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Abstract

Real stochastic processes operating in contin-
uous time can be modeled by sets of stochas-
tic differential equations. On the other hand,
several popular model families, including hid-
den Markov models and dynamic Bayesian
networks (DBNs), use discrete time steps.
This paper explores methods for convert-
ing DBNs with infinitesimal time steps into
DBNs with finite time steps, to enable effi-
cient simulation and filtering over long peri-
ods. An exact conversion—summing out all
intervening time slices between two steps—
results in a completely connected DBN,
yet nearly all human-constructed DBNs are
sparse. We show how this sparsity arises from
well-founded approximations resulting from
differences among the natural time scales of
the variables in the DBN. We define an auto-
mated procedure for constructing an approx-
imate DBN model for any desired time step
and prove error bounds for the approxima-
tion. We illustrate the method by generat-
ing a series of approximations to a simple
pH model for the human body, demonstrat-
ing speedups of several orders of magnitude
compared to the original model.

1 Introduction

Since their introduction by Dean and Kanazawa
(1989), dynamic Bayesian networks (DBNs) have
proved to be a flexible and effective tool for repre-
senting and reasoning about stochastic systems that
evolve over time. DBNs include as special cases hidden
Markov models (HMMs) (Baum and Petrie, 1966), fac-
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torial HMMs (Ghahramani and Jordan, 1997), hierar-
chical HMMs (Fine et al., 1998), discrete-time Kalman
filters (Kalman, 1960), and several other families of
discrete-time models.

As explained in detail in Section 2, a DBN rep-
resents the state of a system by the values of a set
of variables in a time slice, with connections between
slices representing the stochastic evolution of the sys-
tem. Of particular importance is the fact that DBNs
are often sparse—each variable in a given slice includes
among its parents only a small subset of variables from
the preceding slice. Thus, a DBN may require expo-
nentially fewer parameters than an equivalent HMM.

Although there have been some attempts at DBN
structure learning (Friedman et al., 1998), for the
most part DBNs are built by hand. As with ordinary
(non-temporal) Bayesian networks, this is a somewhat
opaque process fraught with errors; but for DBNs,
there is the additional issue of choosing the size of the
time step ∆ that separates the time slices. As we will
see, the choice of ∆ has a dramatic effect on both the
computational cost of the model and the proper topol-
ogy of the DBN. Folk wisdom in the field—borrowed
perhaps from standard practice in simulation of differ-
ential equations—suggests that ∆ needs to be small
enough so that the fastest-changing variable in the
model has only a small probability of changing its state
in time ∆. Unfortunately, in many systems this re-
sults in gross inefficiency. For example, the body’s
pH setpoint changes on a timescale of days or weeks,
while breathing rate (which affects pH) changes on
a timescale of seconds; hence, a system that models
both is forced to perform inference over millions of
time steps in order to track the pH setpoint over an
extended period. This issue motivated the develop-
ment of continuous-time Bayes nets (CTBNs) (Nodel-
man et al., 2002), which avoid committing to any fixed
time step. Another approach, appropriate for regular
but widely separated observations and for certain re-
stricted classes of models, is to convert a natural small-
∆ model into an equivalent model whose ∆ matches
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the observation frequency (Aleks et al., 2009).
The approach we take in this paper is to think

about how one might convert a continuous-time
model—a CTBN or a set of stochastic differential
equations (SDEs)—into an equivalent, or approxi-
mately equivalent, discrete-time DBN for a given ∆.
This provides some insight into why DBNs have the
structures that they do, and also yields an automatic
procedure for choosing time steps and DBN structures,
such that simulation over long periods can be both ef-
ficient and provably (approximately) accurate.

