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Abstract

In this paper, we present an extended set of
graphical criteria for the identification of di-
rect causal effects in linear Structural Equa-
tion Models (SEMs). Previous methods of
graphical identification of direct causal ef-
fects in linear SEMs include methods such
as the single-door criterion, the instrumental
variable and the IV-pair, and the accessory
set. However, there remain graphical mod-
els where a direct causal effect can be iden-
tified and these graphical criteria all fail. As
a result, we introduce a new set of graphical
criteria which uses descendants of either the
cause variable or the effect variable as “path-
specific instrumental variables” for the iden-
tification of the direct causal effect as long as
certain conditions are satisfied. These condi-
tions are based on edge removal and the ex-
isting graphical criteria of instrumental vari-
ables, and the identifiability of certain other
total effects, and thus can be easily checked.

1 Introduction

Structural Equation Models (SEM) is a useful tool for
causal analysis, and is widely used in areas of social
science such as economics (Bollen 1989; Duncan 1975).
Research by scientists, social scientists, and computer
scientists in this area has allowed the problem to be
applied in real-life models.
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In a linear SEM, the relationships between observed
variables are expressed in linear equations. The struc-
ture of the equations is such that they not only express
the linear relationships between the variables, together
with a stochastic error term for unobserved factors,
but also the causal dependence among the observed
variables. For each variable Y , its structural equation
where it appears on the left-hand side, the presence
(and absence) of a variable X on the right-hand side
specifies that X is (or is not) a direct cause of Y .

A fundamental problem in linear SEMs is to estimate
the strength of a certain direct causal effect from one
variable to another from a combination of observed
data and model structure. This is called the identifi-
cation problem (Fisher 1966). Although many meth-
ods, both algebraic and graphical, have been devel-
oped over the years, this problem is still not solved.
Currently there are no sufficient or necessary criteria
for deciding whether a causal effect can be identified
from observed data. Current identification methods
based on graphical criteria, including the single-door
criterion, the front door criterion and the back door
criterion, the instrumental variable and the IV-pair,
and the accessory set, can be used to identify direct
causal effects only when certain conditions are met.
However, there exist direct causal effects that can be
found using algebraic methods by solving for a set of
equations involving the causal effects and the covari-
ances but cannot be identified using these methods.

The aim of this paper is thus to provide an extended
set of graphical criteria for the identification of direct
causal effects in linear SEMs. We will show exam-
ples where the desired causal effect can be identified
using algebraic methods but cannot be identified by
current graphical methods. Then based on the alge-
bra involved in solving for these causal effects, we will
propose this new set of graphical criteria, where we use



         74

Using Descendants as IVs for the Identification of Direct Causal Effects in Linear SEMs

descendants of either the cause variable or the effect
variable as “path-specific instrumental variables”, to
compute the desired causal effect using observed co-
variances. This new set of graphical criteria are based
on edge removal and the existing graphical criteria of
instrumental variables, and the identifiability of cer-
tain other total effects, and thus can be easily checked.

The outline of this paper is as follows. First, we pro-
vide the preliminary definitions for this paper, includ-
ing linear SEMs, graphical models, statistical terms
such as covariances, Wright’s method of analysis, and
the identification problem. Then, we recap previous
results in solving the parameter identification prob-
lem, most notably instrumental variables. Next, we
present our new results for the identification of direct
causal effects in linear SEMs, which are able to iden-
tify direct causal effects which are not possible using
previous results based on graphical criteria. Finally,
we conclude our paper with a few discussion topics.

2 Preliminaries

In statistical causal analysis, a directed acyclic graph
(DAG) that represents cause-effect relationships is
called a path diagram. A directed graph is a pair
G = (V ,E), where V is a finite set of vertices and the
set E of directed edges is a subset of the set V ×V of
ordered pairs of distinct vertices. Regarding the graph
theoretic terminology used in this paper, for example,
refer to Pearl (Pearl 2009) and Spirtes et al. (Spirtes
et al. 2000).

