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Abstract

The p* model is widely used in social net-
work analysis. The likelihood of a network
under this model is impossible to calculate
for all but trivially small networks. Vari-
ous approximation have been presented in
the literature, and the pseudolikelihood ap-
proximation is the most popular. The aim
of this paper is to introduce two likelihood
approximations which have the pseudolikeli-
hood estimator as a special case. We show,
for the examples that we have considered,
that both approximations result in improved
estimation of model parameters with respect
to the standard methodological approaches.
We provide a deterministic approach and also
illustrate how Bayesian model choice can be
carried out in this setting.

1 Introduction

Many probability models have been developed in order
to summarise the general structure of networks. For
example, the Bernoulli random graph model (Erdös
and Rényi, 1959) assumes that edges are considered
independent of each other; the p1 model (Holland and
Leinhardt, 1981) assumes independent edge variables.
The Markov random graph model (Frank and Strauss,
1986) assumes that each pair of edges is conditionally
dependent given the rest of the graph. The family of
p∗ or exponential random graph models (Wasserman
and Pattison (1996), see also Robins et al. (2007) for
a recent review) is a generalisation of the latter model
and is thought to be a flexible way to model the com-
plex dependence structure of network graphs. The p∗

model is arguably the most widely used model in social
network analysis.
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Despite this popularity, the main drawback to the p∗

model is that the likelihood is generally unavailable,
since it involves a summation over 2m(m−1)/2 terms for
a network with m nodes. Clearly the size of this sum-
mation grows super-exponentially with m. For this
reason various approximations have been presented in
the literature. The most widely used approximation
is the pseudolikelihood estimator (Strauss and Ikeda,
1990) which dates back to (Besag, 1974). It is well un-
derstood that this approximation can give poor perfor-
mance, for example in the context of the autologistic
distribution (Friel et al., 2009). However no formal as-
sessment of the performance the pseudolikelihood es-
timator in the context of the p∗ model has yet been es-
tablished, and a partial aim of this paper is to address
this problem. The main contribution of this paper is
to introduce and investigate the use of two likelihood
approximations which have the pseudolikelihood esti-
mator as a special case.

We consider a deterministic simulation-free inference
approach, avoiding the need for Markov chain Monte
Carlo methods, along the lines of Rue et al. (2009).
Essentially, the dimension of the parameter space is
usually quite small, often with 5 or less parameters.
Therefore evaluating the unnormalised posterior dis-
tribution on a fine grid is possible. An advantage
of this approach is that estimates of posterior model
probabilities are then available for all models nested
within a model of maximal dimension using a grid eval-
uated for the model of maximal dimension.

There are other approaches which one could take to
carry out inference for the p∗ model, using simulation
methods, for example. A popular choice in this set-
ting is the Monte Carlo MLE approach of Geyer and
Thompson (1992). This involves an importance sam-
pling estimator of a ratio of normalising constants for
the different parameter values of the p∗ model. This
method turns out to be quite difficult to implement
– it involves drawing graphs from the likelihood with
pre-specified initial parameters. However the choice
of initial parameters is crucial, since a poorly chosen
initial parameters, lying in the degenerate region of
the parameter, for example, may result in simulated
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graphs which are empty or full. This in turn impacts
negatively on the parameter estimation.

The paper is organised as follows. In section 2 we in-
troduce the exponential random graph model. The
new likelihood approximations are outlined in Sec-
tion 3. While Section 5 demonstrates their perfor-
mance in a number of examples, where we consider
not only posterior estimation but also Bayesian model
choice. Finally Section 6 offers some conclusions and
discusses possible improvements to the methodology.

2 The exponential random graph
model

Consider a random adjacency matrix Y representing
a graph on m nodes. It can be defined by the set {Yij :
i = 1, . . . ,m; j = 1, . . . ,m} where the dyad Yij = 1 if
the pair (i, j) is connected, and Yij = 0 otherwise. The
diagonal entries of y take the value 0. The edges in
the graphs could be either directed on undirected. In
this study we have chosen to only look at undirected
graphs, but similar techniques could be established for
directed graphs as well. Let Y denote the set of all
possible graphs on n nodes and let y be a realisation
of Y . The p∗ model writes the probability distribution
of Y as

π(y|β) =
exp{βts(y)}

z(β)
(1)

where s(y) is a known vector of sufficient statistics, for
example,

s1(y) =
∑

i<j yij , number of edges,
s2(y) =

∑
i<j<k yikyjk, number of two-stars,

s3(y) =
∑

i<j<k<l yilyjlykl, number of three-stars,
s4(y) =

∑
i<j<k yjkyikyij number of triangles.

