥ f ti )− I(sti = f ti ),
when v ≤ V t. Then we can easily show the following
useful lemma.
Lemma 1. If an algorithm plays uti = dvtie with prob-
ability d̄t,i and uti = f ti otherwise, then g̃t as described
in Equation (4) is an unbiased estimator of the gradi-
ent at (vt1, . . . , v

t
K).

An algorithm for playing integer-valued allocations at
every round is shown in Algorithm 2.

Algorithm 2 An algorithm for playing integer-valued
allocations to the dark pools

Input learning rate η, threshold γ, bound on vol-
umes V .
Initialize xv1,i = 1

K for v = {1, . . . , V }.
for t = 1 . . . T do

Set vti =
∑V t

v=1 x
v
t,i.

Let p(d̄t,i) be the distribution over subsets from
Theorem 2.
Sample a subset of size m =

∑K
i=1 d̄t,i according

to p(d̄t,i).
Play uti = f ti + 1 if i is in the subset sampled,
uti = f ti otherwise.
Receive rti = min(uti, s

t
i).

Set g̃vt,i as defined in Equation (4).
Update xvt+1,i ∝ xvt,i exp(ηg̃vt,i).

end for

We can also demonstrate a guarantee on the expected
regret of this algorithm.

Theorem 3. Algorithm 2, with η =
(
V (lnK)2

KT 2

)1/3

,
has expected regret over T rounds of
O((V TK)2/3(lnK)1/3), where V is the bound on
volumes V t, and the volumes and maximum consump-
tion levels sti are chosen by an oblivious adversary.

An oblivious adversary is one that chooses V t and sti
without seeing the algorithm’s (random) allocations
uti. We note that the requirement that the adversary is
oblivious can be removed by proving a high probability
bound. In the full version (Agarwal et al., 2009), we
describe a modification of Algorithm 2 that enjoys such
a guarantee.

Proof. Since the adversary is oblivious, we can fix a
comparator u ∈ ∆V

K ahead of time. For the remain-
der, we let Et denote conditional expectation at time
t conditioned on the past moves of algorithm and ad-
versary. Then the expected regret is

E

[
T∑
t=1

K∑
i=1

min

(
V∑
v=1

uvi , s
t
i

)
−

T∑
t=1

K∑
i=1

min
(
uti, s

t
i

)]

≤ E

[
T∑
t=1

K∑
i=1

min

(
V∑
v=1

uvi , s
t
i

)
−

T∑
t=1

K∑
i=1

min(vti , s
t
i)

]
+ γTK.

Here, the second step follows from the fact that uti
would be unbiased for vti without for the γm

K adjust-
ment. However, this adjustment costs us at most
γ
∑T
t=1mt ≤ γTK in terms of expected regret over

T rounds. The first term is as if we had played the
continuous valued allocation vti itself. Again using the
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concavity of our reward function

RT (u) ≤ E

[
V∑
v=1

(uv − xvt )>gvt

]
+ γTK

= E

[
V∑
v=1

(uv − xvt )>(Etg̃vt )

]
+ γTK.

Here the last step follows from noting that g̃t is un-
biased estimator of gt by construction just like in
Exp3 (Auer et al., 2003). Now we note that the algo-
rithm is doing exponentiated gradient descent on the
sequence g̃t. Hence, we can proceed as in the proof of
Theorem 1 to obtain

RT (u) ≤ 1

η
V lnK +

1

η
E

T∑
t=1

V∑
v=1

ln

(
K∑
i=1

xvt,i exp(νvi )

)
+ γTK,

where νvi = ηg̃vt,i − η(g̃vt )>xvt as before. Assuming a
choice of η such that ηg̃vt,i ≤ 1, we note again that νvi ≤
1. So we can use the quadratic bound on exponential
again and simplify as before to get

RT (u) ≤ 1
η
V lnK +

1
η

E
T∑
t=1

V∑
v=1

K∑
i=1

xvt,i(ν
v
i )2 + γTK

=
1
η
V lnK + ηE

T∑
t=1

V∑
v=1

K∑
i=1

xvt,i(g̃
v
t,i)

2 + γTK.

Now we can swap the sum over V and i to obtain

RT (u) ≤ 1
η
V lnK + ηE

T∑
t=1

K∑
i=1

V∑
v=1

xvt,i(g̃
v
t,i)

2 + γTK

=
1
η
V lnK + ηE

T∑
t=1

K∑
i=1

 Ṽt,i∑
v=1

xvt,i(g̃
v
t,i)

2

+
V t∑

v=Ṽt,i+1

xvt,i(g̃
v
t,i)

2

+ γTK.

Now we look at the two gradient terms separately.