Suppose a DAG G = (V ,E) with the set V =
{V1, · · · , Vn} of nodes is given. The graph G is called
a path diagram, when each child-parent family in G
represents a linear structural equation model (SEM):

Vi =
∑

Vj∈pa(Vi)

αvivj
Vj + εvi , i = 1, . . . , n, (1)

where pa(Vi) is a set of parents of Vi and αvivj (6= 0)
is called a direct causal effect. In addition random
disturbances εv1 , . . . , εvn

are assumed to be normally
distributed with mean 0. Here, when εvi is correlated
with εvj (i 6= j), this relationship is represented by a
bi-directed (dashed) arc between Xi and Xj in G.

Given a path diagram G, we define a path between
the nodes X and Y as a sequence of vertices, (V0 =
X, . . . , Vn = Y ), where there is an edge between each
Vi and Vi+1 and each vertex appears only once in the
sequence. A path is a directed path from X to Y if all
edges between Vi and Vi+1 are directed edges from Vi
to Vi+1. If there is a directed path from X to Y , we
say X is an ancestor of Y , X ∈ Anc(Y ), and Y is a
descendent of X, Y ∈ Desc(X). In a directed acyclic
graph, we have Anc(X) ∩Desc(X) = ∅ for every X.

We say that Vi is a collider in the path if both the
edges between Vi−1 and Vi and between Vi and Vi+1

point into Vi. If there are no colliders in the path, we
say that the path is an unblocked path between X and
Y . Given a set of vertices Z, we say the path is an
open path if for all vertices Vi which are not colliders
on the path, Vi /∈ Z, and for all vertices Vi which are
colliders on the path, V ∈ Z where V = Vi or V is a
descendant of Vi. If there are no open paths between
X and Y given Z, we say that X and Y are d-separated
given Z. Otherwise, we say that they are d-connected.

The conditional independence induced from a set of
equations in the form of Equation 1 can be obtained
from the path diagram G according to d-separation
(Pearl 2009), that is, when Z d-separates X from Y in
G, X is conditionally independent of Y given Z in the
corresponding linear SEM (Spirtes et al. 2000). In this
paper, it is assumed that a path diagram G and the
corresponding linear SEM are faithful to each other;
that is, the conditional independence relationships in
the linear SEM are also reflected in G, and vice versa
(Spirtes et al. 2000).

For further discussion, we denote some notations. Let
σxy·z = cov(X,Y |Z = z), σyy·z = var(Y |Z = z) and
βyx·z = σxy·z/σxx·z be a conditional covariance be-
tween X and Y given Z = z, a conditional variance
of Y given Z = z and the regression coefficient of x
in the regression model of Y on x and z, respectively.
When Z is an empty set, they are omitted from these
arguments.

A total effect τyx of X on Y is defined as the total sum
of the products of the direct causal effects on the se-
quence of directed edges along all directed paths from
X to Y . In addition, γyx = σxy − τyx is called a spu-
rious correlation between X and Y .

A path-specific total effect is defined as the total sum of
the product of the direct causal effects on the sequence
of directed edges along directed paths of our interests
from X to Y . For example, we define τyx·z as the path-
specific effects where all paths that pass through any
variable in Z are not counted. Similar terms such as
a path-specific correlation and a path-specific spurious
correlation can be defined similarly.

Wright’s method of path analysis (Wright 1934), which
plays an important role in this paper, can be used
to compute the covariance of two variables X and Y
given a path diagram G. If the set S contains all paths
path = (V0 = X,V1, . . . , Vn = Y ) that are unblocked
paths between X and Y , we have:

σxy =
∑
path

pv0v0
∏

i=0,...,n−1
pvivi+1

, (2)

where pvivi+1
is the parameter of the edge between Vi
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and Vi+1, which is either αvi+1vi (or αvivi+1) if it is a
directed edge, or γvi+1vi if it is a bi-directed edge. We
define pv0v0 as σv0v0 if all edges in path are directed
edges, or 1 otherwise.

Given the matrix of observed covariances Σ, we say
that a causal parameter, such as a total effect and a
direct causal effect, is identified if there is a unique
solution of this parameter given the covariances. If all
direct causal effects can be identified, we say that the
model is identified.

