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Abstract

This paper focuses on the use of nuclear DNA
Short Tandem Repeat traits for the identifi-
cation of the victims of a Mass Fatality Inci-
dent. The goal of the analysis is the assess-
ment of the identification probabilities con-
cerning the recovered victims. Identification
hypotheses are evaluated conditionally to the
DNA evidence observed both on the recov-
ered victims and on the relatives of the miss-
ing persons disappeared in the tragic event.
After specifying a set of conditional indepen-
dence assertions suitable for the problem, an
inference strategy is provided, treating some
points to achieve computational efficiency.
Finally, the proposal is tested through the
simulation of a Mass Fatality Incident and
the results are examined in details.

1 Introduction

Terrorists’ attacks, natural calamities and transporta-
tion crashes have recently caused a relevant number
of Mass Fatality Incidents (MFI), posing challenging
identification problems to the authorities.

Often, little but some biological material can be recov-
ered from the victims and several DNA Short Tandem
Repeat (STR) loci can be employed to attempt identi-
fication. In such cases, the identification process does
not necessarily require the missing persons’ biological
samples, which is rarely available, since exploiting
DNA heritability, some genetic material obtained from
their relatives can be used instead.

To find a specific missing person among the victims,
Clayton et al. (1995) and Cash et al. (2003) evaluated
as many likelihood ratios (LR) as recovered bodies.
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Each LR was separately assessed as the probability
to observe a victim and the missing related evidence,
conditionally to a pair of competitive hypotheses. The
first conjecture reckons that the victim is the missing
individual; the alternative assumes that the missing
person is not related to the victim, being this latter a
generic member of a certain genetic population. The
method derives from the solution of indirect identifica-
tion problems like paternity cases. There, an individ-
ual is alleged to be in a certain position in a pedigree
and no other alternative candidates are specified. The
approach, named kinship analysis by Brenner (1997),
if repetitively applied in a MFI setting, does not pro-
vide encouraging results: in fact, often, for each miss-
ing person, some large LRs are obtained with respect
to different victims, not leading to conclusive results in
terms of identification. False positives were justified in
Brenner and Weir (2003) by the consideration that the
expected number of individuals, whose genetic profiles
are compatible with the unobserved missing person’s
one, increases according to the population size and this
is not negligible.

Actually the poor result obtained was due to an im-
proper definition of the alternative hypothesis, which
is not constituted by the generic member of the genetic
population but must contemplate all the recovered and
not recovered victims.

A step ahead has recently been suggested by Brenner
(2006), who proposed to consider at the same time
all the missing individuals occurring in each familial
group. However, the families were still considered sep-
arately.

Our proposal consists in treating, simultaneously, all
the victims and all the missing persons, evaluating an
hypothesis random variable comprising all the possi-
ble identification conjectures. The proposed analysis
is Bayesian since the identification hypothesis is unob-
servable and a prior probability is provided in a no-
informative fashion, assuming that, before the DNA
evidence become available, each victim has the same
probability to be one of the missing persons. The anal-
ysis only requires familial groups not sharing recent an-
cestors with one another and a conservative estimate
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of the number of victims.

2 Basic Ingredients

As a matter of notation calligraphic symbols indicates
sets and n(·) indicates the cardinality of the set in
the argument; IA(B) is the usual indicator function,
which is 1 if A = B or it is 0 otherwise; Pn, Dn,k and
Cn,k indicate, as usual, permutations, dispositions and
combinations.

Let N the number of persons involved in a MFI. As-
sume N is exactly known, as it happens in the case of
an aircraft incident and the passenger and the crew list
is available or is guessed at a large conservative value.
The aim is to identify the members of the set of recov-
ered victims, V , by means of the identity of the missing
individuals, M, claimed by the families, F , who had
some relatives disappeared in the MFI. To formalize
the possibility that not all the victims have been re-
covered, we augment V by a ?, a generic no-recovered
victim, so that V∗ = V ∪ {?}. Missing individuals in
each family are detailed in Mf , besides the observed
individuals Of , f ∈ F . Referring to a certain fam-
ily, the specification of a pedigree often requires the
specification of some unobserved family’s members U ,
connecting observed members. Also M = ∪f∈FMf ,
O = ∪f∈FOf , U = ∪f∈FUf .

