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Abstract

Feature selection for supervised learning can
be greatly improved by making use of the fact
that features often come in classes. For exam-
ple, in gene expression data, the genes which
serve as features may be divided into classes
based on their membership in gene families or
pathways. When labeling words with senses
for word sense disambiguation, features fall
into classes including adjacent words, their
parts of speech, and the topic and venue of
the document the word is in. We present
a streamwise feature selection method that
allows dynamic generation and selection of
features, while taking advantage of the dif-
ferent feature classes, and the fact that they
are of different sizes and have different (but
unknown) fractions of good features. Ex-
perimental results show that our approach
provides significant improvement in perfor-
mance and is computationally less expensive
than comparable “batch” methods that do
not take advantage of the feature classes and
expect all features to be known in advance.

1 Introduction

For many regression or prediction tasks only a small
fraction of a vast number of candidate features are pre-
dictive, and good feature selection methods can give
large improvements in predictive accuracy (Guyon,
2003). Many methods are used to select which fea-
tures to include in a linear or logistic regression, gen-
erally using either an ℓ0 or ℓ1 penalty on the feature
weights to force some of them to zero. Using a ℓ0
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penalty (unlike ℓ1 penalization) is, in general, non-
convex and so requires the use of search methods such
as stepwise, stagewise, or streamwise regression. How-
ever, ℓ0 methods have many advantages. (Lin et al.,
2008) show that ℓ1 never outperforms ℓ0 by more than
a constant factor and in some cases the ℓ1 penalty is
infinitely worse than the ℓ0 penalty and argue that an
“approximate solution to the right problem” is gen-
erally better than “exact solution to the wrong prob-
lem”. Unlike ℓ1 methods, ℓ0 penalized methods do not
require the features to have a natural scale, and they
lend themselves to the use of information theory (e.g.
AIC, BIC) for selecting the magnitude of the regular-
ization penalty, thus avoiding use of cross validation
for selecting the penalty. We show below how this
can be used to particular advantage when features can
be naturally divided into many classes where different
penalties are appropriate for the different classes.

Feature selection approaches generally assume that all
features are in a single equivalence class. This ignores
the key, and useful, fact that very often features are of
different type (Dhillon et al., 2008). For example, in
gene expression data, the genes which serve as features
may be divided into classes based on their membership
in gene families or pathways. When disambiguating
words, one can use adjacent words, the parts of speech
of adjacent words, and the topic of the document the
word is in as feature classes.

Feature classes1 can also be viewed as a special case
of meta - features (E. Krupka, 2008; Lee et al., 2007)
where the feature has only one meta attribute, such as
gene classes or topic of the word etc. in our setting.

More generically, starting from any set of features, one
can generate new classes of features by using projec-
tions such as principle components analysis (PCA) or
non-negative matrix factorization (NNMF), transfor-
mations such as log or square root, and interactions
(products of features). Further “synthetic” feature
classes can be created by finding clusters (e.g., using

1Also known as “Group” structure (Yuan & Lin, 2006).
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k-means) in the feature space as we do in this paper.

In all these cases, the fact that features can be grouped
into classes can be used to build better feature selec-
tion methods. The basic intuition is that some feature
classes will have a higher fraction of useful features
than others, and that once one believes that a feature
class is “good”, features should be preferentially drawn
from that class. Many state-of-the-art learning meth-
ods like Group Lasso/Multiple Kernel Learning (Yuan
& Lin, 2006) also make the assumption that some fea-
ture classes are inherently “good” and hence enforce
sparsity at the level of “Groups” using a ℓ1/ℓ2 penalty.

In this paper, we use Streamwise Feature Selection
(SFS) (Zhou et al., 2006), a greedy algorithm that at
each iteration selects one feature to test for potential
addition to the model. If the feature is found to signifi-
cantly improve the model accuracy (in a way we make
precise below), it is added, otherwise it is discarded
and not considered again. Because streamwise feature
selection allows us to dynamically decide which fea-
ture to test at each point, it is ideally suited to take
advantage of feature classes; classes which have pro-
duced more beneficial features in the past are more
likely to do so in the future, and so are tapped first for
candidate features. Only after they are exhausted are
less productive feature classes examined.