Let us assume that the system can be modeled ex-
actly by a set of n coupled SDEs that is sparse; we
can think of this model as a sparse DBN with a very
small time step δ. Now, if we increase the time step
to, say, nδ by summing out n − 1 intervening steps
in the model, the resulting model will be completely
connected (unless the original model has disjoint com-
ponents). This presents a puzzle, since most human-
designed DBNs are sparse even with very large ∆.
Such models must implicitly be making approxima-
tions. In this paper, we will show how these approxi-
mations are a natural outcome when the variables have
widely different timescales (rates of evolution).

In a deterministic dynamic model, the idea of using
a wide separation of timescales to simplify the model
goes back at least to work by Michaelis and Menten
(1913); see Iwasaki and Simon (1994), Gómez-Uribe
et al. (2008) for more recent surveys. The general anal-
ysis involves finding gaps in the eigenspectrum of the
coefficient matrix of the system of differential equa-
tions. Here, we provide the simplest possible example:
a system of two variables, s and f , where s (the “slow”
variable) influences f (the “fast” variable) but not vice
versa:

ds

dt
= a1s ;

df

dt
= b1s + b2f (1)

where we assume |a1| � |b2| and both negative.
Viewed as a (deterministic) DBN, this looks like Fig-
ure 1(a). The exact solution for some time t is

s = S0e
a1t ; f =

(
b1S0

a1 − b2

)
ea1t+

(
F0 −

b1S0

a1 − b2

)
eb2t

(2)
where S0 and F0 are initial values for s and f . This
is represented by the DBN structure shown in Fig-
ure 1(b) for a large finite time step ∆. Although f is
nominally a “fast” variable, the solution shows that,
for t � 1/|b2|, f follows a slowly changing equilibrium
value that depends on s. Thus, we need model only
the dynamics of s and can compute f(t) directly from
s(t). This corresponds to the DBN structure in Fig-
ure 1(c). With this structure, we can use a large ∆
because s changes very slowly.

Effective model reduction methods have been de-
veloped in the dynamical systems literature for de-

Figure 1: Two variable DBN: The slow variable s is
independent of the fast variable f . (a) Exact model for
small time-step δ. (b) Exact model for large time-step
∆. (c) Approximate model for large time-step ∆.

riving such simplified deterministic models in a semi-
automated fashion. Moreover, any discrete-state DBN
model can be converted into an equivalent determin-
istic dynamical system whose variables are the occu-
pancy probabilities of individual states, and model-
reduction techniques can be applied to this system.
Unfortunately, this approach involves an exponential
blowup in the model size; furthermore, even if it can
be computed, the reduced version would not necessar-
ily correspond to a meaningful sparse model in terms
of the original variables.

Instead, we work directly with the DBN, begin-
ning with a very-small-time-step model, identifying
time steps ∆ that nicely separate the model’s time
scales, and deriving the corresponding reduced DBN
for each such ∆. A salient feature of the algorithm is
that it avoids building the intractably large full transi-
tion matrix. For large ∆, accurate simulation over very
long time periods becomes possible; moreover, the per-
time-step inference cost for the reduced models can be
much less than for the original models, since the mod-
els become sparser as ∆ becomes larger. The larger
time-step combined with the simpler model result in
speed-ups of several orders of magnitude compared to
the original model.

Sections 2 presents DBNs and other relevant defini-
tions. Section 3 introduces an example DBN that mod-
els the body’s pH control system. Section 4 presents
the approximation scheme, a proof of its correctness
and an analysis of the associated error. Section 5 ex-
tends these ideas to obtain a general set of rules to
construct an approximate DBN for a large time-step.
Section 6 presents results on the accuracy and com-
putational cost of the approximate DBNs of the pH
control mechanism.