The single-door criterion is one of the famous graph-
ical identification conditions for the direct causal ef-
fects, that is, the direct causal effect αyx of X on Y
is identifiable and is equal to βyx·z, if there exist a set
Z of variables such that Z contains no descendant of
Y , and Z d-separates X from Y in GX→Y , formed
by removing X → Y from the path diagram G (Pearl
2009). A set Z of variable satisfying both (i) and (ii)
is said to satisfy the single-door criterion relative to
(X,Y ).

3 Previous Results on Parameter
Identification

There have been many work done on the problems of
model identification and parameter identification using
graphical test (Pearl 2009; Brito and Pearl 2002a,b,c;
Tian 2004, 2005). Here we will focus only on the prob-
lem of parameter identification, in particular the iden-
tification of direct causal effects.

The previous most general result for the graphical
identification of direct causal effects is the use of an
IV-pair (Brito and Pearl 2002c), which embraces both
instrumental variables (Bowden and Turkington 1984)
and regression methods.

Lemma 1 Given a path diagram G which contains the
directed edge X → Y , we say that a variable W is an
instrumental variable for X → Y given Z, a (possi-
bly empty) set of variables which does not contain any
variable from W , X, Y , or Desc(Y ), if the following
two conditions are satisfied:

1. In the path diagram G, W and X are d-connected
given Z, or W = X.

2. In the path diagram G\X→Y , formed by removing
X → Y from G, W and Y are d-separated given
Z;

Then, the direct causal effect αyx is given by:

αyx =
σwy·z

σwx·z
. (3)

Figure 1: A path diagram where a multiple IV-pair
are necessary to identify the direct causal effects of X1

(or X2) to Y .

The pair (W,Z) can also be called an IV-pair for
X → Y . Some identifiable direct causal effects cannot
be found using a single IV-pair, but by the collective
action of a multiple IV-pair, such as the example in
Figure 1. We now define the conditions where a set
of direct causal effects can be identified using multi-
ple IV-pairs. The following lemma is adapted from
previous work, where the multiple IV-pair are called
accessory sets (Tian 2007b).

Lemma 2 Given a path diagram G which contains the
directed edges X1 → Y, . . . ,Xk → Y , we say that a set
of variables W1, . . . ,Wk are instrumental variables for
X1 → Y, . . . ,Xk → Y given Z, a (possibly empty)
set of variables which does not contain any variable
from W1, . . . ,Wk, X1, . . . , Xk, Y , or Desc(Y ), if the
following two conditions are satisfied:

1. In the path diagram G, each pair of Wi and Xi

are d-connected given Z, or Wi = Xi. Moreover,
for any i 6= j, there must be exist an open path
between Wi and Xi given Z (denoted pathi), and
an open path between Wj and Xj given Z (de-
noted pathj), such that either they do not share
any common variable, or if they share a common
variable V , either one of the following is true (but
not both):

• Both the sub-path of pathi between Wi and
U , and the sub-path of pathj between U and
Xj, point into U ;

• Both the sub-path of pathi between U and Wj,
and the sub-path of pathi between Wj and U ,
point into U .

This criterion is called the G criterion (Brito
and Pearl 2006), and guarantees that the system
of equations we use to solve for the parameters
αyx1

, . . . , αyxk
are linearly independent.

2. In the path diagram G\X1→Y,...,Xk→Y , formed
by removing X1 → Y, . . . ,Xk → Y from G,
{W1, . . . ,Wk} and Y are d-separated given Z;
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Figure 2: Path diagram for Example 1.

Then, the direct causal effects αyx1
, . . . , αyxk

can be
solved by a system of k equations:

σwiy·z =
∑

j=1,...,k

σwixj ·zαyxj
, i = 1, . . . , k.

However, there are many cases where a single direct
causal effect is identifiable even though neither IV-
pair nor a set of variables satisfying the single-door
criterion can be found. We will illustrate this in the
next section with a few examples, and extend previ-
ous results on graphical identification to find the direct
causal effects.

4 New Results on Parameter
Identification

Our results are based on the following. Based on
whether W is a descendant of X or Y , we will remove
certain edges from the path diagram G to obtain G′,
where W satisfies the instrumental variable condition
in G′. This means the direct causal effect αyx can be
computed using the matrix of covariance values Σ′ of
G′. We then relate Σ′ with Σ, the matrix of covari-
ance values of G, under certain restrictions, in order
to compute the direct causal effect αyx from Σ.

