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Abstract

Many real-world applications can be modeled
by matrix factorization. By approximating
an observed data matrix as the product of
two latent matrices, matrix factorization can
reveal hidden structures embedded in data.
A common challenge to use matrix factoriza-
tion is determining the dimensionality of the
latent matrices from data. Indian Buffet Pro-
cesses (IBPs) enable us to apply the nonpara-
metric Bayesian machinery to address this
challenge. However, it remains a difficult task
to learn nonparametric Bayesian matrix fac-
torization models. In this paper, we propose
a novel variational Bayesian method based
on new equivalence classes of infinite matri-
ces for learning these models. Furthermore,
inspired by the success of nonnegative matrix
factorization on many learning problems, we
impose nonnegativity constraints on the la-
tent matrices and mix variational inference
with expectation propagation. This mixed
inference method is unified in a power expec-
tation propagation framework. Experimental
results on image decomposition demonstrate
the superior computational efficiency and the
higher prediction accuracy of our methods
compared to alternative Monte Carlo and
variational inference methods for IBP mod-
els. We also apply the new methods to collab-
orative filtering and role mining and show the
improved predictive performance over other
matrix factorization methods.
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1 Introduction

Matrix factorization models have been applied in many
areas of machine learning, information retrieval, and
computational biology. By approximating an observed
data matrix by a product of two (or three) latent ma-
trices, we can use matrix factorization to discover the
hidden structure embedded in observed data. If the
data is represented by a (N ×D) matrix X where N is
the number of D-dimensional observations, the goal of
matrix factorization is to find latent matrices Z and A

such that X ≈ ZA. Each row of A can be viewed as a
basis vector for X and the loading matrix Z determines
how to combine these basis vectors together to recon-
struct observations in X. Typically, the number of
rows of A is smaller than the number of observations,
suggesting the latent matrices Z and A offer compact
summary of the data.

Varying the dimensionality of latent matrices greatly
affects the performance of matrix factorization meth-
ods. Instead of fixing the dimensionality K, Grif-
fiths and Ghahramani (2005) propose nonparametric
Bayesian matrix factorization models based on Indian
buffet processes (IBPs). The IBP prior allows us to
model latent matrices of infinite sizes and learn the di-
mensionality of effective (nonzero) latent matrices au-
tomatically. Given massive data, however, it remains a
difficult task to efficiently estimate this nonparametric
matrix factorization model.

In this paper, we present two novel approximate
Bayesian inference methods to address this issue.
These approximate inference methods are based on
new equivalence classes for infinite matrices that con-
tain only non-zero columns of those infinite matri-
ces and are not in the left-ordered form proposed by
Griffiths and Ghahramani (2005). Without the left-
ordered constraint, these new equivalence classes al-
low us to approximate each column of the latent ma-
trix Z as independent factors, so that approximate in-
ference can be performed elegantly. Specifically, we
present in Section 2 the variational approximation
for these equivalence classes and adaptively select the
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dimension of the latent matrices by maximizing the
marginal likelihood of these models. We also use the
variational inference to estimate observation noise and
hyper-parameters of this model. Later we refer to
this method as infinite matrix factorization for sim-
plicity. Recently, Doshi-Velez et al. (2009) proposed a
variational inference method for IBP. This method is
based on a truncated stick-break representation and
performs unfavorably compared to finite variational
approximation. Unlike this method, our new method
does not require any specification of a truncation level
and empirically achieves much higher prediction accu-
racy (with more robustness) than the finite variational
approximation.

Inspired by the success of nonnegative matrix factor-
ization on many real-world applications such as im-
age decomposition (Lee and Seung, 2001) and com-
putational biology (Devarajan, 2008), we extend the
nonparametric Bayesian matrix factorization models
in Section 3 by imposing nonnegativity constraints on
elements of the latent matrices. We call this new
model infinite nonnegative matrix factorization. For
the efficient inference on this new model, we combine
the variational approximation inference with expecta-
tion propagation in the power expectation propagation
framework (Minka, 2004).

In Section 4, we describe experimental results for im-
age decomposition, demonstrating the superior com-
putational efficiency and the improved prediction ac-
curacy of IMF and INMF compared to alternative
Monte Carlo and variational inference methods for
IBP models. In addition, we apply IMF and INMF
to collaborative filtering and role mining and demon-
strate the improved performance of INF and INMF
over other matrix factorization methods.