Finally β are model parameters corresponding the col-
lection of sufficient statistics. Formally the p∗ model
is a Markov random field, where two edges are neigh-
bours of one another if they share a common node. A
graph with m nodes contains n = m(m − 1)/2 edges,
each of which can take values 0 or 1. Thus Y contains
2n possible undirected graphs and the normalising con-
stant z(β) =

∑
y∈Y exp{βts(y)} is consequently ex-

tremely difficult to evaluate for all but trivially small
graphs.

2.1 Model degeneracy

Model degeneracy is an important issue concerning p∗

models and was largely treated in Handcock (2003)
and more recently in Rinaldo et al. (2009). The term
degeneracy refers to the fact that for a network with

a given number of nodes, there are so-called degener-
ate regions of the parameter space from which simu-
lated networks will be either empty or full (complete).
In fact, the non-degenerate region is typically a very
thin region in the parameter space. Model degeneracy
presents a considerable challenge for parameter esti-
mation. Consider the mean parameterisation for the
p∗ model defined by µ = E[s(y)]. Let C be the con-
vex hull of the set {s(y) : y ∈ Y}, ri(C) its relative
interior and rbd(C) its relative boundary. It turns out
that if µ(θ) is close to rbd(C), that the model places
most of the probability mass on graphs belonging to
the set deg(Y) = {y ∈ Y : s(y) ∈ rbd(C)}. It is also
known that the MLE exists if and only if s(y) ∈ ri(C)
and if it exists it is unique. In the context of the like-
lihood approximations which we present in the next
Section, it will be important to examine whether the
corresponding approximate posterior distribution sup-
ports parameter values in the degenerate region.

3 Likelihood approximations

In this section we introduce three likelihood approx-
imations for the p∗ model. Suppose that the col-
lection of all possible dyads have been ordered as
(y1, y2, . . . , yn). From this point onward, for ease of
notation, we will denote each dyad by a single in-
dex. We will also use the notation y1:i to denote
the edges {y1, . . . , yi} and y−i to denote the edges
{y1:i−1, yi+1:n}.

3.1 Maximum pseudolikelihood estimation
(MPLE)

A standard approach to approximate the distribution
of a Markov random field is to use a pseudolikeli-
hood approximation, first proposed in Besag (1974)
and adapted for social network models in Strauss and
Ikeda (1990). This approximation consists of a prod-
uct of easily normalised full-conditional distributions

π(y|β) ≈ πpseudo(y|β)

=
n∏

i=1

π(yi|y−i, β)

=
n∏

i=1

π(yi = 1|y−i, β)yi[
1− π(yi = 0|y−i, β)

]yi−1 . (2)

The basic idea underlying this method is the assump-
tion of weak dependence between the variables in the
graph so that the likelihood can be well approximated
by the pseudolikelihood function. This leads to a fast
estimation, and can be implemented using standard
generalised linear model software. Nevertheless this
approach turns out to be generally inadequate since
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it only uses local information whereas the structure of
the graph is affected by global interaction.

3.2 Maximum block-pseudolikelihood
estimation (MBPLE)

An obvious extension to the pseudolikelihood estima-
tor is the block-pseudolikelihood estimator. The MB-
PLE relies on the same idea, but evaluates the full
conditional of blocks of variables rather than the full
conditionals of single variables.

π(y|β) ≈ πblockpseudo(y|β) =
B∏

b=1

π(yb|y−b, β), (3)

for some partitioning of the dyads into B disjoint
groups of size b, such that

⋃B
b=1 yb = y and

⋂B
b=1 yb =

∅. Assuming the largest of the blocks contains no
more than roughly 20 dyads we calculate each full con-
ditional. This approximation is also quite fast, and at-
tempts to capture larger interactions within the graph.
Note that similar block pseudolikelihood approxima-
tions have been considered in the context of hidden
binary Markov random fields, see Rydén and Titter-
ington (1998) and Friel et al. (2009), where superior
performance of the block pseudolikelihood estimators
was observed.

3.3 Relaxed dependence approximation
(RDA)

The joint distribution of y can be written as

p(y|β) = p(y1:b|yb+1:n, β)
n−1∏

i=b+1

p(yi|yi+1:n, β)p(yn|β).