Et
Ṽt,i∑
v=1

xvt,i(g̃
v
t,i)

2 =

Ṽt,i∑
v=1

xvt,i

{
d̄t,i

(
I(sti ≥ f ti )−

I(sti = f ti )

d̄t,i

)2

+ (1− d̄t,i)I(sti ≥ vti)
}

≤ 2vit + 2vit
K

γ
.

Here, we used the fact that d̄t,i ≥ γ
K as m ≥ 1 and

indicator variables are bounded by 1. Hence

E
T∑
t=1

K∑
i=1

Ṽt,i∑
v=1

xvt,i(g̃
v
t,i)

2 ≤ 2TV + 2
TV K

γ

using
∑T
i=1 v

t
i ≤ V . Next we examine the second gra-

dient term

Et
V t∑

v=Ṽt,i+1

xvt,i(g̃
v
t,i)

2 = Et
V t∑

v=Ṽt,i+1

xvt,i(g̃
V t

t,i )2

= Etdti(g̃V
t

t,i )2 ≤ d̄t,idti
1

(d̄t,i)2
≤ 2 if γ ≤ 1

2 .

Hence, E
∑T
t=1

∑K
i=1

∑V t

v=Ṽt,i+1 x
v
t,i(g̃

v
t,i)

2 ≤ 2TK.
Substituting the above terms in the bound, we get

Rt(u) ≤ 1
η
V lnK + 2η

(
TV +

TV K

γ
+ TK

)
+ γTK.

Optimizing for η, γ gives

RT (u) ≤ 6(V TK)2/3(lnK)1/3.

We note that the term responsible for O(T 2/3) regret
is I(st

i=ft
i )

d̄t,i
. While we assume that this can accumu-

late at every round in the worst case, it seems unlikely
that the liquidity sti will be equal to f ti very frequently.
In particular, if the sti’s are generated by a stochastic
process, one can control this probability using the dis-
tribution of sti and obtain improved regret bounds.

By using standard variance correction techniques
(Auer et al., 2003), (Abernethy and Rakhlin, 2009),
we can show a similar bound with high probability.
Combining it with a union bound over all comparators
allows us to extend the results of Theorem 3 to adap-
tive adversaries too. We omit these standard steps
for lack of space, and details can be found in the full
version of the paper (Agarwal et al., 2009).

Comparison with results of Ganchev et al.
(2009): We note that although our results are in
the adversarial setup, the same results also apply to
iid problems. In particular, using online-to-batch con-
version techniques (Cesa-Bianchi et al., 2001), we can
show that, after T rounds, with high probability the
allocations of our algorithm on each round is within
Õ(V 2T−1/3K2/3) of the optimal allocation. This is
a significant improvement on the result of Ganchev
et al. (2009): it is straightforward to check that the
proof they provide gives a corresponding upper bound
no better than O(T−1/4). As we shall see, the gener-
alization to adversarial setups leads to improved per-
formance in simulations.

4.2 Lower bound on regret

As mentioned in the previous section, the problem of
K-armed bandits is a special case of the dark pools
problem with integral allocations. Hence, we would
like to leverage the proof techniques from existing
lower bounds on the optimal regret in the K-armed
bandits problem. As before we consider a special case
with Vt = V at every round. Following Auer et al.
(2003), we construct K different distributions for gen-
erating the liquidities sti. At each round, the ith dis-
tribution samples sti = V with probability

(
1
2 + ε

)
and

sij = V with probability 1
2 for j 6= i. We now mimic

the proof of Theorem 5.1 in Auer et al. (2003). We
can arrive at the following result.
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Theorem 4. Any algorithm that plays inte-
ger valued allocations has expected regret that is
Ω
(√

TV (K + V lnK)
)
.

Proof. Using arguments similar to Auer et al. (2003),
it is easy to show that the expected regret is lower
bounded by Ω(

√
TV K). We also note that the lower

bound of Ω(V
√
T lnK) shown for continuous-valued

allocations applies to the integer-valued case as well.
Combining the two, we get that the regret is

Ω(max{
√
TV K, V

√
T lnK}) = Ω

(√
T
(√

V K + V
√

lnK
))

.

There is a gap between our lower and upper bounds
in this case. We do not know which bound is loose.

4.3 Efficient sampling for integral allocations

All that remains to specify in Algorithm 2 is the con-
struction of the distribution p over subsets at every
round. Since we don’t know what the distribution is,
it would seem that we cannot sample from it easily.
If K is small, one can use non-negative least squares
to find the distribution that has the given marginals.
However, once the number of venues K is large, p is
a distribution over

(
K
m

)
subsets, for which the least

squares solver might be too slow. One way around is
to use the idea of greedy approximations in Hilbert
Spaces. We can greedily construct a distribution on
subsets which matches the marginals on every element
approximately in an efficient manner. Exact sampling
from the distribution without ever constructing it ex-
plicitly is also possible. The explicit algorithms giving
the implementations can be found in the full version
of the paper (Agarwal et al., 2009).