2 Infinite Matrix Factorization

Infinite matrix factorization models were proposed by
Griffiths and Ghahramani (2005). They derive the
nonparametric Bayesian prior distribution on an infi-
nite matrix by taking the limit for a prior distribution
on a finite Bayesian matrix and constructing equiva-
lence classes on infinite matrices. To develop the new
variational method for the infinite matrix factorization
model, we also start from this finite model.

2.1 Finite Bayesian Matrix Factorization

Let us denote the (N ×D) data matrix by X. Our goal
is to decompose the data matrix X into a product of
two latent matrices Z (N × K) and A (K × D). The
factorization can be modeled by a likelihood function
p(X|Z,A), which represents a probabilistic generative

process for producing the data X. We also assign priors
over Z and A to capture our uncertainty in these latent
matrices. Using a hierarchical Bayesian model, the
problem of matrix factorization amounts to finding the
posterior distribution of Z and A:

p(Z,A|X) ∝ p(X,Z,A) = p(X|Z,A)p(A)p(Z|π)p(π)

where p(A), p(Z|π) are the prior distributions, π is the
parameter vector for the prior p(Z|π) , and p(π) is the
hyper-prior in this hierarchical Bayesian model.

We assign a factorized Gaussian prior on A = {akj}:

p(A) =
∏
k,j

p(akj) =
∏
k,j

1√
2πσ2

A

exp
(
−
a2
kj

2σ2
A

)
(1)

We use a binary matrix Z = {zik} and denote its kth

column by z:,k and its ith row by zi,:. Using a factorized
discrete distribution on Z with the mean parameter
π = (π1, . . . , πK), we have

p(Z|π) =
∏
k,i

p(zik|πk) =
∏
k

π
∑
i zik

k (1− πk)N−
∑
i zik (2)

We assign a conjugate prior over π

p(π) =
∏
k

Beta
( α
K
, 1
)

=
∏
k

α

K
π
α
K
−1

k (3)

Note that α/K regularizes the sparsity of Z; if K

is large, πk is concentrated around small values and
therefore many elements of Z will be encouraged to be
zero.

We can choose a data likelihood function based on ap-
plications at hand. Here we use the Gaussian likeli-
hood function due to its popularity in practice.

p(X|Z,A) =
∏
i,j

1√
2πσ2

X

exp
(
−

1

2σ2
X

(xij − zi,:a:,j)
2
)

(4)

where we denote the jth column of A by a:,j. We as-
sume the variance parameter σX is known for the time
being.

2.2 Equivalence Classes

Instead of choosing K, the dimensionality of Z, to a
particular value, Griffiths and Ghahramani (2005) set
K → ∞ to obtain nonparametric Bayesian prior on Z.
In the infinite case, however, p(zk = 0, πk = 0) converges
to 1. Thus the probability of any nonzero matrix Z is
0. Apparently, such a model is not practically applica-
ble. To solve this issue, Doshi-Velez et al. (2009); Teh
et al. (2007) uses a truncated stick-breaking approx-
imation to an Indian buffet process. Their approach
requires a predefined truncation level T and, according
to Doshi-Velez et al. (2009); Teh et al. (2007), empir-
ically this approach does not outperform simple finite
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matrix factorization models described in the previous
section.

Another approach to address this issue is using equiva-
lence classes of infinite matrices. By grouping the infi-
nite non-zero matrices into the equivalence classes, we
can make sure that the probability of an equivalence
class does not converge to 0 even though the prob-
ability of each infinite matrix in this class converges
to 0. For example, Griffiths and Ghahramani (2005)
defined equivalence classes on Z with respect to a func-
tion on Z that maps Z to left-ordered binary matrices
(so that the columns are sorted). Each of these equiva-
lence classes has a valid nonzero probability. However,
since the columns of the left-ordered binary matrices
are correlated in the left-ordered form, we cannot use
adopt variational inference with factorized approxima-
tions based on these equivalence classes.