Our contribution is to extend Streamwise Feature
Selection to the case where there are multiple fea-
ture classes. When good features are unevenly dis-
tributed across the feature classes, as they generally
are in practice, our new Multiple Streamwise Fea-
ture Selection (MSFS) algorithm gives superior per-
formance over standard Streamwise Feature Selection
(SFS) and widely used batch feature selection methods
such as stepwise regression, lasso [ℓ1 penalty] (Efron
et al., 2004), elastic net [ℓ1 + ℓ2 penalty] (Zou &
Hastie, 2005), SVM with polynomial kernel and Group
Lasso (Yuan & Lin, 2006).

The rest of the paper is organized as follows. We
first introduce streamwise feature selection, on which
this work is based. Details of the design and imple-
mentation of Multiple Streamwise Feature Selection
(MSFS) are then described in Section 3. Finally, we
present experiments showing the benefit of using mul-
tiple streams on real data, and conclude.

2 Background on Streamwise Feature
Selection

Our approach is based on Streamwise Feature Selec-
tion, in which features are considered sequentially for
addition to a linear model y = β0+

∑
j βjxj . Each fea-

ture is evaluated once, and the reduction in training

error resulting from adding the feature is compared
against an adaptively adjusted threshold. This con-
trasts with batch learning methods such as SVMs, neu-
ral nets and LARS which require having all features in
advance (and which do not account for feature classes).
It also contrasts with stepwise regression, in which all
features are considered at each iteration and the best
feature is added. By doing sequential feature selection,
we can dynamically choose which feature to consider
at each point based on what has worked so far, and
we can automatically adjust the threshold for feature
inclusion. This allows us, among other benefits, to
have streams of features that are dynamically gener-
ated, such as interactions between those features which
have been already added to the model. (Each time a
feature is selected, products of it and other features
are added to the candidate feature stream.)

A variety of penalties have been used on weights in
a linear or logistic regression setting to avoid overfit-
ting. Ridge regression (a ℓ2 penalty on the weights β),
has the advantage of having a closed form solution, but
does not do feature selection and thus performs poorly
when there are vastly more spurious than true features.
Lasso regression (a ℓ1 penalty on the weights) is con-
vex, and permits a relatively efficient batch optimiza-
tion algorithm to be used, but requires cross validation
to determine the best penalty, and does not scale to
the size of feature sets we are interested in addressing.
We thus use ℓ0 penalized regression, which requires a
search (stepwise or streamwise) over the features to be
added. Although finding an optimal solution is in the-
ory NP hard, good solutions are almost always found
by very simple search strategies (Lin et al., 2008).
Among Stepwise and Streamwise regression, we chose
Streamwise feature selection (SFS) as it has many at-
tractive properties which we elucidate throughout the
paper.

A variety of different penalties λ have been used when
minimizing

∑
i(yi − β · xi)

2/2σ2 + λ |β|0. (Note
that |β|0 is just the count of how many features are
included in the model.) The AIC penalty uses λ = 2,
BIC uses λ = log(n) (where n is the total number of
observations) and is optimal if there are far more ob-
servations than features, and RIC (also called Bonfer-
roni) (Foster & George, 1994) uses a penalty of 2log(p)
(where p is the total number of features) and is opti-
mal if only very few features are expected to be added
(otherwise it is generally overly conservative). All of
these fixed-penalty methods fail (either due to under
or overfitting) in the limit of infinite numbers of fea-
tures considered, and none lend themselves to taking
advantage of multiple feature classes.

SFS either using alpha-investing as presented here, or
in its information theoretic form (Zhou et al., 2006),
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dynamically adjusts the penalty for adding a new fea-
ture by changing the threshold on the error reduction
required for adding a new feature.

The alpha-investing algorithm is given in Algorithm
1. The threshold, α, corresponds to the probability of
including a spurious feature (one which increases error
on a hypothetical test set) at step i. It is adjusted
using the wealth, w, which represents the current ac-
ceptable number of future false positives. Wealth is
increased when a feature is added to the model (pre-
sumably correctly, and hence permitting more future
false positives without increasing the overall false dis-
covery rate). Wealth is decreased when a feature is not
added to the model, in order to save enough wealth to
add future features.