Let Hm = v, v ∈ V∗ , m ∈ M, the hypothesis iden-
tifying the victim v as the m-th missing person. If
this latter is considered in isolation, the identification
random variable Hm can assume values in V∗ with-
out constraints. Instead, if more Hm are considered
jointly, a multivariate random variable H must be de-
fined so that its states take into account all the pos-
sible ways in which the missing individuals can iden-
tify the recovered victims since multiple assignments
of the same victim to different missing persons are not
allowed. Let Ht , a generic state of H called a config-
uration and conformed to the mentioned constraint:

Ht = {Ht
m : m ∈ M}, Ht

s =? or ∀g 6= s Ht
g 6= Ht

s.

If the number of the recovered victims is equal to
the number of the individuals involved in the disas-
ter, n(H) = PN , since each victim can be identified by
only one missing person; otherwise, if n(V) < N , then

n(H) = DN,n(V). (1)

The individuals implied in the analysis are considered
only with respect to nuclear STR DNA loci, those com-
monly used for forensic identification. We do not refer

to a particular set of them since our findings are inde-
pendent of such choice.

As a matter of notation XV = {XV
v : v ∈ V} refers to

the recovered victims genotypes; XF = {XF
f : f ∈ F}

deals with the families to which the missing persons
belong and can be split into XF

f = {XM
f , XO

f , XU
f },

according to a partition of the family’s into missing,
observed and unobserved individuals being XM , XO

and XU the set of corresponding genotypes.

In a locus we observe a genotype, i.e. two alleles inher-
ited from the father and the mother even if their origin
is not recoverable. A random variable X represents the
uncertainty about genotypes and, depending whether
the individual’s parents are included in the analysis,
its probability function can be provided by two kinds
of models.

Segregation models: for a locus, they evaluate the
probability of an offspring’s genotypes conditionally
to their parents. The first Mendel’s law specifies the
genotype’ s probability of a child, c, given the geno-
types of their parents, m and f . If xm = (i, j) and
xm = (r, j), so that the set of the possible transmitted
genotypes is G = {{i, r}, {i, s}, {j, r}, {j, s}} we have:

Pr(xc|xm, xf ) = 0.25
∑

g∈G

I{g}(xc). (2)

If mutations are taken into account, more sophisti-
cated models are required, as in Dawid et al. (2007).

Population models: they determine the probability of
an individual’s genotype conditionally to their belong-
ing to a specified population in which the alleles’ prob-
abilities, θ, are assumed known. The most popular of
such models derives from the conditions introduced
by Hardy-Weinberg for a population in equilibrium,
Weir (1996). In this case the genotype probability is
calculated from the probabilities of the alleles in the
population. For a generic individual m, the genotype
probability is:

Pr(xm = (i, j)|θ) = θi · θj · (1 + I{i,j:i6=j}{i, j}). (3)

Inbreeding and co-ancestry characteristics in the pop-
ulations can be included as in Evett and Weir (1998).

3 Model and inference

To make inference about H consider the following de-
composition of the joint probability distribution of the
random variables implied in the analysis:

Pr(XV , XF , H) = Pr(XV |XF , H)Pr(XF |H)Pr(H).
(4)

Each factor in (4) can be simplified by some condi-
tional independence assertions.
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a) XF ⊥⊥ H i.e. the identification hypothesis
does not modify the probabilistic relations among
the genotypes’ random variables of the familial
groups. This implies:

Pr(XF |H) = Pr(XF ). (5)

b) Familial groups are defined to include all the ob-
served and unobserved individuals known to be re-
lated. Two families cannot share their members,
otherwise they are merged. This implies that the
genotypes’ random variables related to different
families are independent:

Pr(XF ) =
∏

f∈F

Pr(XF
f ). (6)

c) To decompose Pr(XV |XF , H) consider that,∀t,
∃!m such that Ht

m = q ∈ V . This implies
XV

q ≡ XM
m , providing XV ⊥⊥ XO, XU |XM , H ,

so that:

Pr(XV |XF , H) = Pr(XV |XM , H). (7)

A formal expression of the likelihood of the observed
evidence, XV = xV , XO = xO, conditionally to each
of the Ht states, derived from (4), (5) and (7), is:

Pr(xV , xO|Ht) =
∑

XM ,XU

Pr(xV |XM , Ht)

· Pr(xO , XU , XM ). (8)

To evaluate (8), define as Mt
f = {m ∈ Mf : Ht

m ∈

Mf : Ht
m ∈ V} the sets of missing persons in the

families having victims assigned by a specified Ht and
pose these families in the set F t = {f ∈ F : Mt

f 6= ∅}.