To remove this coupling effect, we define new equiva-
lence classes on Z. The key observation we have is if
we remove all-zero columns from many infinite binary
matrices, many of these matrices can be reduced to
the same non-zero sub-matrix Z+. All the matrices Z

that can be reduced to the same sub-matrix Z+ have
the same effect in the data likelihood (4). To persevere
the data likelihood, we define equivalence classes on bi-
nary matrices by a many-to-one function: each binary
matrix Z is mapped to the representative of its class
Z̄ = [Z+,Z0] where Z0 only contains all-zero columns.
This mapping moves the non-zero columns to the left
side of the all-zero columns without changing the or-
der between non-zero columns. As a result, unlike
the columns in the left-ordered equivalence classes, the
non-zero columns of Z+ can be treated as independent
factors, which enables us to use factorized variational
approximations to the posterior distribution of Z+.

For a matrix with K columns and K+ non-zero
columns, we denote its equivalence class with a rep-
resentative matrix Z̄ by [Z̄]KK+

. The number of the ma-
trices that can be mapped to the same equivalence
class [Z̄]KK+

is simply C
K+
K = K!

K+!(K−K+)!
. Considering

the joint distribution over [Z̄]KK+
and π, we have

p([Z̄]KK+
,π) =C

K+
K p(Z̄,π) = C

K+
K p(Z+,π+)p(Z0,π0)

=C
K+
K

∏
k≤K+

p(z:,k, πk)
∏

k>K+

p(z:,k = 0, πk) (5)

Note that in the above equation we partition π into
π+ and π0 according to the partition of (̄Z). It is easy
to derive that as K →∞, although p(Z) converges to 0
for any particular Z ∈ [Z̄]∞K+

, p([Z̄]∞K+
) does not.

We also divide the rows of A into A+ and A0, such
that ZA = Z+A+. Now the task of learning IMFs is to
find the posterior distribution of [Z̄]∞K+

, A and π. Since
the exact posterior distributions of [Z̄]∞K+

, π and A are

computationally intractable, we describe a variational
method to approximate them in the next section.

2.3 Variational inference for IMF

First, let us define the notation. We use z̃i,: to denote
the ith row of Z+ and use ã:,j to denote the jth column
of A+.

We choose a factorized distribution to approximate the
posterior distributions of Z̄, A and π:

q(Z̄,A,π) =
( ∞∏
k=1

q(πk)
∏
i

q(zik)
) D∏
j=1

q(a:,j)

=q(π+)q(Z+)q(A+)q(Z0,π0)q(A0)

∝
∏

k≤K+

(
q(πk)

∏
i

q(zik)
)( D∏
j=1

q(ã:,j)
)
q(Z0,π0)q(A0)

Using Jensen’s inequality, we immediately obtain

ln p(X, K+)

≥
∑
Z̄

∫
q(Z̄, π, A+, A0) ln

p(X, [Z̄]∞K+
, A, π)

q(Z̄, π, A)
dAdπ

= lim
K→∞

∑
Z+

∫
q(Z+, A+, π+) ln

C
K+
K p(X, Z+, A+, π+)

q(Z+, A+, π+)
dA+dπ+

,L(q; K+) (6)

The first equation holds since p(X, [Z̄]∞K+
,A, π) =

limK→∞C
K+
K p(X,Z+,A+,π+)p(Z0,π0)p(A0) and we set

q(Z0,π0) = p(Z0,π0) and q(A0) = p(A0). We denote the
above lower bound by L(q;K+) to emphasize that it
depends on the value of K+.

The details for calculating the lower bound L(q;K+)

are shown in the appendix. Note that if we apply a
variational lower bound without using the equivalence
classes on Z, the lower bound becomes negatively in-
finite when K → ∞ since p(Z+,π+) → 0. Since Z+

is defined to contain only non-zero columns but our
factorized q(zik) does not impose this constraint, the
above inequality holds only approximately. Since the
dataset that we apply IMF to has at least dozens of, if
not hundreds or thousands (or more) of, data points,
q(z:,k = 0) =

∏N
i=1 q(zik = 0) is a very small value. There-

fore, the approximate lower bound is a very accurate
approximation to the exact lower bound. This is con-
firmed by our empirical results (e.g., see in Figure 3
where N=50).