2 Definitions

A dynamic Bayesian network (DBN) (Dean and
Kanazawa, 1989) is a discrete-time model of a stochas-
tic dynamical system. The system’s state is repre-
sented by a set of variables, Xt for each time t ∈ Z∗
and the DBN represents the joint distribution over
the variables

⋃∞
t=0 Xt. Typically we assume that the
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system’s dynamics do not change over time, so the
joint distribution is captured by a 2-TBN (2-Timeslice
Bayesian Network), which is a compact graphical rep-
resentation of the state prior P (X0) and the stochas-
tic dynamics P (Xt+1|Xt). In turn, the dynamics are
represented in factored form via a collection of local
conditional models P (Xi

t+1|π(Xi
t+1)), where π(Xi

t+1)
are the parent variables of Xi

t+1 in slice t or t + 1.
Henceforth, we will consider all Xi

t to be discrete.
Consider a simple one-variable DBN, where the

variable (say X) can be in one of k discrete states. Let
pi,j = Pr(Xt+1 = j|Xt = i). We define the timescale of
X for state i, T i

X , as the expected number of time-
steps that the variable spends in state i before chang-
ing state, given that it is currently in state i. It can
be shown that T i

X = 1/(1 − pi,i). Thus, the overall
timescale of variable X is actually a range of timescales
from mini T i

X to maxi T i
X .

In a general DBN, let π̂(Xt+1) denote the par-
ents of variable Xt+1 in the 2-TBN representa-
tion other than Xt. Then the conditional prob-
ability table (CPT) for Xt+1 is given by pk

i,j =
Pr(Xt+1 = j|Xt = i, π̂(Xt+1)t = k). We also define
T i,k

X =1/(1 − pk
i,i) to be the timescale of variable X

in state i when its parents are in state k, where k is
any state in the joint state space of π̂(Xt+1).

Now, consider two variables X1 and X2 in a general
DBN. Let lX1 = mini,k T i,k

X1
and hX2 = maxi,k T i,k

X2
.

If lX1 � hX2 , then X1 and X2 are said to be slow
and fast variables (respectively) with respect to each
other. Their timescale separation is defined as the ratio
lX1/hX2 . For a set of variables C = {X1, . . . , Xn}, the
lower timescale bound is defined as lC = minXi∈C lXi ,
with hC also defined in a similar fashion. The existence
of significant timescale separation in a DBN is crucial
in allowing accuracy-preserving model simplifications.

A continuous-time analog of the DBN is the
continuous-time Markov chain. Formally, it is defined
as a Markov stochastic process {xt}t∈R+ with state
space I. Let I = {1, 2, . . . , k}. The transition matrix
for the interval from 0 to t, Pij(t) = Pr(Xt = j|X0 =
i), (i, j) ∈ I× I, is given by P (t) = eLt, where the ma-
trix L is called the generator of the Markov chain. L
has the following properties: (i)

∑
j lij = 0,∀i ∈ I (this

makes L conservative); (ii) lij ∈ [0,∞),∀(i, j) ∈ I × I
with i 6= j. L can be computed by:

L = lim
t→0

P (t)− I

t
(3)

We will assume that the transition matrix P (t) is stan-
dard (i.e., limt→0 Pii(t) = 1,∀i ∈ I).

3 A Motivating Example: Human pH
Regulation System

pH is a measure of the concentration of hydrogen ions

in a solution or substance. Measured on a log scale
of 0–14, higher numbers represent alkaline nature and
lower numbers are characteristic of acids. The pH bal-
ance of the human bloodstream is one of the most
important biochemical balances in the human body
since it controls the speed of our body’s biochemical
reactions (Guyton and Hall, 1997).

The human body has a complex system to main-
tain body pH around a setpoint (' 7.4) under normal
circumstances. Generally, metabolism leads to CO2

production, thereby producing carbonic acid, which
lowers the pH of blood (an abnormal lowering leads to
“acidosis”). On the other hand, respiration brings O2

into the system and also removes CO2, which neutral-
izes the acid in the blood, thus raising the pH. These
are the two main compensatory mechanisms that we
will consider in our model. Chemical acid–base buffer
systems of the body fluids (which provide the first line
of defense against fluctuations in blood pH) are not
modeled. Metabolism rate increases with increasing
temperature and higher levels of exertion. The respi-
ratory rate (measured as “Minute Volume”, which is
the volume of air inhaled in a minute) is raised by a
lower pH value, if the pH setpoint is normal. How-
ever, an overdose of certain narcotics might lower the
pH setpoint of the body. In this case, a low pH will
not trigger a rise in the Minute Volume, causing the
blood to become more and more acidic and possibly
resulting in death. Figure 2 shows the DBN model of
the system which controls the body pH. Variables with
similar shades have comparable timescales. The dark-
est shaded variable (i.e., “Minute Volume”) has the
fastest dynamics, while the lightest shaded variable
(“pH setpoint”) has the slowest dynamics. Details of
each variable in the model are provided in Table 1.