The RDA, in essence, attempts to approximate the
distribution of p(yi|yi+1:n, β). First, notice that

p(yi|yi+1:n, β) =
p(y1:i−1, yi|yi+1:n, β)

p(y1:i−1|yi:n, β)

=
p(yĀi |yi+1:n, β)
p(yĀi |yi:n, β)

×

p(yAi , yi|y−{Ai,i}, β)
p(yAi |y−{Ai}, β)

(4)

where Ai = {Ai
1, . . . , A

i
b−1} ⊂ {1, . . . , i − 1}, Āi =

{1, . . . , i − 1} \ Ai and y−{A} = y \ yA, for i = b +
1, . . . , n−1. We introduce an approximation to (4) by
writing

p(yi|yi+1:n, β) ≈
p(yAi , yi|y−{Ai,i}, β)

p(yAi |y−{Ai}, β)
(5)

Similarly, we approximate

p(yn) ≈
p(yAn , yn|y−{An,n}, β)

p(yAn |y−{An}, β)
. (6)

Here we define a block of size b to be the set {yAi , yi},
for i = b + 1, . . . , n. We further denote a block of size
1 to correspond to Ai = ∅, and in this instance, (5)
and (6) reduce to

p(yi|yi+1:n, β) ≈ p(yi|y−{i}, β)

and
p(yn|β) ≈ p(yn|y−{n}, β),

respectively.

Plugging (5) and (6) into (4) yields the approximation

p(y1, . . . , yn|β) ≈p(y1:b|yb+1:n, β)
n−1∏

i=b+1

p(yAi , yi|y−{Ai,i}, β)
p(yAi |y−{Ai}, β)

×
p(yAn , yn|y−{An,n}, β)

p(yAn |y−{An}, β)
. (7)

In effect, (5) and (6) assume that

p(yAi , yi|y−{Ai,i}, β)
p(yAi |y−{Ai}, β)

= 1, i = b + 1, . . . , n− 1 (8)

and
p(yĀn |β)

p(yĀn |yn, β)
= 1, (9)

respectively.

Finally, a nice property of our approximation is that it
can be seen as a natural expansion of the pseudolike-
lihood approximation, which corresponds to a block
size of 1. Note that an estimator similar to RDA has
been explored in the context of binary Markov random
fields on the lattice Friel et al. (2009), and has been
implemented in a variational Bayes setting in McGrory
et al. (2009).

3.3.1 Ordering the dyads and selecting each
blocks

The RDA and MBPLE approaches require that the n
dyads in y follow some index ordering. Moreover, for
the RDA approach, there is a need to choose, for each
i = b + 1, . . . , n, the set yAi ⊂ {y1, . . . , yi−1} of dyads
in block {yAi , yi}. It is unclear to us how to provide
guidance for the former requirement. We are able to
offer some guidance as to how the set of dyads yAi

is chosen, however. Our intuition is that each block
should consist of as many dyads from {y1, . . . , yi−1}
which share a common node with yi, since these are
the dyads which most influence yi. If there are more
than b− 1 dyads in {y1, . . . , yi−1} sharing a node with
yi, then b− 1 such dyads are chosen uniformly at ran-
dom. While if there are less than b−1 dyads sharing a
common node with yi, each of these are selected, and
the remainder chosen uniformly at random from the
set of dyads not sharing a common node with yi.
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4 Monte Carlo approaches

An alternative to approximating the likelihood is to
try to estimate the true posterior distribution. This
is the approach taken by the Monte Carlo maximum
likelihood (MC-MLE) algorithm introduced by Geyer
and Thompson (1992). This algorithm has been widely
used to carry out maximum likelihood estimation for
the p∗ model. A key identity is the following

z(β)
z(β0)

= Ey|β0

[
q(y|β)
q(y|β0)

]
=

∑
y

q(y|β)
q(y|β0)

q(y|β0)
z(β0)

≈ 1
m

m∑
i=1

exp
{
(β − β0)ts(yi)

}
where β0 is fixed set of parameter values, and Ey|β0

denotes an expectation taken with respect to the dis-
tribution π(y|β0). In practice this ratio of normalis-
ing constants is approximated using graphs y1, . . . ,ym

sampled via MCMC from the stationary distribution
defined by β0 and importance sampling. This yields
the following approximated log likelihood ratio:

l̂β0(β) ≈ l(β0) + (β − β0)ts(y)−

log

[
1
m

m∑
i=1

exp
{
(β − β0)ts(yi)

}]
. (10)

This is then viewed as a function of β, and its max-
imum value serves as a Monte Carlo estimate of the
MLE.

