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Abstract

Brain-computer interfaces (BCIs) are lim-
ited in their applicability in everyday settings
by the current necessity to record subject-
specific calibration data prior to actual use
of the BCI for communication. In this pa-
per, we utilize the framework of multitask
learning to construct a BCI that can be used
without any subject-specific calibration pro-
cess. We discuss how this out-of-the-box BCI
can be further improved in a computation-
ally efficient manner as subject-specific data
becomes available. The feasibility of the ap-
proach is demonstrated on two sets of exper-
imental EEG data recorded during a stan-
dard two-class motor imagery paradigm from
a total of 19 healthy subjects. Specifically,
we show that satisfactory classification re-
sults can be achieved with zero training data,
and combining prior recordings with subject-
specific calibration data substantially outper-
forms using subject-specific data only. Our
results further show that transfer between
recordings under slightly different experimen-
tal setups is feasible.

1 Introduction

In recent years, machine learning methods have been
applied with great success to non-invasive brain-
computer interfaces (BCIs), replacing the need for in-
tensive subject training (Wolpaw et al., 1991, Wol-
paw and McFarland, 2004, Birbaumer et al., 1999)
by a comparatively brief calibration time (Blankertz
et al., 2007). In spite of this progress, setting up
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a non-invasive BCI experiment still involves a time-
consuming process. Besides the arduous electrode
placement procedure, the main obstacle for out-of-the-
box usable BCIs is the current necessity to acquire
subject-specific training data for learning suitable spa-
tial filters and classifiers.

While it is well known that inter-subject variability
of informative spatial- and spectral features is sub-
stantial, the principle feature characteristics remain
invariant across subjects. For example, haptic motor
imagery, currently the most popular paradigm in re-
search on non-invasive BCIs (Mason et al., 2007), typi-
cally induces a decrease in power, termed event-related
desynchronization (ERD), of the µ- (roughly 10 − 14
Hz) and β-rhythms (roughly 20 − 30 Hz) over con-
tralateral sensorimotor areas (Pfurtscheller and Neu-
per, 1997). Accordingly, one approach to reducing cali-
bration time is to incorporate this prior knowledge into
the learning process. This can either be done man-
ually, e.g., by designing spatial filters that explicitly
focus on sensorimotor areas (Grosse-Wentrup et al.,
2008), or automatically by using previously recorded
data in order to learn feature characteristics that are
consistent across subjects.

In terms of the latter approach, the problem of session-
to-session transfer, i.e., repeated BCI experiments
with the same subject, has been addressed in (Kraule-
dat et al., 2008). In that work, the method of Common
Spatial Patterns (CSP) (Koles, 1991, Ramoser et al.,
2000) is used to first compute session-specific spatial
filters and classifiers. Then, a clustering procedure
is employed to select prototypical spatial filters and
classifiers, which are in turn applied to newly recorded
data. Using this approach, the authors demonstrate
that calibration time can be greatly reduced with only
a slight loss in classification accuracy. While (Kraule-
dat et al., 2008) only deals with session-to-session
transfer, the problem of inter-subject transfer is ad-
dressed in (Fazli et al., 2009). Also building upon CSP
for spatial filtering, the authors utilize a large database
of pairs of spatial filters and classifiers from 45 subjects
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to learn a sparse subset of these pairs that are pre-
dictive across subjects. Using a leave-one-subject-out
cross-validation procedure, the authors then demon-
strate that the sparse subset of spatial filters and clas-
sifiers can be applied to new subjects with only a
moderate performance loss in comparison to subject-
specific calibration.

While these are substantial advances, a framework ca-
pable of utilizing prior information while at the same
time being able to adjust to subject-specific variations
has not been presented yet in the context of non-
invasive BCIs. Indeed, it would be desirable to con-
struct a learning procedure which can be used out-of-
the-box to instantaneously provide subjects with feed-
back at the beginning of the experiment, yet that can
also be further improved as more subject-specific data
becomes available. Furthermore, previous work has
only shown that calibration time can be reduced with
only a moderate loss in classification accuracy. How-
ever, combining prior information from other subjects
with subject-specific data should ultimately results in
an increase in classification accuracy in comparison to
using subject-specific data only.