More precisely, a feature is added to the model if its
p-value is less than α. The p-value is the probabil-
ity that a feature coefficient would be judged to be
non-zero when it is in fact zero. It is computed as
e−(Error{model}∪{x}−Errormodel)/2σ2

, where Errormodel

is the root mean squared error on the training set us-
ing the features in the set model, Error{model}∪{x} is
the error after adding the feature x, and the variance
σ2 is estimated as Errormodel/n.

Algorithm 1 SFS using Alpha-investing

1: w = w0; // initial probability of false positives.
2: model = {}; // initially no features in model
3: i = 1; // index of features
4: while features remain do
5: x = get new feature(); // generate next feature
6: α = w/2i;
7: // is p-value of new feature below threshold?
8: if (get p value(x, model) ≤ α) then
9: // accept

10: add feature(x,model); // add x to the model
11: w := w + α∆ − α;
12: else
13: // otherwise, reject
14: w := w − α; // reduce wealth
15: end if
16: i := i + 1;
17: end while

The idea of α-investing is to adaptively control the
threshold for adding features so that when new (prob-
ably predictive) features are added to the model, one
“invests” α increasing the wealth, raising the thresh-
old, and allowing a slightly higher future chance of
incorrect inclusion of features. We increase wealth by
α∆ − α. Note that when α is very small, this increase
amount is roughly equivalent to α∆. Each time a fea-
ture is tested and found not to be significant, wealth
is “spent”, reducing the threshold so as to keep the
guarantee of not adding more than a target fraction of
spurious features. There are two user-adjustable pa-
rameters, α∆ and w0, which can be selected to control

the false discovery rate; we always set both of them to
0.52.

Streamwise Feature Selection, and the novel extension
to multiple streams presented below, provides guaran-
teed bounds on the ratio of E(N), the expected num-
ber of spurious features included in the model to E(M)
the expected number of beneficial features included in
the model. This bound on E(N)/E(M) is very similar
to bounding the false discovery rate (FDR), which is
E(N/M) (Benjamini & Hochberg, 1995).

Theorem 1: Let Mi be the number of correct (ben-
eficial) features included in the model, and let Ni be
the number of spurious features included in the model
and let wi be the wealth, at iteration i, also let α∆ be
a user selected parameter. Then: E(N) < (α∆E(M) +
w0)/(1 − α∆)
The proof for multiple streams follows trivially from
the proof for the single stream case presented in (Zhou
et al., 2005).
Proof: The proof relies on the fact that

Si ≡ (1 − α∆)Ni − α∆Mi + wi

is a super-martingale i.e. Si is, in expectation, non increas-
ing in each iteration: E(Si) ≤ Si−1. Thus

E(Si) ≤ S0

but since we start out with Ni = 0 and Mi =0

E((1 − α∆)Ni − α∆Mi + wi) ≤ w0

Also, since wi > 0 (by assumption), therefore

E((1− α∆)Ni − α∆Mi) < w0

The proof that Si is a super-martingale follows from the
cases when the feature is or not added to the true and
estimated model. �

The result can we re-written as:

E(Ni)/(E(Mi) + w0/α∆) < α∆/(1 − α∆)

For the case that we use in all our experiments, α∆ =
w0 = 1/2 << E(M), this reduces to E(N) < E(M),
or simply that we promise to add more good features
than bad ones. Note that “spurious” and “benefi-
cial” indicate whether adding a features to the current
model will decrease or increase accuracy on a (hypo-
thetical) test set.

3 Multiple Streamwise Feature
Selection (MSFS)

Streamwise feature selection has a natural extension
to multiple streams3. Each set of features (feature

2We found empirically that changing the values of these
parameters has little impact on the results.

3The terms “streams” and “feature classes” are used
interchangeably throughout this paper.
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class) is taken to be its own stream, with its own in-
dex, keeping track of how many features from that
stream have been tested, and its own wealth, measur-
ing how successful the stream has been in producing
useful features. Thus, a stream gains or loses wealth
based only on how successful it has been in producing
beneficial features. The question of which feature to
select next for testing is easily resolved: at each iter-
ation, the next feature is taken from the stream with
the most permissive threshold, i.e., from the feature
class with the highest probability of producing a ben-
eficial feature, i.e. the feature class having maximum
wealth.