Figure 2: Exact model for the pH control system for a
small time-step δ.

We chose this model as a motivating example, since
there are interacting variables in this system which
evolve at very different timescales. We will construct



         84

Why are DBNs sparse?

Table 1: Information about the variables in the DBN
(including their state space and timescales)

Details of the pH control system DBN
Variable State Timescale
Name Space (Seconds)
pH setpoint { Normal, Low } lpHst = 3.3e6

(pHst) hpHst = 1e7

Temperature { Hot, Warm, lT emp = 8e3

(Temp) Cool, Cold } hT emp = 1e4

Exertion { High, Normal, lEx = 5e3

(Ex) Low} hEx = 1e4

pH { Acid, Neutral, lpH = 100

(pH) Alkaline } hpH = 300

Metabolism { High, Normal, lMeta = 70

(Meta) Low } hMeta = 150

Minute Volume { High, Normal, lMV = 1.1

(MV) Low } hMV = 5

approximate, sparsely connected models for this sys-
tem over large time-steps in Section 6.

4 Approximation scheme

Let us consider the general 2-variable DBN in Fig-
ure 3(a). (Although one might expect a link between
st+δ and ft+δ, we can reduce δ appropriately to drop
the intra-time-slice links since any differential equation
system can be represented without contemporaneous
edges.) For simplicity of presentation, we will assume
that s and f are binary random variables (although all
the results presented in this section are generally ap-
plicable to any finite discrete state space for the two
variables). Since we assume there is a timescale sepa-
ration in the dynamics of s and f , their CPTs should
have the following structure:

p(st+1|st, ft) =

 1− εx1 εx1

1− εx2 εx2

εx3 1− εx3

εx4 1− εx4

 (4)

p(ft+1|st, ft) =

 1− a1 a1

a2 1− a2

1− a3 a3

a4 1− a4

 (5)

where ε � 1, 0 < ai, xi < 1 and ai, xi � ε. The rows
correspond to (st, ft) = {(0, 0), (0, 1), (1, 0), (1, 1)} re-
spectively. The first column corresponds to st+1 (or
ft+1) = 0. Using the definitions in Section 2, ls =
mini 1/εxi and hf = maxi 1/ai. Therefore ls/hf =
O(1/ε). It should be noted that ε is a redundant pa-
rameter in this specification—hence we have an option
to choose an ε. This choice has to be made such that
the order of the xi’s and ai’s are similar and they also
satisfy the previous constraints.

Figure 3: Two variable general DBN: The slow vari-
able s is also dependent on the fast variable f . (a)
Exact model for small time-step δ. (b) Exact model
for large time-step ∆. (c) Approximate model for large
time-step ∆.

The exact transition model for a larger time-step
∆ is shown in Figure 3(b). Without loss of general-
ity, let us assume δ = 1. As shown in Figure 3(c),
for the large time-step ∆, the distribution of ft+∆ be-
comes (approximately) independent of the value of st

and ft. The key observation is that irrespective of the
value of ft, the distribution of ft+i, for i ∈ [1,∆] will
exponentially converge to the equilibrium distribution
of f for the current value of s. Once it does so (ap-
proximately), we can compute an exact expression for
P̂ (st+(N+1)|st+N ), where N is large enough for f to
approximately reach its equilibrium distribution. This
expression will be equal to

P̂ (st+1|st) =
∑
ft

p(st+1|st, ft)× P∞(ft|st) (6)

where P∞(ft|st) is the equilibrium distribution of f .
Since f (nearly) reaches its equilibrium in a short frac-
tion of ∆, we ignore that portion of f ’s trajectory, and
simply assign (P̂ (st+(N+1)|st+N ))∆ to be the CPT of
s for the large time-step ∆. Equation 6 is analogous
to Forward Euler integration since we use st only to
determine the equilibrium distribution of f .