Also let XMt

f = {Xm : m ∈ Mt
f} the random variables

of the missing persons’ genotype in the f-th family,
being XVt

f the matching victims’ genotypes assigned
by Ht, so that:

Pr(xV | XM , Ht) =
∏

f∈Ft

Pr(xVt

f |XMt

f , Ht), (9)

where:

Pr(xVt

f |XMt

f , Ht) =







1 if XMt

f = xVt

f

0 otherwise.
(10)

Taking account of (6) and (9) , ∀t, the likelihood can
be factorized as follows:

Pr(xV , xO|Ht) =
∏

f∈Ft

∑

XM
f

,XU
f

Pr(xVt

f |XMt

f , Ht)Pr(xO
f , XU

f , XM
f )

·
∏

f∈F\Ft

∑

XM
f

,XU
f

Pr(xO
f , XU

f , XM
f ). (11)

Then by (10):

Pr(xO
f , XMt

f = xVt

f ) =
∑

XM
f

,XU
f

Pr(xVt

f |XMt

f , Ht)Pr(xO
f , XU

f , XMt

f ),

which is equivalent to a transfer of evidence from the
victims to the assigned missing individuals. Finally:

Pr(xV , xO|Ht) =
∏

f∈Ft

Pr(xO
f , XMt

f = xVt

f )
∏

f∈F\Ft

Pr(xO
f )

=
∏

f∈Ft

Pr(xO
f , XMt

f = xVt

f )

Pr(xO
f )

=
∏

f∈Ft

Pr(XMt

f = xVt

f |xO
f ), (12)

where the second line is obtained by dividing for
∏

f∈F Pr(xO
f ), a quantity independent of Ht.

As a result the likelihood is equal to the probability
to observe each victim as if they would be the miss-
ing person designated by the Ht conditionally to the
familial evidence.

3.1 Victims belonging to only one population

An intriguing formulation of the likelihood for Ht is
possible if all missing persons belong to the same ge-
netic population. In such case, (12) can be divided
by the probability to observe all the recovered victims
as belonging to the considered genetic population a
constant not depending on Ht:

Pr(xV , xO|Ht) ∝

∏

f∈Ft

Pr(XMt

f = xVt

f , xO
f )

Pr(xO
f )

∏

m∈Mt
f
:Ht

m=v Pr(XMt
m = xVt

v )

=
∏

f∈Ft

LRt(f). (13)

This representation shows how the likelihood for Ht

can be expressed by a number of likelihood ratios
LRt(f), f ∈ F t, each one obtainable by a kinship
analysis. More specifically, each LRt(f) is the ratio
between the probability of the familial observed evi-
dence if the missing individuals are the assigned vic-
tims and the probability of the evidence obtained eval-
uated according to the hypothesis that the recovered
victims are generic individuals belonging to the rel-
evant genetic population. Both (12) and (13) allow
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for computations at familial level, paving the way to
parallel calculus strategies.

Furthermore, (13) points out that only families with
LR 6= 1, are informative, and regards as useless those
structurally unable to provide information to the hy-
pothesis useless, since they always has LR = 1. In
this latter category are families which have not claimed
their missing person(s) yet. The case is formally rep-
resented by a missing individual searched by an empty
family so that, if a victim is assigned, the correspond-
ing LR is equal to one. This consideration has two
important consequences. First, if some victims are
not assigned for identification by a certain Ht, we can
restrict the likelihood computation only to the poten-
tially informative families and the associated missing
individuals, respectively defined by:

F∗ = {f ∈ F : n(Mf ) > 1 or Of 6= ∅}

M∗ = {m ∈ Mf : F ∈ F∗},

being the complementary set of the non informative
families defined by:

F+ = {f ∈ F : n(Mf ) = 1 and Of = ∅}

M+ = {m ∈ Mf : F ∈ F+}.