The MSFS algorithm is given in Algorithm 2. It is
quite similar to the simple SFS algorithm presented
above, but keeps track of wealth and features tested
separately for each stream, j. In order to continue to
guarantee against overfitting, each of the k different
feature streams is only given w0/k initial wealth. The
function get new feature() can just get the next fea-
ture in the set (the ijth feature in stream j) or, as
discussed below, it can dynamically generate new fea-
tures. As always, we set the constants α∆ and w0 to
0.5.

Algorithm 2 MSFS using Alpha-investing

1: for j = 1 to k do
2: wj = w0/k; // initial wealth for j-th stream
3: ij = 1; // index of features for j-th stream
4: end for
5: model = {}; // initially no features in model
6: while features remain do
7: // select next stream
8: j = argmaxj(wj/ij); // over all streams with re-

maining features
9: x = get new feature(j, ij); // generate new feature

on stream j
10: α = wj/2ij ;
11: // is p-value of new feature below threshold?
12: if (get p value(x, model) ≤ α) then
13: // accept
14: add feature(x,model); // add x to the model
15: wj := wj + α∆ − α; // increase wealth
16: else
17: // otherwise, reject
18: wj := wj − α; // decrease wealth
19: end if
20: ij := ij + 1;
21: end while

If a fraction 1/(mj − 1) of the features are added to
stream j, each additional feature changes the wealth
wj by α∆/mj − w/2i, and wj will approach α∆/mj.
When good features are concentrated in one stream,
then that stream will soon have the highest wealth,
and features will be drawn preferentially from that
stream. If there are k (equally sized) streams with
all good features in a single stream, then one will only
need to consider slightly more than a fraction 1/k of

the features. (Very few features in the other streams
need to be considered.) The wealth in the good stream
approaches α∆/(p/kq) (where q is the number of true
features and p is the total number of features), rather
than the value of α∆/(p/q) in the single stream set-
ting, thus allowing more features with marginal statis-
tical significance to be retrieved from the good stream.
Similar, but less strong benefits occur in the more re-
alistic case where the streams simply contain different
densities of good features.

Since we can order the features within a stream,
streams such as PCA components (arranged from
largest to smallest eigenvalue) will quickly be recog-
nized as good. The stream with the original features
will learn a threshold that is more stringent than the
PCA stream, but much more permissive than the p2/2
interaction terms, which is likely to be explored last.

In the worst case, when the good features are randomly
dispersed across the streams, features are drawn se-
quentially from each of the feature classes (streams),
all of which have success at the same rate, and the re-
sulting penalty (remembering that each stream starts
out with w0/k of the wealth) looks asymptotically ex-
actly like running a single stream. Having 1/k of the
wealth in each stream will reduce the chance of finding
features very early in the streams (i.e., among the first
few features tried), but the effect of the initial allo-
cation of wealth is rapidly dissipated, and the wealth
approaches an asymptote determined by α∆ and by
the fraction of features found to be significant.

It is not easy to get comparable benefits from group-
ing features into classes using batch feature selection
algorithms, whether they be stepwise regression or
LARS/elastic net. Since all features are considered
simultaneously in batch algorithms, one has to “pay
the penalty” for looking at all of them when avoiding
overfitting. This difficulty can be overcome by apply-
ing a different weight to each of the groups of variables,
but each of these weights would then have to be chosen
via cross validation–basically requiring searching for a
vector of penalties in a space of ℜk.

3.1 Interleaving Feature Generation and
Selection

The “streamwise” view supports flexible ordering on
the generation and testing of features. Features can be
generated dynamically based on which features have
already been added to the model.

Note that the theory provided above is independent
of the feature generation scheme used. All that is re-
quired is a method of generating features that does not
look at the y values, and an estimation package which
given a proposed feature for addition to the model re-
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turns a p-value for the corresponding coefficient or,
more generally, the change in likelihood of the model
resulting from adding the feature. One can also test
the same feature more than once, as we do in this pa-
per (by using multiple passes of Streamwise Feature
Selection).

New features can be generated in many ways. Each
way produces a new feature class for use in MSFS.
For example, in addition to the p original features, p2

pairwise interaction terms can be formed by multiply-
ing all p2 pairs of features together. In practice, we
generate three interaction streams: (1) interactions of
features that have already been selected with them-
selves (2) interactions of the selected features with the
original features, and (3) all interactions of the original
features. This requires dynamic generation of the fea-
ture stream, since the interaction terms (1) and (2) can
not be specified in advance, as they depend on which
features have already been selected. As shown in Sec-
tion 4, the dynamic feature generation and selection
schemes, namely (1) and (2) above yield significantly
more accurate models on real data sets compared to
the approaches which do not use these dynamic inter-
actions.