The CPT P̂ (ft+∆|st+∆) is simply the invariant dis-
tribution of f for the fixed value of st+∆.

4.1 Correctness of the approximation scheme

The above approximation heuristic is analogous to
elimination of the fast variable through averaging for
the continuous-time Markov chain. (For a complete
treatment of the continuous-time case, see Pavliotis
and Stuart (2007).) In particular, let the state spaces
of s and f be Is and If respectively. Let q((i, k), (j, l))
denote the element of the generator matrix associated
with transition from (i, k) ∈ Is × If to (j, l) ∈ Is × If .
B0(i) is a generator with entries b0(k, l; i) where the
indices indicate transition from k ∈ If to l ∈ If for
given fixed i ∈ Is. For each i ∈ Is, B0(i) generates
an ergodic Markov chain on If . Let ρB

∞(k; i)k∈If
be

the invariant distribution of a Markov chain on If , in-
dexed by Is. Similarly, let B1(k) with indices b1(i, j; k)
denote transition from i ∈ Is to j ∈ Is, for each fixed
k ∈ If . Let us introduce generators Q0 and Q1 of
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Markov chains on Is × If by:

q0((i, k), (j, l)) = b0(k, l; i)δij ,

q1((i, k), (j, l)) = b1(i, j; k)δkl,

where δij and δkl are Kronecker delta functions. Now,
let us define another generator Q̄ of a Markov chain
on Is by q̄(i, j) =

∑
k ρB

∞(k; i)b1(i, j; k).

Lemma 1
If Q, the generator of a Markov chain, takes the form
Q = 1

ε Q0 + Q1, then for ε � 1 and times t up to
O(1), the finite-dimensional distribution of s ∈ Is is
approximated by a Markov chain with generator Q̄ with
an error of O(ε).

The proof (Pavliotis and Stuart, 2007, Section 9.4)
bounds the error on a vector vi(t) = E(φx(t)|x(0) = i),
where φ : I 7→ R. v(t) satisfies the backward Kol-
mogorov equation (i.e., dv/dt = Lv; v(0) = φ). Thus
v(t) = P (t)φ, where P (t) is the transition matrix for
the interval from 0 to t. Since this is true for any map-
ping φ, the approximation error in any element of P (t)
is necessarily bounded by O(ε) too.

We now show how our approximation scheme for
the discrete time-step is equivalent to their solution
for continuous time and thereby shares the same order
of approximation error. The first step towards prov-
ing equivalence is to show that the generator matrix
corresponding to the discrete-time process also has a
similar structure (i.e., Q = 1

ε Q0 + Q1). Firstly, for
δ � 1 and an integer n > 0,[

1− δx δx
δy 1− δy

]n

≈
[

1− nδx nδx
nδy 1− nδy

]
(7)

when we ignore δ2 terms. If we consider 1/δ to be a
large integer, Equation 7 implies[

1− x x
y 1− y

]δ

≈
[

1− δx δx
δy 1− δy

]
(8)

Let P δ
f (similarly P δ

s ) be the CPT for the dynam-
ics of f (s) over an infinitesimal time-step δ when we
freeze s (f). Using Equation 8, we get:

P δ
s ≈

[
1− δεx1 δεx1
1− δεx2 δεx2

δεx3 1− δεx3
δεx4 1− δεx4

]
;P δ

f ≈

[
1− δa1 δa1

δa2 1− δa2
1− δa3 δa3

δa4 1− δa4

]

We now combine P δ
s and P δ

f to form P δ
s,f .