It follows that, for a given Ht, not all the families
contribute to the likelihood (13) but only those in the
set F t ∩ F∗, so that the likelihood can be written as:

Pr(xV , xO|Ht) ∝
∏

f∈Ft∩F∗

LRt(f). (14)

The second important consequence is that many con-
figurations differ only for the victims allocated in F+,
so they have the same likelihood.

Formally, if Ht 6= Hs but F t ∩ F∗ = Fs ∩ F∗, then

Pr(xV , xO|Ht) = Pr(xV , xO|Hs). (15)

Since the goal of the analysis is to provide inference on
the identification hypotheses concerning the members
of the set M∗, it is convenient to partition each Ht

accordingly. So we have Ht = [Ht
∗, H

t
+], being Ht

∗ =
{Ht

m : m ∈ M∗} of real interest and Ht
+ = {Ht

m : m ∈
M+} a nuisance random vector.

If, for t 6= s, (15) holds, these configurations belong to
the same inferential class. It is computationally con-
venient to evaluate the classes’ cardinality since infer-
ring on the hypotheses concerning the M∗ members,
the contribution of each class is simply equal to its
cardinality times the members’ likelihood.

If two configurations are in the same class, they have
Ht

∗ = Hs
∗ and Ht

+ 6= Hs
+. So, how many members

are in the class depends on the number of ways H+

can appear, i.e. on the possible assortments of the
victims allocated among the M+ members. If it is
the number of victims assigned by Ht

∗, then the class
at which the t-th configuration belongs has cardinality
Dn(M+),n(V)−it . To produce inference on hypotheses
concerning the members of M∗, it is convenient to de-
fine a new hypothesis random variable, H∗, concern-
ing exclusively the members of M∗. Let Ht

∗ a generic
configuration characterizing an inferential equivalent
class, formally defined by:

Ht
∗ = {Ht

m : m ∈ M∗} where, Ht
s =? or ∀g 6= s Ht

g 6= Ht
s.

If a uniform prior is posed on the Ht’, i.e. no in-
formation is assumed on the identity of the recovered
victims, inference on Ht

∗ can be obtained by marginal-
izing with respect to Ht

+, thus obtaining:

Pr(Ht
∗|x

O, xV ) ∝ Dn(M+),n(V)−it

∏

f∈Ft∩F∗

LRt(f).

(16)
The cardinality of H∗ can be evaluated defining
i ∈ I as the number of possible victims al-
located to the M∗, with I = {max(0, n(V) −
n(M+)), . . . , min(n(M∗), n(V))}. The number of
possible equivalent classes for each i is Cn(V),i ·
Cn(M∗),i · Pi, and:

n(H∗) =
∑

i∈I

Cn(V),i · Cn(M∗),i · Pi. (17)

The saving in computational efforts can be evaluated
case-by-case comparing (17) with (1).

A noticeable case arises if, in a familial group, the re-
lationships are known but no genetic evidence is avail-
able and more than one missing individual perished in
the MFI. If a certain Ht assigns more than one vic-
tim to the family, LR 6= 1, since the probability to
observe the victims, evaluated assuming the familial
relationship, differs if the assumption of independence
holds.

This makes it possible to identify victims also in these
extreme circumstances.

3.2 Victims belonging to more populations

When the missing individuals belong to more than one
population, inference requires more efforts. Actually,
the probability for the victims to simply belong to
the specified genetic population, introduced to achieve
(13) now varies from one configuration to another, de-
pending on which genetic population the missing per-
sons, who have victims assigned, belong to.
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To take account of the population variety, introduce
the set K = {1, . . . , k}, containing the population la-
bels and let Π = {πi : i = 1, . . . , k} be the proportions
of missing individuals belonging to each population.
Also, let Gm = i ∈ K the indicator random variable
assigning the m-th missing person to the i-th genetic
population, being G = {Gm : m ∈ M}.