Interaction terms are one example of a more general
class of generated features, including features formed
from transformations of the original features (square
root, log, etc.), or combinations of them including,
for instance, PCA. Such generated features frequently
lead to substantially better predictive models, but it
is not obvious which of the transformations will be
most useful. By putting each into its own stream, and
using MSFS, one can try many transformations at rel-
atively little cost. In contrast, in a conventional batch
method, one would need to look at all the features in
all the streams, at significant computational cost and,
worse, at the cost of statistical power of needing to use
a larger penalty to control against overfitting. Includ-
ing separate feature classes for algebraic transforma-
tions and PCAs of original features, gives improvement
in predictive power as we elucidate in Section 4.

4 Experimental Results

In this section, we evaluate the MSFS algorithm
on real data to gauge its effectiveness. We ran it
on a set of ten word sense disambiguation (WSD)
verb datasets (Chen & Palmer, 2005) and two NIPS
datasets (Guyon, 2003). The WSD datasets already
had feature classes, as described below. In contrast,
the NIPS datasets did not come with feature classes
identified. So, we created synthetic feature classes by
grouping (using k-means clustering) the features, by
taking the top 50 PCAs, and by computing the square

of each of the features in the original set. In all the
experiments we compare MSFS with standard stream-
wise feature selection (SFS), stepwise feature selection
with an RIC penalty (also called a “Bonferroni correc-
tion”), Lasso, Elastic Nets (EN), SVM with cross vali-
dated polynomial kernel4 and with Group Lasso/ Mul-
tiple Kernel Learning (GL/MKL), which minimizes a
mixed ℓ1/ℓ2 norm. GL/MKL makes use of feature
classes but induces sparsity only at the level of feature
classes and not at the level of individual features.

Besides the accuracies, we also compare the running
times of the above algorithms. All the experiments
were run on a 3 GHz computer with 8 GB of RAM.

4.1 Evaluation on Word Sense
Disambiguation (WSD) Datasets

We chose a set of 10 ambiguous verbs with a rich set
of contextual features (Chen & Palmer, 2005) for our
first evaluation. The data consists of hundreds of ob-
servations of Noun-Noun collocation, Noun-adjective-
preposition-verb (syntactic relations in a sentence)
and Noun-Noun combinations (in a sentence or doc-
ument). Typical feature classes include: tp (topic of
the document), pos (part of speech of the verb), word-
1(previous word), sub (the subject of the verb), dobj
(the direct object of the verb) etc. The number of ob-
servations ranged from 100−350; there were a total of
1000− 10000 features which were divided into 40− 45
feature classes.

One stream was generated for each different feature
class, so the number of streams is the same as the
number of feature classes. Some streams have exactly
one feature, while others have thousands of features.
For MSFS this is a natural setting but SFS does not
use feature classes so, for SFS we simply collapse all
the multiple streams into a single stream, with streams
having the fewest features placed at the front. This
ordering helps significantly since streams with small
number of predictive features should be presented to
the streamwise selection algorithm first to avoid being
overlooked as the wealth decreases over time. Then, in
the end we have a stream (feature class) for dynamic
interactions of the selected features with themselves
and with all other features, however this stream (fea-
ture class) only gets created dynamically as and when
new features are added into the model. We randomly
permute the features within each feature class so that
no method gets an unfair advantage by exploiting the
ordering of features. (In practice, SFS or MSFS can
sometimes gain significant advantage by, for example
ordering the features by their variance or by the frac-

4Standard SVMs do not do feature selection but are just
included for completeness of results.
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tion of times they are nonzero.)

For Group Lasso/Multiple Kernel Learning, we used a
set of 13 candidate kernels, consisting of 10 Gaussian
Kernels (with bandwidths σ = 0.5 − 20) and 3 poly-
nomial kernels (with degree 1-3) for each feature class
as is done by (Rakotomamonjy et al., 2008). In the
end the kernels which have non zero weights are the
ones that correspond to the selected feature classes.
Since GL/MKL minimizes a mixed ℓ1/ℓ2 norm so, it
zeros out some feature classes. (Recall that GL/MKL
gives no sparsity at the level of features within a fea-
ture class). The Group Lasso (Yuan & Lin, 2006) and
Multiple Kernel Learning are equivalent, as has been
mentioned in (Bach, 2008), therefore we used the Sim-
pleMKL toolbox (Rakotomamonjy et al., 2008) imple-
mentation for our experiments.