In this work, we address these questions by applying
the framework of multitask learning (Evgeniou et al.,
2005, Yu et al., 2005) to the domain of non-invasive
BCIs. Multi-task learning methods, a subfield of ma-
chine learning, investigate the challenge of combining
information from several related tasks in order to over-
come the data scarcity problem. The goal is to discover
important shared characteristics of the related task
predictors via shared regularization (Evgeniou et al.,
2005) or via shared prior (Yu et al., 2005) on the pre-
dictor functions. Although BCI has been an active
research field, there has been very few real life prob-
lems that has shown the success of multi-task learning
(Daumé III, 2007).

In this paper, we provide a successful real world appli-
cation for multi-task learning, namely BCI problems.
We treat each subject in a BCI experiment as one task
and employ a parametric probabilistic approach that
uses shared priors as proposed in (Yu et al., 2005). In
an iterative manner, our model infers the model pa-
rameters and the shared prior parameters. We define
an out-of-the-box BCI with respect to these shared
prior parameters, and adapt the BCI to novel subjects
by inferring the subject parameters with respect to the
shared priors efficiently in an online fashion. We eval-
uate this system on experimental EEG data recorded
from 19 subjects during a motor imagery paradigm.
The experiments show that our system does indeed
outperform the baseline model that trains a predictor
for individual subjects with or without feature selec-
tion.

Multi-task learning is a well-studied framework in ma-
chine learning and has been applied to many fields
ranging from Natural Language Processing to Com-
putational Biology. According to our knowledge, the
application of multitask learning, which is the main
goal of this paper, is novel. This application provides
a natural and principled approach to adapt a subject-
independent BCI to individual novel subjects. The
implicit feature selection property of our approach im-
proves over feature selection approaches based on in-
dividual subjects as it enables inter- as well as intra-
subject information transfer and removes the individ-
ual subject noise. The online adaptation can be per-
formed very efficiently and removes the necessity to
keep the whole dataset for future updates.

The remainder of this paper is structured as follows. In
Section 2, we introduce the multitask learning frame-
work and describe its application in the context of
BCIs. In Section 3, we review some of existing ap-
proaches in multitask learning, and in Section 4 ex-
perimental results are shown, demonstrating the util-
ity of the multitask framework for non-invasive BCIs.
The paper concludes with a discussion of the results
in Section 5.

2 Multitask Learning

2.1 Training off-line tasks

In multitask learning, we are interested in K re-
lated inference tasks given training data of i.i.d in-
put vectors Xt = {xt

i}ni=1 with corresponding outputs
yt = {yt

i}ni=1 for each task t, where xt
i ∈ Rd and

yi ∈ R 1. Our goal is to infer K linear functions
ft(x; wt) = 〈wt,x〉 associated to each task such that
yt

i = ft(xt
i; wt) + εt, where εt is an additive noise nor-

mally distributed with zero mean and σ2 variance. In
this model, the conditional distribution of the output
for task t given the input and the weights is given by

p(y|x,wt, σ
2) =

(
1

2πσ2

)1/2

exp
(
− 1

2σ2
(〈wt,x〉 − y)2

)
.

The Bayesian framework characterizes the uncertainty
in parameters W = {wt}Kt=1 by defining a probabil-
ity distribution p(W). We specify the prior as the
Gaussian distribution, where each wt is normally dis-
tributed with µ mean and Σ covariance. The posterior
distribution for W is then given by the Bayes rule as

p(W;D,σ2) ∝
∏

t

p(yt|Xt,wt)p(wt),

1More formally, for a fixed task, X = [x1, . . . ,xn]T and
y = [y1, . . . , yn]T
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where D = {d1, . . . , dK} with dt = {Xt,yt}.

In standard prediction problems, the prior is defined as
a Gaussian distribution with 0 mean and unit covari-
ance, N (0, I). Using this prior in the multitask set-
ting corresponds to training each task independently.
Our goal is to infer µ and Σ from all the tasks jointly
with W in order to infer the common structure shared
across all tasks. This can be achieved by maximizing
the posterior or equivalently minimizing the negative
log-posterior

L(W,µ,Σ;D,σ2) =
1
σ2

∑
t

‖Xtwt − yt‖2

+
1
2

∑
t

(wt − µ)T Σ−1(wt − µ)

+
K

2
log det(Σ). (1)

By minimizing negative log-posterior we penalize
elements of ŵt = wt − µ by Σ−1. To see how exactly
this penalization works, we expand one of them:

ŵt
T Σ−1ŵt =

∑
i

∑
j

Σ−1
i,j ŵt,iŵt,j . (2)

This means that Σ−1
i,j penalizes the relation between

dimension i and dimension j, so Σ−1 works as an im-
plicit feature selector.
We minimize (1) with respect to W and (µ,Σ) itera-
tively by holding (µ,Σ) and W constant, respectively.
For fixed µ and Σ, we get the wt updates by taking
the derivative with respect to wt for all t and equating
to 0,

wt =
(

1
σ2

XT
t Xt + Σ−1

)−1( 1
σ2

XT
t yt + Σ−1µ

)
. (3)

In order to avoid inverting Σ, which is a O(d3) opera-
tion, we perform the equivalent update

wt =
(

1
σ2

ΣXT
t Xt + I

)−1( 1
σ2

ΣXT
t yt + µ

)
. (4)

For fixed W, the derivation of (µ,Σ) update is more
involved.

dL(µ,Σ) =
1
2

tr
[
−Σ−1(dΣ)Σ−1∑

t

(wt − µ)(wt − µ)T

− 2Σ−1
∑

t

(wt − µ)(dµ)T

]

+
K

2
tr
[
Σ−1(dΣ)

]

This is equivalent to 0 when the terms multiplying dµ
and dΣ are 0. This gives the standard mean update
for µ,

µ =
1
K

∑
t

wt. (5)

Combining terms involving dΣ, we get

1
2 tr

(
Σ−1(dΣ)

[
KI−Σ−1

∑
t(wt − µ)(wt − µ)T

])
.

This yields the Σ update given by

Σ =
1
K

∑
t

(wt − µ)(wt − µ)T . (6)

Experimentally, we observe that Σ update is more sta-
ble when

Σ =
∑

t(wt − µ)(wt − µ)T

tr (
∑

t(wt − µ)(wt − µ)T )
+ εI. (7)

Note the changes are in the additional εI term which
ensure Σ be invertible and in the scaling of Σ with the
trace of the original update. While this scaling does
not change the optimization problem overall, it ensures
that Σ will have trace 1. This can be advantageous as
it renders the method insensitive to hyper-parameters,
such as σ2.

Finally, σ2 can be obtained by cross-validation. The
learning procedure is outlined in Algorithm 1.

Algorithm 1 Multi-task optimization
1: Input: D, σ2

2: Set (µ,Σ) = (0, I).
3: repeat
4: Update wt for all t = 1, . . . , k using (4)
5: Update µ using (5)
6: Update Σ using (7)
7: until convergence
8: Output: (µ,Σ)

2.2 Novel task adaptation

In Section 2.1, we outlined a simple yet effective multi-
task learning approach. We now discuss an important
issue, namely how to use this method when data from
a novel task is available. Let d = (X,y) be the dataset
from a task. Adaptation to this task using the system
trained from the previous K tasks and the new data d
can be achieved easily by

w =
(

1
σ2

XT X + Σ−1

)−1( 1
σ2

XT y + Σ−1µ

)
, (8)
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where (µ,Σ) is the shared priors obtained from the
previous K tasks via Algorithm 1. An important cri-
teria for this adaptation procedure is efficiency in order
to avoid causing delay between trials.

In (8), the computation involving the data of the novel
task consists of XT X and XT y. In some cases, the
data for the novel task is not provided in batch, but
rather is streamlined. For this online setting, we de-
note the cumulative data at time i by (Xi,yi) and the
data point for the data at time i + 1 by (xi+1, yi+1).
Then the covariance term of the data at the i + 1th
time point is given by

XT
i+1Xi+1 = XT

i Xi + xi+1xT
i+1.

Computing the variance in this iterative manner re-
duces the adaptation to the new task significantly.
Furthermore, it removes the necessity to store the data
gathered at previous time points. Similarly, the mean
term can be computed in an iterative manner by

XT
i+1yi+1 = XT

i yi + yi+1xi+1.

Once these two terms are updated, the discriminator
at time i + 1 can be obtained efficiently by solving
a system of d linear equation, where the number of
variables is the number of dimensions, d.