Maximizing the lower bound L(q;K+), we obtain the
following iterative updates for k ≤ K+:

q(πk) = Beta(α̂k, β̂k) (7)

q(zik = 1) =
λik

λik + 1
(8)

q(ã:,j) = N (ã:,j |mj ,Vj) (9)
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Figure 1: Illustration of the synthetic image data. The
first row shows four latent images. The second row
are examples of the observed images that are random
combinations of the latent images with Gaussian noise
(variance =0.5).

where

α̂k =
∑
i

q(zik = 1)

β̂k = N − α̂k + 1

Vj =
(

(V0
j )
−1 +

1

σ2
x

∑
i

Eq(Z+) [z̃Ti,:z̃i,:]
)−1

(10)

mj = Vj

(
(V0

j )
−1m0

j +
1

σ2
x

∑
i

xijEq(Z+) [z̃i,:]
)

(11)

λik = exp
[
Ψ(α̂k)−Ψ(β̂k)

−
1

2λ2
x

∑
j

(
2
∑
r 6=k

(q(zir = 1)Λjrk) + Λjkk − 2xijmj(k)
)]

where Λj = Vj + mjmT
j , mj(k) is the kth element of mj

and Ψ(·) denotes the digamma function. For all k > K+,
q(z:,k = 0, πk = 0) = 1.

Now we address the issue of how to K+. To this
end, we maximize the lower bound L(q;K+) over K+.
Since L(q;K+) approximates the marginal likelihood
p(X|K+) ∝ p(K+|X)p(X), the maximization over K+ is
justified by Bayesian evidence maximization and does
not lead to overfitting. In practice, the algorithm is
initialized with K+ = 1. When the updates converge
for the current K+, we increase K+ by one and use
the current approximate posteriors to initialize the
next iterations. We stop increasing K+ when the ap-
proximate marginal model likelihood (i.e., evidence)
L(q;K+) stops to increase with a bigger K+.

To illustrate how evidence maximization is used to
choose K+, we apply infinite matrix factorization on
the synthetic data that was used by Griffiths and
Ghahramani (2005). First, we define four latent im-
ages (each image corresponds a row of A and each
element of the latent image is either 1 or 0, as shown
in the first row of figure 1) and generate a 50 by 4
loading matrix Z by randomly sampling its elements

1 2 3 4 5 6 7
−500

−400

−300

−200

−100

0

Number of Bases

L(q
;K +)

Figure 2: The approximate marginal model likelihood
L(q;K+) on image data. By maximizing L(q;K+), the
variational infinite matrix factorization discovers the
true number of latent images, which is 4.

with p(zik = 0.5). Then we combine the latent images
A based on Z and add the Gaussian noise with mean
0 and variance 0.5 to generate 50 observed image data
X (see the second row of figure 1). We plot the vari-
ational lower bound L(q;K+) for different values of K+

in figure 2. The maximal value of L(q;K+) indicates
K+ = 4, which matches the true number of the latent
images. In other words, infinite matrix factorization
finds the true number of the latent images.

2.4 Learning variance parameters σX and σA

In the previous section, we assume σX (the variance
of the observation noise in (4)) is known and we pre-
define the hyperparameter, σA, in the prior distribu-
tion (1). Now we extend our model to estimate σX and
σA from data. Specifically, we assign inverse-Gamma
prior distributions over σX and σA to represent the
uncertainty about them and approximate their poste-
rior distributions via variational inference. Using the
inverse-Gamma priors is equivalent to using Gamma
priors on the reciprocals of σX and σA, ηX , 1/σ2

X and
ηA , 1/σ2

A:

p(ηX) = Gamma(ηX |a0
X , b

0
X) p(ηA) = Gamma(ηA|a0

A, b
0
A)

where Gamma(·) is a Gamma distribution and a0
X , a0

X ,
a0
X , and a0

X are set to make the hyper-priors noninfor-
mative.

Given these priors, we obtain the following variational
updates for q(ηX) and q(ηA):

q(ηX) = Gamma(ηX |âX , b̂X) q(ηA) = Gamma(ηA|âA, b̂A)
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where

âX = a0
X +

ND

2

b̂X = b0X +
1

2

∑
ij

(
x2
ij − 2xijEq[z̃i,:]Eq[ã:,j ]

+ Eq[z̃i,:]Eq[ã:,j ã
T
:,j ]Eq[z̃

T
i,:]
)

âA = a0
A +

KD

2

b̂A = b0A +
1

2

∑
kj

Eq[ã
2
kj ]

The expectations of ηX and ηA are Eq[ηX ] = âX/b̂X and
Eq[ηA] = âA/b̂A. For the expanded model, we change
the variational updates (10) and (11) by replacing 1/σX

and 1/σA with Eq[ηX ] and Eq[ηA]. We also modify the
variational lower bound L(q;K+) accordingly.