For Lasso (ℓ1 penalty) and Elastic Nets (ℓ1 + ℓ2

penalty), we used their standard LARS implementa-
tion (Efron et al., 2004) (which performs an inter-
nal cross validation to select the best regularization
penalty (λ)) and screened the features to keep the
“best” 800, as it is not possible to run these methods
on big datasets. (Efron et al., 2004) also do a simi-
lar screening for the same reason. For SVM we used
its standard LIBSVM implementation and performed
cross validation to select the best value of “gamma”
and “degree” parameters of the polynomial kernel and
the cost parameter “c” of the SVM.

The accuracies of various methods, presented as 10-
Fold CV classification errors are shown in the Table 1
and the running times are compared in Fig. 1.

As is obvious from Table 1, MSFS (I), i.e. MSFS with
the feature set augmented with dynamically generated
interactions of selected features with themselves and
of selected features with all other features (i.e., inter-
action streams (1) and (2) as mentioned in Section
3.1) gives the best predictive accuracy in 7 out of 10
cases, and in the remaining 3 cases it is the second best
method. (All the results are statistically significant at
5% significance level in a paired t-test.). This perfor-
mance improvement can be explained by the fact that
the augmented features (i.e., the dynamic interaction
terms) contain highly predictive features, which when
added to the model give improved predictive power.
It is important to note that we can not generate such
“dynamic” interactions for any of the other methods
as these interaction terms are not known beforehand
and are generated dynamically. The only way we could
generate these interaction terms for the other methods
is by considering all the ∼ p2/2 “static” interaction
terms (where p is the total number of features). This
becomes computationally infeasible even if we have
p = 2, 000 giving 2 million interaction terms. The

ability to generate interaction terms on-the-fly is at
the heart of MSFS (I) and is its biggest advantage
over the other “batch” methods.

The benefits of including interaction terms can be cor-
roborated by the fact that in most of the cases MSFS
(I) selects more features on average than MSFS, so
these “extra” features come from the dynamic inter-
action terms as otherwise the two methods are the
same. In two cases MSFS (I) puts in fewer features
than MSFS, but still it gives better predictive per-
formance due to the fact that the increased size of the
feature set permits spending of less wealth on spurious
features (false positives), unlike MSFS and SFS which
tend to put in more features. SFS generally performs
worse than MSFS due to the fact that it is not tak-
ing advantage of the presence of feature classes in that
data and thus distributes the entire wealth evenly over
the complete feature stream.

Other feature selection methods such as Stepwise RIC
(ℓ0 penalty), Lasso (ℓ1 penalty) and Elastic Nets
(ℓ1 + ℓ2 penalty) are seen to put in too many fea-
tures, as is evident from the numbers and the fact
that in only one out of ten cases (“allow”) does one
of these “batch” methods beat MSFS. In two other
cases (“expand”, “identify”) these methods manage
to have the same accuracy as MSFS. Multiple Kernel
Learning (MKL), does well on all the verbs, just be-
ing marginally worse than the best method. Its good
performance can be attributed to the fact that it is a
large margin method and explicitly uses optimization
to find the feature classes that should be included in
the model. However, like the other “batch” methods,
it suffers the drawback that it cannot handle dynamic
generation of interaction terms. Also, since GL/MKL
penalize a mixed (ℓ1/ℓ2) norm, they induce sparsity
only at the level of feature classes and so put all the
features in the selected feature class in the model.

Next we look at the running times and computational
complexities for the various methods. Fig. 1. shows
that Lasso, Elastic Nets and GL/MKL are the most
computationally expensive methods. This is not sur-
prising; These methods all solve expensive optimiza-
tion problems, namely finding the regularization paths
for Lasso and Elastic Nets (Efron et al., 2004) and solv-
ing a Quadratic Program and prior computation of all
the kernels (Rakotomamonjy et al., 2008) for MKL.