P
δ
s,f ≈

2666664
(1− δεx1)(1− δa1) · · · · · · δεx1δa1

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.
δεx4δa4 · · · · · · (1− δεx4)(1− δa4)

3777775

The generator corresponding to this discrete-time
process can be computed by the formula L =
limδ→0(P δ

s,f − I)/δ. Since we divide by δ when taking
the limit, ignoring the higher order terms of δ in the
previous step(s) becomes inconsequential. The gener-
ator matrix L thus obtained is:

L =

[ −a1 a1 0 0
a2 −a2 0 0
0 0 −a3 a3
0 0 a4 −a4

]
+ ε

[ −x1 0 x1 0
0 −x2 0 x2
x3 0 −x3 0
0 x4 0 −x4

]

Hence, the generator has the form L0 + εL1. Thus,
L = O(εQ). Since P (t) = eLt, the behavior of L at
time T/ε is similar to the behavior of Q at time T .
Thus we can use Lemma 4.1 to say the following:

If L, the generator of a Markov chain, takes the
form L = L0 + εL1, then for ε � 1 and times t up to
O(1/ε), the finite-dimensional distribution of s ∈ Is is
approximated by a Markov chain with generator L̄ with
an error of O(ε), where L̄(i, j) =

∑
k ρL

∞(k; i)l1(i, j; k).
It is easy to see that the generator corresponding

to the transition matrix P̂ (st+1|st) (Equation 6) is ex-
actly equal to the generator L̄, and hence we arrive at
the following result.

Result 1
If a discrete time Markov process has conditional prob-
ability tables given by Equations 4 and 5, then for ε �
1 and times ∆ up to O(1/ε), the finite-dimensional

distribution of s ∈ Is is approximated by P̂ (st+1|st)
∆

(given by Equation 6), with error O(ε).

For very small values of ∆ (like O(1)), the error
for f decays exponentially (O(|λ|∆)) where λ is the
maximum singular value of p(ft+1|st, ft). However,
for ∆ = O(1/ε), the error for f essentially replicates
the error for s, since the fast ergodic dynamics of f
has almost reached a quasi-static equilibrium.

4.2 Special case

In the exact model, if p(st+1|st, ft) = p(st+1|st) (i.e.,
the dynamics of s is independent of f as shown in
Figure 1), then the dynamics of s is tracked exactly
by the above scheme. In Equation 6, the p(st+1|st, ft)
term goes outside the summation, and the invariant
distribution of f sums to 1.

4.3 Other approaches

There is another line of work (Yin and Zhang, 2004)
where discrete time transition models of the form Pε =
P + εQ are considered. Here, P is a stochastic matrix
and Q is a generator matrix. The approximation error
for P k

ε can be made O(εn+1) by constructing a series
of approximation functions. While this approach has
the benefit of a potentially much smaller error, the
functions are much more expensive to compute and the
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Figure 4: Structural transforma-
tion in the large time-step model
when f1 and f2 have no cross
links in the small time-step model

Figure 5: Structural transforma-
tion in the large time-step model
when f1 and f2 have cross links in
the small time-step model

Figure 6: A slow cluster s1 has a
new parent s2 in the larger time-
step model when s2 is a parent of
f in the smaller time-step model

approximate model has no simple or intuitive mapping
to the original model.

5 General Rules of Construction

This section describes the general algorithm for con-
structing an approximate DBN for a larger time-step
when given the exact DBN for a small time-step δ.
We will use the approximate CPT construction dis-
cussed in section 4. Let the DBN have n variables X1,
X2, . . . ,Xn. This algorithm will produce a sequence
of approximate DBNs for various increasing values of
∆ (the larger time-step). The algorithm is as follows:

1. For each variable Xi, determine lXi and hXi .

2. Cluster the variables into {C1, C2, . . . , Cm} (m ≤
n), such that εi ≈

hCi

lCi+1
� 1, ∀i ∈ {1, 2, . . . ,m −

1}, i.e., there is a significant timescale separation
between successive clusters. C1 is the cluster of
fastest variables, while Cm is the cluster of slowest
variables. In the worst case, m can be 1, when all
variables have very comparable timescales.