4.1 Descendants of Cause Variable

Example 1 Given the path diagram shown in Fig-
ure 2 and its corresponding linear SEM, the direct
causal effects of αxv and αwx can be identified by the
single-door criterion (Pearl 2009):

αxv = βxv,

αwx = βwx·v.

We now want to find the direct causal effect of αyx.
However, no IV-pair can be used to find αyx using
Lemma 1. Instead, we use Wright’s method of path
analysis (Equation 2). In particular, we have:

σwy = αxvαyxγwv + αwx(αxvγyv + αyxσxx + γyx),

σwx = αxvγwv + αwxσxx,

σyx = αxvγyv + αyxσxx + γyx.

Figure 3: Removing all directed paths from X to W
from the path diagram of Figure 2. W now satisfies
the instrumental variable condition.

Therefore, σwy − βwx·vσyx = αxvαyxγwv, and σwx −
βwx·vσxx = αxvγwv, and αyx can be computed by:

αyx =
σwy − βwx·vσyx
σwx − βwx·vσxx

.

Notice that in this example, neither W nor V can be
used as an instrumental variable to identify αyx. How-
ever, if we consider a latent variable U along the bi-
directed edge between W and V , this latent variable,
if observable, can be used as an instrumental variable
to identify αwx (Cai and Kuroki 2008), meaning that
αyx can be identified if we can “indirectly” estimate
the correlations both between U and X, and U and Y .
The variable W , as an “descendant” of U , can poten-
tially be used so, except that it is also a descendant of
X, and the presence of an open path W ← X ↔ Y in
G makes it invalid to be used as an instrumental vari-
able. Therefore, we have to consider the path-specific
correlations between W and Y and between W and X,
only through the bi-directed edge between W and V ,
while discounting those through the total effects from
X to W . We first make the following definition.

Definition 1 Given a path diagram G which con-
tains the directed edge X → Y , and a variable W ∈
Desc(X), /∈ Desc(Y ), we define the path diagram G′ =
G\X→{W}∪Anc(W ) as formed by removing all directed
edges X → V , where V ∈ {W} ∪Anc(W ).

The effect of removing the set of directed edges X →
{W}∪Anc(W ) from G is to remove all directed paths
from X to W in G, meaning there is no total effect of
X on W in G\X→{W}∪Anc(W ). For example, the path
diagram in Figure 2 is transformed into Figure 3 by
removing the directed edge X → W , so as to remove
all directed paths from X to W . We notice that in
this new path diagram, W can be used as an instru-
mental variable to identify X → Y . The question now
becomes: what are the relations between the matri-
ces of covariance values in G and G\X→{W}∪Anc(W ),
denoted as Σ and Σ′ respectively?
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Before we find these relations, we have to make sure
that all relevant paths in G for the computation of
αyx, i.e., the path-specific correlations between W and
Y given Z, and the path-specific correlations between
W and X given Z, are preserved in G\X→{W}∪Anc(W ).
This can be done by putting a further restriction on
Z, besides that it does not contain any variable from
W , X, Y , or Desc(Y ). For any directed edge X → V
removed from G to form G\X→{W}∪Anc(W ), Z can-
not contain V or any descendant of V . Otherwise, an
unblocked path from X to Z ∈ Z in G will not be
in G\X→{W}∪Anc(W ) after removing X → V from G.
This restriction on Z is equivalent to restricting that
Z does not contain any variable from W , Desc(W ),
or Anc(W ) ∩Desc(X).

Assuming that W is an instrumental variable for X →
Y given Z in G\X→{W}∪Anc(W ), we have the following
relations between G and G\X→{W}∪Anc(W ):

• The sets of unblocked paths between X and Y
in G and G\X→{W}∪Anc(W ) are the same. This
is because for any V where the directed edge
X → V is removed from G, there is no di-
rected path X → V −→ Y in G. Otherwise,
there would be a directed path V −→ Y in both
G and G\X→{W}∪Anc(W ), meaning that there
would be an unblocked path W ←− V −→ Y
in G\X→{W}∪Anc(W ), violating the instrumental
variable condition of W (note that no variable
Z ∈ Z can block this path as all variables in this
path are descendants of V ).