On the other hand, MSFS (I), MSFS and SFS are ex-
tremely cheap as they just make a fixed number of
passes (multi pass SFS) through the feature set (Zhou
et al., 2006). In general, their complexity is O(kN)
where N is the number of features and k is the number
of passes made (10 in our case). The time complexity
for Stepwise RIC is O(N2) and other methods i.e. the
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ones involving optimization have worst complexities
i.e. ≥ O(N2).

Among MSFS (I), MSFS and SFS, MSFS(I) takes
more time as it needs to generate and test the dynamic
interaction terms for inclusion in the model.
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Figure 1: Graphs showing total running times for 10 fold

CV (in seconds) for various methods for WSD Datasets.

Note: The y-axes are drawn on log scale

4.2 Evaluation on NIPS 2003 Datasets

Next we test our approach on two of the NIPS 2003
(Guyon, 2003) datasets, namely arcene (100 observa-
tions, 10000 features) and gisette (100 observations,
5000 features). We selected these datasets to demon-
strate that our approach works well in the case in
which there are no naturally occurring feature classes
in data. We want to underscore the fact that augment-
ing the feature set with PCAs and algebraic transfor-
mation like “squares” of the features can give improved
performance.5

We created synthetic feature classes for these datasets
by clustering the features using k-means with Eu-
clidean distance6. It turns out that features in each
class are similar, but sufficiently different to provide
non - redundant signal for prediction of the responses
(y’s). In addition to this we also added feature classes
corresponding to the top 50 PCAs and the “squares”
of the features. This gave k + 2 feature classes in all,
where k is the number of k-means clusters.

The results are shown in Table 2 for the case when
k = 1000 clusters. Fig. 2 shows that the accuracy is
not a strong function of the number of clusters, how-
ever reasonable clusters must exist, e.g. for the NIPS
“dexter” dataset most of the points fell in a single
cluster, and clustering did not help. This skewed clus-
tering for “dexter” can be explained by the fact that

5We did not run experiments on the remaining 3 NIPS
datasets (i.e. dexter, madelon, dorothea) as they are ei-
ther synthetic or have sparse or binary features, hence cer-
tain transformations like “squares” transformation won’t
be meaningful.

6We did try other clustering methods, namely, Hierar-
chical Agglomerative Clustering but the results were not
significantly different than using k-means.

it is sparse hence we did not use it and instead used
“arcene” and “gisette” both of which are dense.
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Figure 2: Accuracy as a function of number of clusters for

(a) arcene and (b)gisette datasets

Due to paucity of space we have not shown the run-
ning times of various methods for the NIPS datasets,
but the trend is similar to the one for WSD data as the
underlying optimization criterion and hence the com-
putational complexities of the various methods remain
the same.

In both the NIPS datasets, MSFS (I) and MSFS select
features from the feature class corresponding to top 50
PCAs, but do not select any features from “squares”
feature class, which implies that PCA is a good trans-
formation to use as it gives highly predictive features
whereas “squares” is not. Generating and testing these
extra PCA and “squares” feature classes incur only
a minor overhead as the number of total features is
only roughly doubled. For both the datasets, MSFS(I)
shows the highest accuracy for all cluster sizes followed
by Group Lasso/ MKL as is obvious from Fig. 2 (All
the results are statistically significant at 5% signifi-
cance level in a paired t-test).

Table 2: Results on the NIPS datasets (10 Fold CV Clas-

sification Errors).Note: The cross validation errors are

“proper” test errors and no parameters have been

tuned on them.

Method arcene (k=1000) gisette (k=1000)
µ ± σ (#f) µ ± σ (#f)

MSFS (I) 10.7±0.8 (5.3) 4.6±0.9 (23.33)
MSFS 12.9±0.4 (4.4) 7.1±0.9 (20)
SFS 16.5±0.8 (4.4) 8.1±0.8 (18)
Stepwise RIC 16.1±0.9 (4.2) 8.3±1.0 (6.33)
Elastic Nets 16.5±0.7 (20.1) 8.3±0.7 (92.67)
Lasso 16.3±1.0 (13.4) 9.1±1.2 (92.33)
GL/MKL 11.8±0.2 (225) 6.2±0.1 (48.97)
Poly. SVM 13.1±0.2 (-) 7.0±0.3 (-)