3. Repeat the following steps for i = {1, . . . ,m− 1}.
Let ∆0 = 1.

(a) Select ∆i = ∆i−1 ×O(1/εi)
(b) For each configuration of the slower parents

of Ci, compute the stationary point (equilib-
rium distribution) of Ci to fill in the CPT
of p((Ci)t+∆i |π(Ci)t+∆i

) in the approximate
model for time-step ∆i. If the fast variables
in Ci are conditionally independent given the
slow parents Cj (j > i), then the individ-
ual equilibrium are calculated (see Figure 4).
However, if the variables in Ci are not con-
ditionally independent given Cj (j > i), we
have to compute the joint equilibrium of Ci

(as in Figure 5).
(c) While Ci only has parents in the same time-

slice in the approximate model, Cj (j > i)
will have parents from the previous time-
slice. If there were no links to Cj from Ci in

the exact model, then the CPT of Cj is ex-

actly equal to ˆCPT
(∆i/∆i−1)

Cj
(as mentioned

in section 4.2), where ˆCPTCj is the joint
CPT of Cj and its parents for time-step ∆i−1.
In the worst case, all Cj ’s (j > i) can become
fully connected.
However, if there are links from the fast clus-
ter Ci to the slow cluster Cj , then we have
to use Equation 6 to compute the CPT of Cj

for time-step ∆i. Since the equilibrium distri-
bution of Ci is parameterized by the parents
of Ci, these variables now become additional
parents of Cj (see Figure 6).

(d) Now we have an approximate model for time-
step ∆i. This model only has links across
time-slices for Cj (j > i). This approximate
model is used as the exact model for the next
iteration (since using the exact model would
result in the same approximations).

The sequence of DBNs produced by this algorithm
become more and more sparse. This makes exact in-
ference on these approximate models much more feasi-
ble than the fully connected exact model for the same
time-step. Let Ds be the number of variables in the
slow clusters and Df be the number of variables in the
fast clusters and let all variables be binary. Then, the
complexity of exact inference (per time step) in the
fully connected, exact model is O(22×(Ds+Df )) while
that in the approximate model is O(22×Ds +2Ds+Df ).
This complexity is for the projection of the joint state
space distribution vector. Also, particle filters will run
much faster on these approximate models because par-
ticles are only needed to estimate the joint state space
of Ds and not Ds ∪ Df (as is the case in the exact
model). In the next section, we return to the pH reg-
ulation model from Section 3 and create approximate
models for appropriate values of ∆.

6 Experiment

As mentioned previously, the pH regulation model ex-
hibits a wide range of timescales. Minute Volume can
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potentially change every second, depending on the cur-
rent needs of the body. The pH of the body and the
rate of metabolism have much slower dynamics rela-
tive to Minute Volume. Temperature and Exertion are
even slower, while pH setpoint (which only changes
upon a heavy overdose of narcotics, a very rare event)
is the slowest of all. (Timescales are specified in Ta-
ble 1.) Thus, there are four separate clusters of vari-
ables on which we can apply the algorithm of Section 5.

The three approximate models created for ∆ = 20,
∆ = 1000 and ∆ = 50000 are shown in Figure 7. For
the first approximate model M20, only Minute Vol-
ume is the fast variable. Hence, its parents are pH
and pH-setpoint from the same time-slice. Also, since
pH-setpoint determines the equilibrium distribution of
Minute Volume, which in turn is a parent of pH (in the
exact model), pH now has an additional parent, pH-
setpoint (according to step 3.(c) in Section 5). For the
second approximate model M1000, pH and Metabolism
are the new fast variables. Since Metabolism is a par-
ent of pH, we have to consider the joint equilibrium of
the two variables, given each configuration of their slow
parents (i.e., pH-setpoint, Temperature and Exertion).
For the third approximate model M50000, Tempera-
ture and Exertion also become fast variables. Since
these were independently evolving variables, they do
not have any parents in M50000.