• For any variable Z ∈ Z, the sets of un-
blocked paths between X and Z in G and
G\X→{W}∪Anc(W ) are the same, as stated above
due to the restriction on Z. Moreover, because
the sets of unblocked paths between X and Y in
G and G\X→{W}∪Anc(W ) are the same, the sets
of unblocked paths between Y and Z in G and
G\X→{W}∪Anc(W ) are also the same. Therefore,
we have:

σxy = σ′xy;

σxz = σ′xz;

σyz = σ′yz.

• By transforming from G to G\X→{W}∪Anc(W ), we
remove all directed paths from X to W . Because
the sets of unblocked paths between X and Y and
between X and Z in G and G′ are the same, we
have:

σwx = σ′wx + τwxσxx;

σwy = σ′wy + τwxσxy;

σwz = σ′wz + τwxσxz,

Figure 4: Path diagram for Example 2.

where τwx is the total effect of X on W in G.

After establishing these relations, we are ready to com-
pute the causal effects αyx. By Lemma 1, we have:

αyx

=
σ′wy·z

σ′wx·z

=
σ′wy − σ′wzσ

′
yz/σ

′
zz

σ′wx − σ′wzσ
′
xz/σ

′
zz

=
(σwy − τwxσxy)− (σwz − τwxσxz)σyz/σzz
(σwx − τwxσxx)− (σwz − τwxσxz)σxz/σzz

=
(σwy − σwzσyz/σzz)− τwx(σxy − σxzσyz/σzz)

(σwx − σwzσxz/σzz)− τwx(σxx − σxzσxz/σzz)

=
σwy·z − τwxσxy·z
σwx·z − τwxσxx·z

.

Therefore, we have the following theorem.

Theorem 1 If W ∈ Desc(X), /∈ Desc(Y ) is an
instrumental variable for X → Y given Z, a
(possibly empty) set of variables which does not
contain any variable from W , X, Y , Desc(Y ),
Desc(W ), or Anc(W )∩Desc(X), in the path diagram
G\X→{W}∪Anc(W ) (Definition 1), the direct causal ef-
fect αyx is given by:

αyx =
σwy·z − τwxσxy·z
σwx·z − τwxσxx·z

. (4)

Equation 4 expands on the previous use of the IV-pair
(Equation 3), by allowing the use of W ∈ Desc(X), /∈
Desc(Y ) as a “path-specific instrumental variable”,
showing that the direct causal effect αyx is identifi-
able as long as the total effect of X on W , τwx, is
identifiable. For example, as the path diagram in Fig-
ure 2 satisfies the conditions of Theorem 1, we can use
Equation 4 to compute αyx. In particular, the total
effect of X on W is given by τwx = αwx = βwx·v, and
this yields the result in Example 1.

4.2 Descendants of Effect Variable

Example 2 Given the path diagram shown in Fig-
ure 4 and its corresponding linear SEM,1 the direct

1This model is shown to be identifiable (Brito and Pearl
2006), and is called a P-structure (Tian 2007a).
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causal effects αvy and αwv can be identified by the
single-door criterion (Pearl 2009):

αvy = βvy,

αwv = βwv·y.

We now want to find the direct causal effect of αyx.
However, no IV-pair can be used to find αyx using
Lemma 1. Instead, we use Wright’s method of path
analysis (Equation 2). In particular, we have:

σyx = αyxσxx + γyx,

σwx = αwvαvy(αyxσxx + γyx) + γwx,

σwy = αwvαvyσyy + αyxγwx.

Therefore, σwy − βwv·yβvyσyy = αyxγwx, and σwx −
βwv·yβvyσyx = γwx, and αyx can be computed by:

αyx =
σwy − βwv·yβvyσyy
σwx − βwv·yβvyσyx

.

Notice that in this example, W cannot be used as an
instrumental variable to identify αyx (and we cannot
use V to block the path between W and Y since V
is a descendant of Y ). However, if we consider a la-
tent variable U along the bi-directed edge between W
and X, this latent variable, if observable, can be used
as an instrumental variable to identify αwx (Cai and
Kuroki 2008), meaning that αyx can be identified if
we can “indirectly” estimate the correlations both be-
tween U and X, and U and Y . The variable W , as an
“descendant” of U , can potentially be used so, except
that it is also a descendant of Y , and the presence of
an open path Y → V ↔W in G makes it invalid to be
used as an instrumental variable. Therefore, we have
to consider the path-specific correlations between W
and Y and between W and X, only through the bi-
directed edge between W and X, while discounting
those through the total effects from Y to W . We first
make the following definition.