3 Infinite nonnegative matrix
factorization

For certain applications such as image decomposition,
imposing nonnegativity constraints to the factorized
matrices leads to clearer model interpretation and im-
proved predictive power (Lee and Seung, 2001). To
increase the utility of Bayesian matrix factorization,
we extend the infinite matrix factorization model by
imposing nonnegative constraints on A. We call this
new model Infinite Nonnegative Matrix Factorization
(INMF).

For IMFs, we assign a factorized Gaussian prior over
A. For INMFs, we change this prior to a factorized
truncated Gaussian distribution:

p(A) ∝
∏
k,j

N (akj |0, σ2
A)I(akj ≥ 0) (12)

where I(·) is an indicator function. This truncated
Gaussian prior not only regularizes A to prevent over-
fitting as an L2-Regularizer but also effectively im-
poses nonnegative constraints on elements of A.

Given the truncated Gaussian prior over A, we can-
not apply variational methods directly since the lower
bound (6) becomes negatively infinite. To address
this issue, we use the Power-Expectation Propagation
(Power-EP) framework (Minka, 2004) to approximate
the exact posterior.

3.1 Power-EP inference for INMF

For Power-EP, we choose the same form for the ap-
proximate posteriors q as before.Similar to the IMF
case, we match q(A0)q(Z0,π0) to the exact distri-
butions. Therefore, we only need to approximate
q(Z+)q(π+)q(A+) based on p(Z+,A+,π+|X). Now for

q(A+), we let

q(A+) ∝ p̃0(A+)p̃X(A+) (13)

where p̃X(A+) and p̃0(A+) are the Gaussian messages
from the likelihood p(X|Z+,A+,π+) and the prior p(A+)

to the variable A+, respectively. Since both messages
have the form of Gaussians, q(A+) is a Gaussian dis-
tribution.

Power-EP (Minka, 2004) generalizes expectation prop-
agation and variational inference (in particular, varia-
tional message passing (Winn and Bishop, 2004)) us-
ing a flexible α−divergence. This divergence includes
KL(p‖q) and KL(q‖p) as special cases. Using Power-
EP, we have three steps for processing a factor in the
joint distribution of the model: i) in the deletion step
we compute the partial posterior/belief after removing
the message from this factor; ii) in the projection step
we minimize an α-divergence (e.g., KL(p‖q) or KL(q‖P ))
to obtain the new posterior q; and iii) in the message-
update step, we update the message to be the ratio of
the new posterior q and the partial belief computed in
the deletion step. We then iteratively process all the
factors in the joint distribution with these three steps.
For INMFs, we minimize KL(p‖q) when processing the
prior factor p(A+), and minimize KL(q‖p) when pro-
cessing the the likelihood and the other priors.

In the deletion step, to process the likelihood and the
priors on Z+ and π+, we compute the partial belief
q\X(A+) ∝ q(A+)/p̃x(A+). Because of (13), we have

q\X(A+) ∝ p̃0(A+) (14)

Since q(Z+) and q(π+) are totally defined by the mes-
sages from the likelihood and the prior on Z, the partial
beliefs q\X(Z+) and q\X(π+) are 1 after removing these
messages.

Then in the projection step, we minimize the exclusive
KL divergence over the new approximate posteriors:

KL(q(Z+)q(π+)q(A+)‖p(X|Z+,A+,π+)p(Z+,π+)q\X(A+)).

By replacing p(A+) with its approximation q\X(A+) in
the variational updates described in Section 2, we can
efficiently minimize the above KL divergence.

To update the message update, it normally requires
the computation of the messages from the likeli-
hood and the priors on Z+ and π+ to the variables
(A,Z+,&π+. But since here we do not need the mes-
sages explicitly in the deletion step to obtain all the
partial beliefs, we can save the computation of these
messages.