5 Conclusion

In this paper we have shown that exploiting the fact
that features come in classes can lead to significant
gains in predictive accuracy. The Multiple Stream-
wise Feature Selection (MSFS) algorithm is simple,
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Table 1: 10 Fold CV Classification Errors of various methods on the WSD dataset (10 verbs). Note: The cross

validation errors are “proper” test errors and no parameters have been tuned on them. Note: MSFS (I)

means MSFS with dynamic interaction terms and #f means the avg. number of features selected per fold.
Method acquire care climb fire add-1

µ ± σ (#f) µ ± σ (#f) µ ± σ (#f) µ ± σ (#f) µ ± σ (#f)
MSFS(I) 3.0±0.9 (3.4) 3.1±0.4 (5.5) 2.5±0.5 (0.5) 1.5±1.1 (1.6) 4.1±0.6 (13.3)
MSFS 8.9±1.9 (2.3) 4.5±0.7 (1.3) 7.5±1.3 (1.3) 3.7±1.0 (8.1) 3.4±0.9 (5.3)
SFS 6.9±0.2 (3.5) 4.4±0.1 (2.5) 5.0±1.0 (3.5) 3.7±2.0 (4) 5.0±0.3 (16.9)
Stepwise RIC 6.9±0.3 (5.1) 6.9±1.3 (12.3) 11.2±3.6 (3.7) 4.5±1.4 (3) 8.1±2.3 (17.2)
Elastic Nets 9.5±4.1 (6.1) 3.9±0.2 (24.1) 7.5±1.1 (91) 4.6±2.2 (107.8) 6.6±0.5 (1)
Lasso 10.0±2.9 (15.2) 14.6±1.9 (35.8) 11.2±2.1 (84.9) 6.9±3.1 (106.7) 6.2±0.2 (1)
GL/MKL 4.0±0.1 (50.3) 4.0±0.3 (21.7) 4.1±0.6 (11) 2.5±0.3 (12) 8.7±2.5 (1952)
Poly. SVM 5.9±0.6 (-) 4.8±0.4 (-) 6.4±0.7 (-) 4.0±0.5 (-) 7.9±1.1 (-)
Method expand allow drive identify promise

µ ± σ (#f) µ ± σ (#f) µ ± σ (#f) µ ± σ (#f) µ ± σ (#f)
MSFS (I) 0.5±0.2 (3.4) 7.2±2.0 (12.1) 1.6±0.8 (5.7) 1.0±0.4 (7.2) 5.5±1.7 (2.1)
MSFS 2.2±0.6 (12) 7.3±1.8 (3.9) 2.6±1.1 (8.5) 2.0±0.3 (3.1) 4.5±1.4 (1.7)
SFS 1.3±0.1 (9.8) 8.2±1.0 (9.5) 4.2±1.7 (7.8) 3.0±0.6 (7.2) 7.2±2.0 (3.1)
Stepwise RIC 3.6±0.4 (4.3) 11.5±3.1 (22.4) 7.9±3.1 (6.0) 1.0±0.5 (1.9) 11.8±3.1 (6.4)
Elastic Nets 0.9±0.3 (106.9) 6.1±0.9 (5.8) 3.1±1.0 (1.3) 11.0±3.1 (41.2) 8.1±2.7 (4.8)
Lasso 0.5±0.3 (81.9) 10.9±2.4 (69.9) 7.9±2.4 (18.1) 14.0±2.9 (10) 11.7±4.1 (20.6)
GL/MKL 2.3±0.7 (53) 7.4±2.3 (2294) 2.5±0.4 (28) 2.7±0.6 (1) 9.6±3.2 (232)
Poly. SVM 1.9±0.3 (-) 8.4±0.1 (-) 5.6±0.5 (-) 3.5±0.8 (-) 7.4±0.9 (-)

requiring less than a page of Matlab code, and ex-
tremely fast, since each potential feature is considered
only once. Moreover MSFS can be extended to in-
clude dynamically generated interaction terms. Doing
so generally gives significant improvement in perfor-
mance accuracy over batch methods which would need
to include all p2/2 interaction terms. Also, as demon-
strated above, MSFS allows one to test whether new
transformations/projections of the features will be of
any help or not by incurring only a little overhead
on the overall computational cost and, even more im-
portantly, little loss of statistical power to avoid over-
fitting. Finally, MSFS is computationally much less
expensive than the state of the art “batch” methods.
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