Definition 2 Given a path diagram G which con-
tains the directed edge X → Y , and a variable
W ∈ Desc(Y ), we define the path diagram G′ =
G\Y→{W}∪Anc(W ) as formed by removing all directed
edges Y → V , where V ∈ {W} ∪Anc(W ).

The effect of removing the set of directed edges Y →
{W}∪Anc(W ) from G is to remove all directed paths
from Y to W in G, meaning there is no total effect of
Y on W in G\Y→{W}∪Anc(W ). For example, the path
diagram in Figure 4 is transformed into Figure 5 by
removing the directed edge Y → V , so as to remove
all directed paths from Y to W . We notice that in this
new path diagram, W can be used as an instrumental
variable to identify X → Y . The question now be-
comes: what are the relations between the matrices of

Figure 5: Removing all directed paths from Y to W
from the path diagram of Figure 4. W now satisfies
the instrumental variable condition.

covariance values in G and G\Y→{W}∪Anc(W ), denoted
as Σ and Σ′ respectively?

Before we find these relations, we have to make sure
that all relevant paths in G for the computation of
αyx, i.e., the path-specific correlations between W and
Y given Z, and the path-specific correlations between
W and X given Z, are preserved in G\Y→{W}∪Anc(W ).
The original restriction on Z, that it does not contain
any variable from W , X, Y , or Desc(Y ), is sufficient,
since for any directed edge X → V removed from G
to form G\Y→{W}∪Anc(W ), Z cannot contain V or any
descendant of V .

Assuming that W is an instrumental variable for X →
Y given Z in G\Y→{W}∪Anc(W ), we have the following
relations between G and G\Y→{W}∪Anc(W ):

• The sets of unblocked paths between X and Y in
G and G\Y→{W}∪Anc(W ) are the same, and for
any variable Z ∈ Z, the sets of unblocked paths
between X and Z and between Y and Z in G and
G\Y→{W}∪Anc(W ) are the same. This is because
for any V where the directed edge X → V is re-
moved from G, V 6= X,Y, Z, nor can V be an
ancestor of X, Y , or Z. Therefore, we have:

σxy = σ′xy;

σxz = σ′xz;

σyz = σ′yz.

• By transforming from G to G\Y→{W}∪Anc(W ), we
remove all directed paths from Y to W . Because
the sets of unblocked paths between X and Y and
between Y and Z in G and G\Y→{W}∪Anc(W ) are
the same, we have:

σwx = σ′wx + τwyσxy;

σwy = σ′wy + τwyσyy;

σwz = σ′wz + τwyσyz.

After establishing these relations, we are ready to com-
pute the causal effects αyx. By Lemma 1, we have:

αyx

=
σ′wy·z

σ′wx·z
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=
σ′wy − σ′wzσ

′
yz/σ

′
zz

σ′wx − σ′wzσ
′
xz/σ

′
zz

=
(σwy − τwyσyy)− (σwz − τwyσyz)σyz/σzz
(σwx − τwyσxy)− (σwz − τwyσyz)σxz/σzz

=
(σwy − σwzσyz/σzz)− τwy(σyy − σyzσyz/σzz)

(σwx − σwzσxz/σzz)− τwx(σxy − σxzσyz/σzz)

=
σwy·z − τwyσyy·z
σwx·z − τwyσxy·z

.

Therefore, we have the following theorem.