When processing the truncated Gaussian prior p(A) =∏
p(akj), we only update q(A+) since this prior does
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not involve Z+ and π+. The deletion step computes
the partial belief

q\kj(0)(ã:,j) = N (ã:,j |m\kj(0),V\kj(0)) ∝ q(ã:,j)/p̃0(akj)

where p̃0(akj ∝ N (mkj(0),Vkj(0)) (i.e., this message is a
K+ × 1 dimensional Gaussian from akj to ã:,j) and

V\kj(0) = (V−1
j −Vkj(0))

−1 (15)
m\kj(0) = V\kj(0)(V

−1
j mj −V−1

kj(0)mkj(0)) (16)

The projection step gives the new posterior

qnew(ã:,j) ∝ N (ãj |mnew
j ,Vnew

j ),

by minimizing the inclusive KL(p̂‖q) where p̂ ∝
q\kj(0)(ã:,j)p(akj). The following moment matching
equations solve the minimization problem:

mnew
j = mw + αVwek (17)

Vnew
j = Vw −

αmnew
j (k)

vw(k, k)
Vweke

T
kVT

w (18)

where

Vw = ([V\kj(0)]
−1 +

1

σ2
A

eke
T
k )−1

mw = Vw([V\kj(0)]
−1m\kj(0))

α =
1

vw(k, k)1/2

N (vw(k, k)−1/2mw(k)|0, 1)∫ vw(k,k)−1/2mw(k)
−∞ N (z|0, 1)dz

To update the message, we take the ratio between
qnew(ã:,j) and q\kj(0)(ã:,j) and obtain the new message
p̃0(akj with

Vnew
kj(0) =

(
(Vnew

j )−1 − (V\kj(0))
−1
)−1 (19)

mnew
kj(0) = Vnew

kj(0)

(
(Vnew

j )−1mnew
j − (V\kj(0))

−1m\kj(0)
)

(20)

Note that the deletion step and message update can
be further simplified by low-rank matrix operations.
To learn K+ for the INMF model, we maximize the
approximate marginal likelihood L(q;K+). We also ex-
tend the model to estimate the posteriors of σX and
σA, just like what we have described in Section 2.4.
The IMF and INMF are summarized in Algorithm 1.

4 Experiments

To evaluate the proposed methods, we test them on
three tasks: synthetic image decomposition, collabo-
rative filtering, and role mining.

4.1 Image Decomposition

First, we compare IMFs and INMFs with Gibbs sam-
pling (Wood and Griffiths, 2007), Particle Filtering
(PF) (Wood and Griffiths, 2007), Variational Finite
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Figure 3: Performance comparison on image data.

Matrix Factorization (VFMF), and the variational infi-
nite matrix factorization (TVIMF) (Doshi-Velez et al.,
2009) on a synthetic dataset.

We use a similar data generation process as described
in Section 2.3 and by (Griffiths and Ghahramani,
2005). The only difference is that now we randomly
generate each of the 6-by-6 latent images that contain
8 elements of 1’s (the other elements are 0’s).

Figure 3 shows the performance of all these six algo-
rithms. For the evaluation, we interpret each row of
the latent matrix A as a base (i.e.,ak,:). The errors
in the figure are measured by the mean square differ-
ence between each latent base, ak,:, and the estimated
base that is closest to it. As shown in Figure 3, our
new methods converge much faster than the alterna-
tive methods, demonstrating their high computational
efficiency. The results of particle filtering (for which
we vary the number of particles from 100 to 400, 1000,
2500, 5000) fluctuate heavily. Sometimes the particle
filtering method even ends up with over 50 bases as
the final estimation, while the true number of bases

Algorithm 1 IMF and INMF

1. Initialize K+ = 1.
2. Initialize all approximate factors.
3. For each variational inference iteration:

a) Loop over k = 1, . . . ,K+:
Update q(πk) via (7)

b) Loop over i = 1, . . . , N, k = 1, . . . ,K+:
Update q(zik) via (8)

c) Loop over j = 1, . . . , D:
For IMF: update q(aj) via (9)

For INMF:
Loop over j = 1, . . . , D, k = 1, . . . ,K+:

Update q(aj) via (15) to (20)
d) Compute the evidence L(q;K+)

e) Increase K+ if L(q;K+) increases.
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Figure 4: Prediction errors for collaborative filter-
ing. The plot shows Normalized Mean Absolute Er-
ror (NMAE) of four models on the Jester data. The
results are averaged over 10 experiments.