A crucial aspect of this algorithm is the choice of β0.
Ideally β0 should be very close to the maximum like-
lihood estimator of β. In fact l̂β0(β) is very sensitive
to the choice of β0. A poorly chosen value of β0 may
lead to an objective function (10) that cannot even be
maximised, see Handcock (2003).

In pratice, β0 is often chosen as the maximiser of (2),
although this itself maybe a very biased estimator. In-
deed, (10) may also be sensitive to numerical instabil-
ity, since it effectively computes the ratio of a nor-
malising constant, but it is well understood that the
normalising constants can vary by orders of magnitude
with θ.

5 Examples

In this section we consider two real dataset to test
and compare the different methods introduced in the
previous section. For each example we choose to fit
the same model as was introduced in section 2. For
both datasets our goal is to gather information about

the posterior distribution of β, using our likelihood
approximations, p̃(y|β),

p(β|y) ∝ p(y|β)p(β) ≈ p̃(y|β)p(β). (11)

We do this by proceeding in the following manner.
First we locate the mode of the posterior distribution
by plugging our approximate likelihood function com-
bined with an uninformative prior into a black-box op-
timiser. Once the mode is located we design a grid sur-
rounding the mode and evaluate an approximate un-
normalised posterior distribution (the right hand side
of (11)) at each grid point. This allows us to produce
numerical approximations to marginals, means, vari-
ances and other aspects of the posterior distribution.
We also want to ensure that our approximations have
not moved us into parameter space that produces de-
generate graphs. So once the posterior is calculated we
sample 500 values for β from the posterior. We then
use the ergm package for R (Hunter et al., 2008) to
simulate a graph from each of these sets of parameters
and study the resulting graphs to check for degener-
acy. For both the RDA and blockpseudo the blocksize
is critical, the bigger the blocks, the better we expect
our approximation to be, but at the price of increased
run-time, also, avaliable memory restricts us to blocks
of size ≤ 20. As mentioned earlier, a block size of 1 is
equivalent to standard pseudolikelihood.

5.1 Molecule example

Our first example examined the dataset illustrated in
figure 1.

Figure 1: Molecule graph.

The graph consists of 20 nodes in a quite sparse con-
figuration, which gives us a dataset of 190 variables.
In figure 2 we have plotted the approximate posterior
mode returned from the optimisation algorithm for the
RDA and blockpseudo approach, with blocksizes rang-
ing from 1 to 18 for the rda and 1 to 16 for blockpseudo.
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Figure 2: Molecule dataset: Approximate maximum a posteriori parameters estimates for β1, β2, β3 and β4,
plotted from left to right for blocksizes from 1 to 16 (blockpseudo) and 1 to 18 (rda). The black dotted line
represents the blockpseudo approach while the red stapled line represents the RDA approximation. The horizontal
black line represents the pseudolikelihood approximation, while the horizontal purple stapled line represents an
MC-MLE approximation method.
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Figure 3: Molecule dataset: Approximate posterior marginals for β1, β2, β3 and β4 using the RDA approximation.
The red dotted line represents the mean and the black dotted lines indicate distances of two posterior standard
deviations from the mean.
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The vertical line is placed at the value for blocksize 1,
which represents the pseudolikelihood approximation.
As we can see the RDA and blockpseudo seem to give
similar parameter estimates (with the exception of β4)
and each parameter estimate is quite different from
the pseudolikelihood estimator. The purple stapled
line represents an estimate returned by an MC-MLE
method. We note that this comes closer to the ap-
proximations returned by the RDA and blockpseudo.
The posterior distribution of β was next evaluated in a
grid surrounding the mode of the RDA approximation
with a blocksize of 10. The grid contained 25 points
in each dimension. Figure 3 shows the approximate
marginal distributions p(βi|y) with means and credi-
ble intervals, calculated from the full posterior distri-
bution. Note that parameter estimates for pseudolike-
lihood and MC-MLE found using the ergm package
gave rise to realisations that are almost all degener-
ate. By constrast realisations conditional on param-
eters from the posterior were not degenerate, being
neither complete or empty.