Theorem 2 If W ∈ Desc(Y ) is an instrumental vari-
able for X → Y given Z, a (possibly empty) set of vari-
ables which does not contain any variable from W , X,
Y , or Desc(Y ), in the path diagram G\Y→{W}∪Anc(W )

(Definition 2), the direct causal effect αyx is given by:

αyx =
σwy·z − τwyσyy·z
σwx·z − τwyσxy·z

. (5)

Equation 5 expands on the previous use of the IV-pair
(Equation 3), by allowing the use of W ∈ Desc(Y ) as
a “path-specific instrumental variable”, showing that
the direct causal effect αyx is identifiable as long as
the total effect of Y on W , τwy, is identifiable. For
example, as the path diagram in Figure 4 satisfies the
conditions of Theorem 2, we can use Equation 5 to
compute αyx. In particular, the total effect of X on
W is given by τwy = βwv·yβvy, and this yields the
result in Example 2.

It is possible that given W ∈ Desc(Y ), two stages
of edge removal can be applied such that W be-
comes an instrumental variable for X → Y given
Z in the resulting path diagram. First, we form
the path diagram G′ = G\Y→{W}∪Anc(W ) by remov-
ing all directed edges Y → V , where V = W or
V ∈ Anc(W ). Then, we form the path diagram
G′′ = G\Y→{W}∪Anc(W ),X→{W}∪Anc′(W ) by remov-
ing all directed edges X → V ′, where V ′ = W or
V ′ ∈ Anc′(W ), where Anc′(W ) are the ancestors of
W in G′ = G\Y→{W}∪Anc(W ). The restriction on Z
is that does not contain any variable from W , X, Y ,
Desc(Y ), Desc(W ), or Anc′(W )∩Desc(X). By The-
orem 1, we have:

αyx =
σ′wy·z − τ ′wxσ

′
xy·z

σ′wx·z − τ ′wxσ
′
xx·z

,

where Σ′ is the matrix of covariance values in
G\Y→{W}∪Anc(W ), and τ ′wx is the total effect of X
on W in G\Y→{W}∪Anc(W ). Since we remove all di-
rected paths from Y to W to obtain G\Y→{W}∪Anc(W )

from G, we have τ ′wx = τwx·y. Moreover, we have
σ′xy·z = σxy·z and σ′xx·z = σxx·z. Therefore, we have:

αyx =
σwy·z − τwyσyy·z − τwx·yσxy·z
σwx·z − τwyσxy·z − τwx·yσxx·z

.

Figure 6: Path diagram which satisfies the conditions
of Theorem 3.

Therefore, we have the following theorem.

Theorem 3 If W ∈ Desc(Y ) is an instrumen-
tal variable for X → Y given Z, a (possi-
bly empty) set of variables which does not contain
any variable from W , X, Y , Desc(Y ), Desc(W ),
or Anc′(W ) ∩ Desc(X) (Anc′(W ) are the an-
cestors of W in G\Y→{W}∪Anc(W )), in the path
diagram G\Y→{W}∪Anc(W ),X→{W}∪Anc′(W ) (Defini-
tions 1 and 2), the direct causal effect αyx is given
by:

αyx =
σwy·z − τwyσyy·z − τwx·yσxy·z
σwx·z − τwyσxy·z − τwx·yσxx·z

. (6)

For an example, in the path diagram in Figure 6
(adapted from the path diagram in Figure 4 by adding
a directed edge X → V ), the total effect of Y on W is
given by τwy = βwv·yxβvy·x, and the total effect of X
on W given Y is given by τwx·y = βwv·yxβvx·y, and we
can use Equation 6 to compute αyx.

Finally, the results in Theorems 1, 2 and 3 can all be
extended to identify multiple direct causal effects sim-
ilar to Lemma 2, as long as the G criterion is satisfied.
However, we do not state the details here.

5 Discussion and Conclusion

In this paper, we presented new results for the identifi-
cation of direct causal effects in linear SEMs based on
graphical criteria after edge removal, which are able
to identify direct causal effects which are not possible
using previous results based on graphical criteria. The
results allow us to identify the direct causal effect, by
first checking whether the model satisfies the graphi-
cal criteria, then using the necessary covariance values
and other total effects to compute the direct causal
effect, instead of solving the whole set of equations for
all variables given by Wright’s method of analysis. As
our new results are based on edge removal and the
determination of whether W can be used as an instru-
mental variable in the resulting path diagram, existing
algorithms can be used to check for the satisfying con-
ditions of our theorems. While the identification of
certain other total effects are also necessary, they can
also be identified using existing graphical methods.