2.3 Multitask learning for BCIs

In the setting of BCIs, a task corresponds to an in-
dividual subject. Accordingly, xt

i refers to the fea-
tures derived from the recorded brain signals of sub-
ject t during trial i, and yt

i denotes the subject’s cor-
responding intention. The parameters wt constitute
the weights assigned to the individual features used to
predict the subject t’s intention, and the mean vector
µ and covariance matrix Σ encode the information on
relevant feature characteristics shared across subjects.
As such, µ and Σ, learned from previously recorded
subject data, define an out-of-the-box BCI that can
be used to classify data recorded from a novel sub-
ject without any subject-specific calibration process.
As subject-specific data from a novel subject becomes
available, this data can then be used to adapt the
out-of-the-box BCI to subject-specific variations as de-
scribed in Section 2.2.

3 Related Work

There is a large number of methods proposed in the
literature that investigate multitask learning.

In (Obozinski et al., 2006), a regularization is proposed
based on sparsity assumptions: only a subset of vari-
ables is relevant for prediction. Moreover and more im-
portantly, the sparsity is assumed to be shared across

tasks: the same variables are relevant to all the tasks.
In order to enforce this assumption, the authors pro-
pose the use of the regularizer ‖W‖2,1, consisting of
building a vector with the `2-norm of each row in W,
and then the `1-norm of that vector.

A generalization of this idea is proposed in (Argyriou
et al., 2008). Again, sparsity is assumed, so that the
optimal predictors for every task belong to the same
subspace. Thus, the same regularizer ‖W‖2,1 is as-
sumed to be still valid after a full rank transformation
performed on the data. The cost function is given by∑

t

∑
i L(wT

t (Σ−1)T xi, yi) + λ‖W‖22,1. Because the
joint optimization over Σ−1 and W is a non-convex
problem, an alternative and equivalent formulation is
proposed. This is very similar to the approach pre-
sented in this paper but the optimization yields differ-
ent updates.

In the context of semi-supervised learning, it has
been proposed in (Ando and Zhang, T., 2005) to de-
compose the predictors into a task-specific part and
part given by a shared low-dimensional representation
across tasks. Thus, if we refer to the projection on
this low dimensional subspace as Θ, each predictor is
defined as wt = ut + ΘT vt where ut and vt are vec-
tors in the feature space and the lower dimensional
space, respectively. Only the task-specific component
is regularized, ‖ut ‖2 = ‖wt−ΘT vt ‖2. The joint op-
timization over {ut}, {vt} and Θ is again non-convex,
therefore an iterative algorithm for alternatively ob-
taining Θ and {ut,vt} is proposed. Eventually, both
the works proposed in (Ando and Zhang, T., 2005) and
(Argyriou et al., 2008) can be interpreted as a kind of
principal component analysis on the set of predictors
obtained for the different tasks.

Finally, (Yu et al., 2005) introduced the multitask
learning framework outlined here. The main difference
is that whereas (Yu et al., 2005) take a hierarchical
Bayesian approach, we perform a maximum likelihood
optimization where the hyperparameters are selected
by cross validation.

4 Experimental Results

4.1 Experimental paradigm & data

To experimentally evaluate the utility of the proposed
multitask framework for BCIs, we recorded EEG data
during a standard motor-imagery paradigm. Specifi-
cally, subjects were placed in front of a screen with a
centrally displayed fixation cross. Each trial started
with a pause of 3s. A centrally displayed arrow then
instructed subjects to initiate haptic motor imagery
of either the left or right hand, as indicated by the ar-
row’s direction. After further seven seconds the arrow
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was removed from the screen, marking the end of the
trial and instructing subjects to cease motor imagery.

Two data sets were recorded in different laboratories.
For data set A, ten healthy subjects participated in
the study (one subject with previous BCI experience).
EEG data was recorded from 128 channels, placed ac-
cording to the extended 10-20 system, with electrode
Cz as reference and sampled at 500 Hz. BrainAmp
amplifiers (BrainProducts, Munich) with a temporal
analog high-pass filter with a time constant of 10 s
were used for this purpose. A total of 150 trials per
class (left/right hand motor imagery) and subject were
recorded, with no feedback provided to the subjects
during the experiment.

For dataset B the same experimental paradigm and
recording procedure was employed. However, a dif-
ferent amplifier (QuickAmp, BrainProducts, Munich)
and a different EEG cap with only 124 channels was
employed. Furthermore, electrode Fz was used as ref-
erence. Accordingly, electrode locations and setup
slightly differed between datasets A and B. Nine
healthy subjects with no prior BCI experience par-
ticipated in the study for dataset B, and 45 trials per
class and subject were recorded without any feedback
provided to the subjects.