5 Experimental results

We compared four methods experimentally. We refer
to Algorithms 1 and 2 as ExpGrad and Exp3 re-
spectively. We also run the Optimistic Kaplan Meier
estimator based algorithm of Ganchev et al. (2009),
which is called OptKM. Finally we implemented the
parametric maximum likelihood estimation-allocation
based algorithm described in (Ganchev et al., 2009) as
well, which we call ParML. As we did not have access
to real dark pool data, we decided to implement a data
simulator similar to Ganchev et al. (2009). We used a
combination of a Zero Bin parameter and power law
distribution to generate the sti’s while the sequence V t

was kept fixed. Parameters for the Zero Bin and power
law were set to lie in the same regimes as the ones ob-
served in the real data of Ganchev et al. (2009).
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Figure 1: Cumulative rewards for each algorithm as a
function of the number of rounds when run on the para-
metric model of (Ganchev et al., 2009) averaged over 100
trials

We started by generating the data from the parametric
model of Ganchev et al. (2009). We used 48 venues,
T = 2000 to match their experiments. The values of
sit’s were sampled iid from Zero Bin+Power law distri-
butions with appropriately chosen parameters. A plot
of the resulting cumulative rewards averaged over 100
trial runs is in in Figure 1.

We see that ParML has a slightly superior perfor-
mance on this data, understandably as the data is
being generated from the specific parametric model
that the algorithm is designed for. However, Exp-
Grad gets net allocations quite close to ParML. Fur-
thermore, both Exp3 and ExpGrad are far superior
to the performance of OptKM which is our true com-
petitor in some sense being a non-parametric approach
just like ours.

Next, we study the performance of all four algorithms
under a variety of adversarial scenarios. We start with
a simple setup of two venues. The parameters of the
power law initially favor Venue 1 for 12500 rounds,
and then we switch the power law parameters to fa-
vor Venue 2. We study both the cumulative rewards
as well as the allocations to both venues for each al-
gorithm. Clearly an algorithm will be more robust to
adversarial perturbations if it can detect this change
quickly and switch its allocations accordingly. We
show the results of this experiment in Figure 2.

Because of just 2 venues, rounding has a rather negli-
gible effect in this case and both our methods have an
almost identical performance. Our algorithms Exp-
Grad and Exp3 switch much faster to the new opti-
mal venue when distributions switch. Consequently,
the cumulative reward of both our algorithms also
turns out significantly higher as shown in Figure 2(b).

We wanted to investigate how this behavior changes
when the switching involves a larger number of venues.
We created another experiment where there are 5
venues, maximum volume V = 200. Venues 1 and 5 os-
cillate between getting very favorable and unfavorable
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(a) (b)
Figure 2: Allocations to the 2 venues and cumulative re-
wards for the different algorithms. Note the inability of
ParML and OptKM to effectively switch between venues
when distributions switch. ExpGrad and Exp3 also
achieve higher cumulative rewards.
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(c) (d)
Figure 3: Allocations to the 5 venues for the different
algorithms. Note the poor switching of OptKM between
venues when distributions switch. ParML completely fails
on this problem. Exp3 and ExpGrad correctly identify
both long and short range trends (see text).

values of the law exponent. Other venues also switch,
but between less extreme values. Allocations to all 5
venues for each algorithm are shown in Figure 3.

Once again both Exp3 and ExpGrad identify both
the long range trend (favorability of venues 1, 5 over
the others) and short range trend (favoring venue 1
over 5 in certain phases). There is a gap between
Exp3and ExpGrad this time, however, as round-
ing does start to play a role with 5 venues. Op-
tKM adapts somewhat, although it still doesn’t reach
as high an allocation level as Exp3 after switching to a
new venue. ParML adapts quite poorly to this switch-
ing as well. We also studied the behavior of algorithms
as V is scaled on the same problem. Figure 4 plots the
cumulative reward of each algorithm for V = 200 and
V = 400. It is clear that ExpGrad and Exp3 still
comprehensively outperform others.

In summary, it seems that our algorithms are competi-
tive with those of Ganchev et al. (2009) when the data
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Figure 4: Cumulative rewards for each algorithm when
distributions switch between 5 venues, for V = 200(left)
and V = 400. Note the superior performance of Exp-
Grad andExp3.

is drawn from their parametric model. When their
assumptions about iid data are not satisfied, we sig-
nificantly outperform those algorithms. We note that
we have only experimented with oblivious adversaries
here. The gulf in performance may be even wider for
adaptive adversaries.
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