Now we re-derive the likelihood from the first line of
(12), splitting the product into informative and non
informative families:

Pr(xV , xO|Ht) ∝
∏

f∈Ft∩F∗

Pr(xO
f , XMt

f = xVt

f )

Pr(xO
f )

·
∏

f∈Ft∩F+

Pr(XMt

f = xVt

f ).(18)

If we multiply and divide (18) by the probability to
observe the victims, arranged according to F∗ and F+,
we get the likelihood expression:

Pr(xV , xO|Ht) ∝
∏

f∈Ft∩F∗

LRt(f)
∏

m∈M∗

f
:Ht

m=v

Pr(XMt
m = xVt

v )

·
∏

f∈Ft∩F+

∏

m∈M+
f

:Ht
m=v

Pr(XMt
m = xVt

v ), (19)

where the likelihood ratios for the informative families
in (16) still appear but the probability to observe the
victims now depends on the population of the families
to which they are assigned by Ht.

Now consider the marginalization procedure required
to obtain inference about H∗. Similarly to the pre-
vious case, the probability to observe the victims as-
signed to the members of M∗

f does not vary; on the

opposite, depending on the elements of M+ to which
the nt = n(V) − it victims are allotted, this probabil-
ity varies according to the population the unclaimed
missing individuals belong to. This ruins the idea of
inferential equivalent classes but it is still convenient
to express the likelihood for each Ht

∗, by a single ex-
pression. This is obtainable considering all the possible
ways the nt unclaimed victims can be allocated among
the populations and the joint assignment probability
G, finally providing the required marginalization.

To achieve this result, first consider the number of un-
claimed missing individuals in each population,

N+
i = Nπi −

∑

f∈M∗

f

∑

m∈f

I{i}(Gm), ∀i ∈ K, (20)

and their total number,

N+ =
∑

i∈K

N+
i , (21)

two quantities not depending on the configurations.

Once an Ht
∗ has assigned it victims among the M∗

missing individuals, the remaining nt have potentially
(nt)k ways to belong to the k different populations
even if not all the population assignments are allowed,
since, ∀i,

∑

f∈M+
f

∑

m∈f I{i}(Gm) ≤ N+
i .

For every arbitrary order of the nt victims, the joint
probability of the G indicator random variables de-
pends on the N+

i , i = 1, . . . , k and on N+; moreover
if G is decomposed accordingly to the telescopic rule,
and g−m indicates the population assigned to the first
m− 1 missing persons, it can be shown that, for every
Ht belonging to a specific equivalent class:

Pr(G) =
∏

m∈M+
f

:Ht
m=v

Pr(Gm|G−m = g−m)

=

∏k

i=1 DN
+
i

,nt
i

DN+,nt

, (22)

where, according to the order of the set M+, g−m

indicates the values assumed by ∧nt

m=m+1Gm random
variables, being nt

i the victims assigned by the Ht to
the i-th population. If, again, on the Ht a uniform
prior is posed, inference on Ht

∗ can finally be derived
from:

Pr(Ht
∗|x

V , xO) ∝

Pr(G)
∏

f∈Ft∩F∗

LRt(f)
∏

m∈M∗

f
:Ht

m=v

Pr(XMt
m = xVt

v )

·
∑

G1···Gnt

[(
∏

m∈M+
f

:Ht
m=v

Pr(XMt
m = xV

v |Gm))],

which represents the generalization of (16) to k popu-
lations.

3.3 Some computational remarks

To make inference on H , two computational issues
must be efficiently addressed: the evaluation of the
likelihood for each family with one or more victims as-
signed by a configuration, and how to get the states of
the variable H .

The familial likelihood evaluation is performed, ac-
cording to (12) by a single propagation in an Allele
Bayesian Network (Lauritzen and Sheehan (2003)),
which efficiently derives, for each locus and family, the
probability distribution of the missing persons, condi-
tionally to xO

f . Then it is computationally inexpen-
sive to evaluate the probability of every possible set
of recovered victims attempting to be identified as the
missing person of a certain family. If the segregation
model (2) is used, some of the victims may have prob-
ability zero to be identified as some of the claimed
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missing persons: this could happen if the donors and
the missing person are on a direct lineage or if three or
more of the missing person’s siblings provide their ge-
netic profiles. As a result we get, for each family, a list
of victims to be assigned to the Ht configurations for
which (8) results strictly greater than zero. Following
this consideration a simple but efficient procedure to
produce the relevant H states has been implemented.

Consider the families and the associated lists of victims
potentially identifiable as their missing members. As-
sume initially that just one victim is identified (i = 1).
The H states’ list is straightforward and the number
of states is equal to the sum of the different victims in
each family’s lists.