Even in models where previous graphical criteria can
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be used to identify a certain causal effect, our new set
of criteria may provide another distinct function for
computing this causal effect. The concept of robust-
ness (Pearl 2004) deals with whether a function for
computing a causal effect is still valid when certain in-
dependence relations are relaxed in a model (by adding
edges between variables). If for all super-graphs of our
model, function A is valid whenever function B is valid,
we say that function A is at least as robust as function
B, and should at least be more preferred than function
B, because function A will remain valid even in cases
where function B is no longer valid when some of our
current independence relations are relaxed. Moreover,
if we are given two functions that are no more robust
than one another, then the computation of the direct
causal effect using these two different functions (and
the fact that the two computations agree) will greatly
confirm the correctness of our model.

It remains to be seen if the graphical criteria given
in this paper, combined with previous methods such
as IV-pairs and accessory sets, are complete, i.e., they
are necessary conditions for the identification of causal
effects in linear SEMs.

Acknowledgments

The research work of Hei Chan was performed while
employed at the National Institute of Advanced Indus-
trial Science and Technology (AIST).

The research work of Manabu Kuroki was supported
by the Ministry of Education, Culture, Sports, Science
and Technology of Japan, the Mazda Foundation and
the JIST Foundation.

References

Kenneth A. Bollen. Structural Equations with Latent
Variables. John Wiley, 1989.

Roger J. Bowden and Darrell A. Turkington. In-
strumental Variables. Cambridge University Press,
1984.

Carlos Brito and Judea Pearl. A graphical criterion for
the identification of causal effects in linear models.
In Proceedings of the Eighteenth National Confer-
ence on Artificial Intelligence (AAAI), pages 533–
538. AAAI Press, 2002a.

Carlos Brito and Judea Pearl. A new identification
condition for recursive models with correlated er-
rors. Structural Equation Modeling, 9(4):459–474,
2002b.

Carlos Brito and Judea Pearl. Generalized instru-
mental variables. In Proceedings of the Eighteenth
Conference on Uncertainty in Artificial Intelligence

(UAI), pages 85–93. Morgan Kaufmann Publishers,
2002c.

Carlos Brito and Judea Pearl. Graphical condition for
identification in recursive SEM. In Proceedings of the
Twenty-Second Conference on Uncertainty in Arti-
ficial Intelligence (UAI), pages 47–54. AUAI Press,
2006.

Zhihong Cai and Manabu Kuroki. On identifying to-
tal effects in the presence of latent variables and
selection bias. In Proceedings of the Twenty-Third
Conference on Uncertainty in Artificial Intelligence
(UAI), pages 62–69. AUAI Press, 2008.

Otis D. Duncan. Introduction to Structural Equation
Models. Academic Press, 1975.

Franklin M. Fisher. The Identification Problem in
Econometrics. McGraw-Hill, 1966.

Judea Pearl. Robustness of causal claims. In Proceed-
ings of the Twentieth Conference on Uncertainty in
Artificial Intelligence (UAI), pages 446–453. AUAI
Press, 2004.

Judea Pearl. Causality: Models, Reasoning, and In-
ference. Cambridge University Press, 2nd edition,
2009. 1st edition, 2000.

Peter Spirtes, Clark Glymour, and Richard Scheines.
Causation, Prediction, and Search. MIT Press,
2000.

Jin Tian. Identifying linear causal effects. In Proceed-
ings of the Eighteenth National Conference on Ar-
tificial Intelligence (AAAI), pages 104–111. AAAI
Press, 2004.

Jin Tian. Identifying direct causal effects in linear
models. In Proceedings of the Nineteenth National
Conference on Artificial Intelligence (AAAI), pages
346–353. AAAI Press, 2005.

Jin Tian. On the identification of a class of linear mod-
els. In Proceedings of the Twenty-Second National
Conference on Artificial Intelligence (AAAI), pages
1284–1289. AAAI Press, 2007a.

Jin Tian. A criterion for parameter identification in
structural equation models. In Proceedings of the
Twenty-Third Conference on Uncertainty in Artifi-
cial Intelligence (UAI), pages 392–399. AUAI Press,
2007b.

Sewall Wright. The method of path coefficients. An-
nals of Mathematical Science, 5(3):161–215, 1934.