Figure 7: Approximate models of the pH regulation
system of the human body. (a) Approximate model
for ∆ = 20. (b) Approximate model for ∆ = 1000. (c)
Approximate model for ∆ = 50000

For evaluation purposes, we implemented the ex-
act model and the three approximate models in MAT-
LAB. We chose 10 random starting configurations of
the variables and simulated the exact trajectory of the
belief vector for each of these initial configurations for
1,000,000 time-steps. Then we used the same start-
ing configurations and M20 to simulate the trajecto-
ries at regular intervals of 20 steps over 1 million time-
steps. We repeated the same procedure with M1000
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Figure 8: Comparison of the average L2-error(per
time-step) of the belief vector of the joint state space
for M20, M1000 and M50000.

Table 2: Computational speed-up in different models
Model Avg. Simulation Speedup

Time (sec) Factor
Exact 385.44 1

∆ = 20 24.87 15.5

∆ = 1000 .0889 4300

∆ = 50000 .0006327 > 600000

and M50000 to simulate the trajectories at intervals
of 1000 and 50000 steps respectively. The L2-error
(per time step) of the joint state space belief vector
was averaged over all 10 instances and plotted in Fig-
ure 8. As expected, the error increases with the level
of approximation—although all three models perform
well.

The performance speed-up details of the different
models are summarized in Table 2. The speed-up
factor for M20 was less than 20 because the exact
model required only matrix multiplication (very effi-
cient in MATLAB), while M20 needed some indexing
work to compute the distribution of the fast variable
Minute Volume even though its matrix multiplication
requirements were less. The benefit of a much sim-
pler (sparser) model was evident for both M1000 and
M50000, as the speed-up factor exceeded the size of the
time-step (∆).

Since this is a model for pH regulation, we also
decided to check the performance of the approximate
models on the marginal distribution of pH. Since pH is
a slow variable in M20, it is simulated exactly in that
model and hence is not relevant to this experiment.
As we can see from Figure 9, both M1000 and M50000

perform very well with an error of less than 0.04%.

7 Conclusion

We have shown how DBNs that are naturally sparse
for a small time step may be converted to (different)



         88

Why are DBNs sparse?

0 200 400 600 800 1000

0.2554

0.2556

0.2558

0.256

0.2562

0.2564

0.2566

0.2568

Time elapsed (steps of 1000)

p(
pH

 =
 "l

ow
")

 

 
exact
∆ = 1000
∆ = 50000

Figure 9: Accuracy of M1000 and M50000 in tracking
the marginal distribution of pH

sparse DBNs for large time steps, even though an ex-
act conversion methods would yield a fully connected
model. The sparse approximation becomes more and
more accurate with increasing separation of timescales
among variables. Our error analysis also supports a
quantitative trade-off between accuracy and speed-up.
The methods accommodate models with widely vary-
ing timescales and/or intermittent observations and
should be applicable to a broad range of chemical, bi-
ological, and social systems with these properties.

Aleks et al. (2009) noted that specifying a DBN
may be quite easy for a small time-step but much
harder for a larger time-step. This construction au-
tomates the conversion. Thus, it allows the user to
build a DBN at a natural time-step, yet run it at much
larger time-steps to reduce computational cost.

Further work along these lines includes extend-
ing the results to handle continuous variables; adding
the possibility of replacing a state variable by another
variable corresponding to its long-term average value
(e.g., replacing instantaneous blood pressure by its
one-minute average); and adding the possibility of re-
placing a set of variables by functions of those vari-
ables (e.g., replacing two Boolean variables by their
XOR, or two continuous variables by linear combina-
tions thereof). These two latter ideas both create ad-
ditional scope for clean separation of timescales.
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