To find the configuration with two or more victims
assigned, the following pseudo code can be used.

1) i = i + 1;

2) consider a configuration found in the previous vic-
tim assignment procedure and remove the vic-
tim(s) already assigned from the lists of victims’
candidates in the other families;

3) produce as many as possible new states of H with
an additional victim assigned and taken from the
families’ lists of victims obtained in the previ-
ous step, avoiding multiple victims imputations
among and inside the families;

4) repeat the process from 2) until all the configura-
tions found in the victim assignment procedure
with i − 1 victim are considered;

5) repeat the process from 1) until the maximum
number of assignable victims is reached, i.e. when
i + 1 > min(n(M∗), n(V )) .

4 A simulation-based example

In this section we display the results of an identifica-
tion process carried on 14 individuals belonging to 10
families and disappeared in a simulated MFI.

To make it possible to display the results in details,
the example proposes a small number of individuals
and families, but many of the difficulties which typi-
cally arise in the field are included. Individuals in the
families are classified as parents (P) and siblings (S).

Data are simulated to have the opportunity to check
the results, since the victims’ identity is known. An-
cestors’ genotypes are simulated from a genetic pop-
ulation according to (3); missing persons’ profiles are
sampled and posed in the victims’ data set. To pro-
duce the result we made use of a Bayesian network.

A graph representation for a family with two parents
and three siblings is in Fig. 1.

XP
1 XP

2

XS
1 XS

2 XS
3

�� ''OOOOOOOOO

++WWWWWWWWWWWWWWWWWWWW

wwooooooooo

�� ''OOOOOOOOO

Figure 1: Graph representation of a two parents - three
siblings family

Information concerning the donors, the missing per-
sons and the corresponding victims in the example are
detailed in Tab. 1 for each family.

Table 1: Set of individuals relevant for the analysis:
Complete information case

f Of Mf Vf

1 S1, S2 P1 V1

2 −−− P1, S1 V2,V3

3 S1 S2 V4

4 S1 S2 V5

5 S1 S2 V6

6 S1 S2 V7

7 P1, S1 P2 V8

8 −−− S1, S2, S3 V9,V10,V11

9 −−− S1, S2 V12,V13

10 P1 S1 V14

In the example, families 1, 7 and 10, search for only
one missing person posed in direct lineage with the
claiming relatives; in families 3, 4, 5, and 6 one sibling
is looking for another sibling; in the remaining three
families 2, 8 and 9, the search considers more than one
missing person in each family, but no donor is avail-
able. Starting from uninformative prior probabilities
on every possible configuration H , the exercise evalu-
ates the identification probabilities comparing results
obtained by the proposed model, called the Full Model,
and those obtained by two simpler models, the Victim

and the Family Models.

The Full Model is represented in Fig. 2 by a graph,
embedding all the conditional independence assertions
implied in (6) and (7) and all the relations among miss-
ing individuals, their relatives, the victims and the
identification hypothesis. In the boxes, the families’
members and their relations, made explicit in Fig. 1,
are hidden, and only the relevant missing individuals’
unobserved genotypes are considered.

The Victim model, Fig. (3), restricts the victim set to
one victim only, attempting the identification through
a search among the missing persons. This model es-
sentially represents the standard practice consisting in
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Figure 2: Graph representation of the Full Model

the attempt to identify a victim at a time even if all
the possible missing individuals are contemporary con-
sidered as in Cavallini and Corradi (2006).

F1 F2 . . . Fn(F)

XM
1 XM

2
. . . XM

n(M)

XV
v

H
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??
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Figure 3: Graph representation of the Victim Model

The Family model, Fig. (4), considers a family trying
to find, among the victims, their lost members. This
approach is similar to the model proposed by Brenner
(2006).

Ff

Xm

XV
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2
. . . XV

n(V)

H
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Figure 4: Graph representation of the Family model

In Tab. 2, for each missing person, we provide the
posterior probabilities that each model assigns to the
victim who actually is the missing individual.