We also estimate the marginal distribution of the data.
Recall that in equation (11) the normalizing constant
is the approximate marginal likelihood of y. Hence we
can estimate the marginal likelihood of our data by
completing the finite sum over the parameters,

p(y) ≈ p̃(y) =
∑
β1

∑
β2

∑
β3

∑
β4

p̃(y|β)p(β). (12)

Here, recall that the summands on the right hand side
of (12) are available and therefore an estimate of the
marginal likelihood results from summing these over
all grid points, β. The grid computed for the satu-
rated model can then be used to estimate the marginal
likelihood for any model nested within the saturated
model, by simply setting those parameter values which
are not included in the model to zero. This was then
done for all 15 different model configurations contain-
ing at least one parameter. Assigning equal weights to
each of the models the posterior model probabilities
can be estimated as,

p̃(mi|y) =
p̃(y|mi)p(mi)∑
j p̃(y|mj)p(mj)

i = 1, . . . , 15. (13)

The models with highest posterior model probabil-
ity turned out to be the saturated model, the model
containing the parameters {β2, β3, β4} and the model
containing the parameters {β1, β2, β4}, these achieved
probabilities 0.64, 0.14 and 0.11 respectively.

5.2 Karate example

For our second example we studied the dataset illus-
trated in figure 4.

Figure 4: Karate graph.

This graph is larger than the previous example and
consists of 34 nodes in a not so sparse configuration,
which gives us a dataset of 561 variables. In figure 5
we have plotted the approximate posterior mode re-
turned from the optimisation algorithm for the RDA
and blockpseudo approach, with blocksizes ranging
from 1 to 16. As in the plot in the previous example
the vertical line is placed at the value for blocksize 1,
which represents the pseudolikelihood approximation.
The RDA and blockpseudo seem to return slightly,
but not entirely dissimilar parameter estimates and
again each parameter estimate is quite different from
the pseudolikelihood estimator. We evaluated the pos-
terior distribution of β as in the previous example with
a grid surrounding the mode of the RDA approxima-
tion with a blocksize of 10. The grid contained 20
points in each dimension. Figure 6 shows the approxi-
mate marginal distributions p(βi|y) with means and
credible intervals, calculated from the full posterior
distribution. As for the previous example, parame-
ter estimates for pseudolikelihood and MC-MLE found
using the ergm package gave rise to realisations that
are almost all degenerate. By constrast realisations
conditional on parameters from the posterior based on
RDA and block pseudolikelihood were not degenerate,
being neither complete or empty. Exactly as in the
molecule example we also estimate the marginal dis-
tribution of the data. The two models with highest
posterior model probability turned out to be the sat-
urated model and the model containing the parame-
ters {β1, β2, β3}, these achieved probabilities 0.705 and
0.236 respectively.

6 Discussion

Despite the widespread use of the p∗ model in social
network analysis, the inferential methods used to ser-
vice this model are lacking in many respects. The ap-
proximations which we have outlined in this paper ad-
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Figure 5: Karate dataset: Approximate maximum a posteriori parameters estimates for β1, β2, β3 and β4, plotted
from left to right for blocksizes from 1 to 16. The black dotted line represents the blockpseudo approach while
the red stapled line represents the RDA approximation. The horizontal black line represents the pseudolikelihood
approximation, while the horizontal purple stapled line represents an MC-MLE approximation method.
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dress this issue. Both of these approximations extend
the standard pseudolikelihood approximation. Our
approximations can be considered as composite like-
lihood approximations, where the composite factors in
the likelihood involve at most 20 dyad variables. Com-
posite likelihood methods are popular in the statis-
tics literature, for example Heagerty and Lele (1998),
Cox and Reid (2004), and the theory surrounding such
methods is well established. However composite like-
lihoods have received relatively little attention in the
Bayesian literature, and future work in this directions
would be useful.

As mentioned in section 3, it is unclear how to choose
an index ordering of the dyads for RDA and blockpseu-
dolikelihood. However for the RDA approach, we be-
lieve that including as many as of the dyads which
share a common node with yi, represents a reasonable
way to select composite blocks.

We note that our inference methods for the p∗ model
provide an appealing simulation-free alternative to the
usual Markov chain Monte Carlo approaches. In par-
ticular our methods can be considered as an inference
machine for these types of model providing the end
user with the possibility to explore probabilistic un-
certainty for the model parameters and also for the
uncertainty estimates for the model itself. Finally, we
are currently automating our computer code to pro-
vide the end user with a suite of routines to carry out
the inference tasks outlined in this paper.
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