4.2 Feature computation

For feature extraction, recorded EEG data was first
spatially filtered using a surface Laplacian setup (Mc-
Farland et al., 1997). We did not employ more sophis-
ticated methods for spatial filtering, such as Common
Spatial Patterns (Koles, 1991, Ramoser et al., 2000) or
Beamforming (Grosse-Wentrup et al., 2008), in order
to keep the spatial filtering setup data independent.
Only data from electrodes C3 and C4, situated over
left and right sensorimotor cortex, were used for fur-
ther processing. For each subject, trial and electrode,
frequency bands of 2 Hz width, ranging from 1−41 Hz,
were then extracted using a sixth-order Butterworth
filter. Log-bandpower within the last seven seconds
of each trial in each frequency band then formed the
40-dimensional feature vector.

4.3 Classification procedure

We evaluate performance of our algorithm by running
experiments in different scenarios. At each round we
select one subject as an online subject and consider
data from the other subjects as our offline data. We
discard noisy subjects from offline subjects, where we
define a noisy subject as one that performs near chance
level. To identify noisy subjects, we learn a simple
classifier for each subject independently using stan-
dard ridge regression. Note that this corresponds to

training our model with fixed mean and covariance
(µ,Σ) = (0, I). This procedure identifies subjects 1,7
in group A and subjects 5,7 in group B as noisy sub-
jects with the performance near chance (between 55-
60%). After selecting qualified subjects, we apply our
multitask learning method to infer priors from the of-
fline data using Algorithm 1. In general, the algorithm
converges in few iteration steps. We set the upper
bound on the number of iterations to 5 iterations. We
select regularization parameter σ2 by 5-fold cross val-
idation.

4.3.1 Regularization and Cross validation

Here, we discuss setting regularization parameter σ2

in learning for a new subject. For a small n (n <
10), performing cross-validation to find optimal hyper-
parameters is not feasible due to high noise level. The
number of trials per classes is between 0 and 100 and
dimensionality is 40, so cross-validation will not be sta-
ble. Also for the streaming case we can not perform
cross validation, so we simply set σ2 = 0.5 in all of ex-
periments. It worth mentioning that the method is not
sensitive to σ2 and by changing it in small ranges, per-
formance does not change significantly. Thus, hyper-
parameter selection is not problematic for this method.
We conjecture that with a large number of trials for
the non-streaming case, cross-validation can further
improve our results 2. We compared the scenario with
and without cross validation: the average performance
of the two differs only by 0.18%. Also, by setting σ2

to values ranging between [0.01, 1] the average perfor-
mance does not change more than 0.2%.

4.3.2 Learning for current subject

After learning priors from other subjects, we randomly
permute trials from the current subject and observe
them one by one. By observing a new trial, we up-
date the classifier and record its performance on held-
out test data. We repeat this procedure 100 times, to
ensure that our results are not affected by a special
arrangement of trials.

4.4 Classification results

4.4.1 Learning multitask inside own group

In the first experiment, a subject from group A is con-
sidered as the new subject using BCI trained with re-
spect to off-line subjects from group A. For each sub-

2When we have few training points, using large regu-
larization values renders the classifier stable, particularly
when the training data are noisy. Hence, it is conceivable
to update the regularization constant during trials. In our
experiments, we did not investigate this issue and set σ2

to a constant.
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ject we have 150 trial per class. We randomly hold out
50 of trials from each class as test data.

The results are shown in Figure 1. In this figure,
we also include the results from single task ridge re-
gression, single task L1-regularized logistic regression
(Koh et al., 2007) and single task ridge regression
with pooled data. Note that L1-regularized logistic
regression performs feature selection due to the L1
regularizer. In pooling data, we collect all data
from qualified offline subjects and training data from
the current subject and train the model using ridge
regression. Hence, this method provides a baseline in
one extreme where all the tasks are assumed to have
the same model. On the other hand, standard single
task ridge regression implements the assumption that
there is no relation between tasks. For single task
ridge regression and L1-regularized logistic regression
we only run experiments for 10, 20, ..., 100 trials
per class. For less than 10 trials per class, the
classification in 40 dimensional space produces results
near chance level.