Note that, every time the observed relatives and the
claimed missing persons are in a direct lineage, all the
models provide a very high posterior probability of

Table 2: Probabilities of correct identification - Complete
information case

Models
Family Full Family Victim

1 P1 1 0.99 0.99
2 P1 1 0.99 0.28

S1 1 0.99 0.28
3 S2 1 0.99 0.99
4 P1 1 0.88 0.85
5 S2 1 0.96 0.02
6 S2 1 0.99 0.99
7 P2 1 1 1

S1 1 0.99 0.42
8 S2 1 0.99 0.42

S3 1 0.99 0.42
9 S1 1 0.02 0.24

S2 1 0.02 0.24
10 S1 1 1 1

correct identification. This happens because the first
Mendel law produces a large number of exclusions, as-
signing zero probability to all the victims incompat-
ible with the families’ donors. The same is not true
if we consider families 3, 4, 5, 6 where a member of
the family is looking for a sibling: For instance, the
Victim Model does not succeed in the identification of
V6 as the missing person in the 5-th family: this hap-
pens because V6 has a very common genetic profile, so
that only consideration of the other victims allows to
get a high probability of correct identification. Iden-
tification is also difficult for the Victim Model when
only the family structure is known as it happens for
families 2, 8 and 9. Here the possibility to find the
corresponding victims relies on considering more than
one victim at a time, so that, when the correct victims
are introduced in the familial pedigree, they identify
themselves exploiting the familial relationships. On
the opposite, using the Family model, the possibility to
identify simultaneously groups of victims as the miss-
ing individuals in each family, allows to find the bodies
corresponding to all the missing individuals in families
2 and 8. The limit of the Family model arises when it
attempts to find the victims corresponding to missing
persons in the ninth family. In this case, V12 and V13,
actually belonging to the family, receive a small iden-
tification probability since other two victims, V2 and
V3, are more strictly related. In this case only the Full

model, jointly considering all the families, provides the
correct answer.

To simulate the possibility that some pieces of infor-
mation are not available yet, as it happens at an early
stage of the identification process, we hide some of re-
covered victims and of the claimed missing persons as
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it is shown in Tab. 3. The results obtained from the
competition of the three models are in Tab. 4.

Table 3: Set of individuals relevant for the analysis: In-
complete information case

f Of Mf V
1 S1S2 P1 V1

2 −−− P1, S1 V2, V3

3 S1 S2 V4

4 NA NA V5

5 S1 S2 V6

6 S1 S2 V7

7 NA NA NA
8 −−− S1, S2, S3 V9,V10,V11

9 −−− S1, S2 V12,V13

10 P1 S1 NA

Table 4: Probabilities of correct identification - Incom-
plete information case

Models
Family Full Family Victim

1 P1 1 0.99 0.99
2 P1 1 0.99 0.22

S1 1 0.99 0.22
3 S2 1 0.99 0.99
5 S2 0.11 0.06 0.01
6 S2 1 0.99 0.99

S1 1 0.99 0.33
8 S2 1 0.99 0.33

S3 1 0.99 0.33
9 S1 1 0.02 0.22

S2 1 0.02 0.22
10 S1 0.99 0.99 −

When the information is incomplete, finding the vic-
tim who is the missing person belonging to the fifth
family becomes difficult also making use of the Family

and Full Models. This happens because the very com-
mon profile of V6 provides support to the hypotheses
he/she is one of the missing persons whose correspond-
ing victim has not been not recovered yet.

5 Conclusions

In this paper we proposed a new model to identify vic-
tims of a Mass Fatality Incident. The starting point
is the representation of an identification hypothesis
comprising all the possible ways the recovered victims
can be identified among the claimed missing persons.
Then, inference is derived conditionally to all the ge-
netic evidence concerning the claiming families, the
ethnicity of the missing persons and the genetic pro-

files of the recovered victims. The identification of the
victims of a MFI making use of DNA evidence is a
task whose level of difficulty varies according to the
available familial information and the sources of un-
certainty to be taken into account. Identifying more
than one familial group, whose familial relationships
are the only available evidence, is the most difficult
task which can be safely accomplished only if a large
fraction of their victims are recovered.

To make as short as possible the list of victims eligi-
ble for the identification of each missing person, some
further characteristics of these latter need to be intro-
duced, the most obvious is the missing persons’ gen-
der but it proves useful to consider some Y chromo-
some STR loci and Mt-DNA fraction used for iden-
tification. This strategy obviously does not apply if
familial donors and the missing person are not on the
paternal or maternal lineage or if the familial evidence
is not available at all.
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