Analysing Figure 1, we observe that the multitask ap-
proach significantly outperforms the other methods.
Its good performance on the initial trials shows that
the adaptation of an out-of-the-box BCI is very suc-
cessful, whereas the other methods need 10-70 trials
in order to reach the performance of the multitask
method. For some subjects, the performance level is
not approached even after 100 trials.

4.4.2 Effects of implicit feature selection

Investigating classifier vectors for different classes in
group A in Figure 2, we observe that the classifiers
of all of good performing subjects have bigger coef-
ficients (absolute value) in the 11-14 Hz frequency
range. The classifiers of Subjects 1 and 7 who have
low performance they have small coefficients in this
range. Note that small coefficients means that the
corresponding features do not have informative values
in this range. We can also observe a smaller peak in
25-30 Hz in many subjects.
Here we use simple feature computation and don’t
use prior knowledge on frequencies in feature com-
putation, but multitask approach helps us to use
appropriate frequencies in classification.

If we take a look at covariance matrix learned as
prior in group A, we can easily see that it encourages
classifiers to consider data in 11-15 Hz and also in
25-30 Hz with more importance. This acknowledges
the importance of µ- and β-bands (Pfurtscheller and
Neuper, 1997).

Figure 2: W matrix for group A shows weights on
different frequency bands for different subjects.

Figure 3: Covariance Σ matrix learned from group A

4.4.3 Transferring information between two
groups

In the second experiment, a subject from group B is
considered as the new subject using BCI trained with
respect to off-line subjects from group A. Note that
group A and B are evaluated with different amplifiers
and caps. We hence compare between-group to within
group multitask learning. The average performance
for different number of trials is shown in Figure 4. We
also report the performance of single task ridge regres-
sion as a baseline.
We observe a rather surprising result, namely that
transfer from parameters trained on group A yields
better results than learning priors from group B even
though the experimental setup in two groups have
some differences. We conjecture that this behaviour
is due to the fact that the number of trials in the first
group is higher than the second group. Hence, one can
argue that the priors (µ,Σ) learned from group A are
of higher quality. The prior learned from the second
group is based on 45 trials per subject, so it is of lower
quality in comparison to the other prior.
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Figure 1: Accuracy for subjects in group A using 0 to 100 trials per class. ST stands for single task and MT for
multitask

Figure 4: Learning for a subject in group B, with priors
learned from group A or group B. ST stands for single
task and MT for multitask

The main improvement achieved by multitask is in
the cases with few learning data. We can see the
average accuracy between tasks gained by transferring
knowledge in learning procedure in Figure 5. As the
number of training samples increases, the training
data can better describes the classifier and the gain
from multitasking decreases.

5 Discussion

In this paper, we presented a general framework for
learning feature characteristics that are consistent
across subjects for use in non-invasive BCIs. We
demonstrated how this knowledge can be used to con-

Figure 5: Gain achieved by transferring information
from group A, comparing to gain achieved by using
offline data from groupB for an online subject in group
B.

struct out-of-the-box BCIs, which can be used instan-
taneously by novel subjects with a satisfactory classi-
fication performance. Furthermore, our results show
that combining the out-of-the-box BCI with subject-
specific calibration data leads to a substantial increase
in prediction accuracy compared to using subject-
specific data only. Importantly, updating the out-of-
the-box BCI with subject-specific data was shown to
be computationally simple, rendering this approach
feasible for an online setting. Finally, we demon-
strated that multitask learning is also beneficial when
transferring knowledge between datasets recorded with
slightly different experimental setups. Since in the
multitask framework all information on consistent fea-
ture characteristics is encoded in the mean vector and
covariance matrix output of Algorithm 1, this should
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facilitate data and knowledge transfer between labo-
ratories with access to large and very small subject
databases, respectively.

While performance improvements reported in this
study are already substantial, it should be noted that
the multitask learning framework was only applied to
the spectral domain. An even more prominent increase
in prediction accuracy can be expected if the approach
presented here is also extended to the spatial domain,
i.e., if instead of only utilizing electrodes over senso-
rimotor cortices we learn priors on relevant recording
locations as well. Finally, only data-independent spa-
tial filtering was employed in this study. It remains
to be established how efficient multitask learning is
in settings where spatial filtering is done in a data-
dependent fashion, as it is the case for CSP and beam-
forming.
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