is only 4. For TVIMF and VFMF, the truncation
level T has to be sufficiently large (we varied it from
4 to 10) to achieve low estimate error. This makes
this variational approach less efficient compared to our
method. The performance of TVIMF and VFMF are
not stable in practice. Therefore, we run them multi-
ple times and pick the best solution from these runs.
By contrast, the IMF and INMF work stably and the
quality of the approximate lower bound is very good:
IMF and INMF never over-estimate K+ in our ex-
periments. IMF achieves the lowest prediction error
among all the approximate inference methods (except
INMF) for IBP models. Furthermore, the INMF leads
to highest prediction accuracy among all the methods,
demonstrating the effectiveness of the nonnegativity
constraints on latent matrices.

4.2 Collaborative Filtering

We apply the new methods to a collaborative filtering
task to test how accurate they are when predicting the
preference of a specific user given his previous ratings.
We use a subset of the Jester dataset Goldberg et al.
(2001). The dataset contains 100 jokes with 73421 user
ratings. The density (or fraction of the rating matrix
that is filled) of the Jester set is about 0.5. We select
1000 users and for each selected user, 30 ratings are
held out for testing. We select 1000 users and for each
selected user, 30 ratings are held out for testing. The
experiment is repeated for 10 times, each time with a
different user subset.

IMF automatically discovers 7.8 latent bases averaged
over the 10 experiments. INMF gives 7.6 latent bases
on average. For comparison, VFMF, TVIMF, classical
nonnegative matrix factorization (NMF), and singular

value decomposition (SVD) are applied to the same
training and testing data. We did not apply Gibbs
samplers and particle filtes because of their limited
scalability for large datasets. NMF and SVD require
a predefined number of bases. We vary the number of
bases from 2 to 15 and choose this number by optimiz-
ing their performance. The truncation level of VFMF
and TVIMF is 30. Empirically, a smaller truncation
level leads to much worse prediction performance.

The results of NMF, SVD, IMF and INMF are shown
in figure 4. We do not plot the results of VFMF and
TVIMF since their results are out of the boundary of
this figure. VFMF achieves 0.1767 with 30 effective
bases, and TVIMF achieves 0.1761 with 30 effective
bases. IMF and INMF not only learn a more compact
representation of the data, but also give more accurate
predictions than the other methods.

4.3 Role Mining

Finally, we apply our new methods to the role min-
ing problem. Role mining is an active research area in
information security that aims at discovering a set of
roles for role-based access control (RBAC) from an ex-
isting user-permission assignment relation. In RBAC,
instead of assigning permissions directly to users, an
administrator assigns permissions to roles and autho-
rizes users to roles. To simplify administration, it is
desirable to keep the number of roles small.

We use two datasets, “Domino” and “Firewall” from
researchers at HP Labs. The “Domino” dataset, from
a Lotus Domino server, is a 79x231 binary matrix
where each row is a user and each column is a per-
mission for a given level of access to files, databases,
and custom applications. The “Firewall” dataset is a
709x365 binary matrix from a Cisco firewall used to
provide external users access to internal resources. In
our experiment, we first transpose the original matri-
ces, such that Z matrix becomes a meaningful binary
role matrix, which assigns permissions to roles.

We randomly hold out 20% elements of each matrix for
testing. Since the matrix is extremely sparse, we re-
port the Area Under the Curve (AUC) of IMF, INMF,
VFMF, TVIMF, NMF and SVD in Table 1. The trun-
cation level T of VFMF and TVIMF is 20. NMF and
SVD are chosent to have the optimal number of bases
that gives to their best AUC value.

We find that TFMF, TVIMF, IMF and SVD have
inferior performance on this dataset. By contrast,
the AUC comparison shown in Table 1 suggests that
INMF outperforms all the other algorithms on both
datasets. For better illustration, we plot the ROC
curve of “domino” dataset. We observe that INMF
achieves the distinguishable True-Positive ratio when
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Figure 5: The ROC curve for the “Domino” dataset.

Algorithm Domino Firewall
K AUC K AUC

VFMF 20 0.9339 20 0.9748
TVIMF 20 0.9382 20 0.9732

SVD 5 0.9518 10 0.9745
NMF 4 0.9755 6 0.9801
IMF 8 0.9400 7 0.9823

INMF 9 0.9869 9 0.9853

Table 1: AUC of VFMF, TVIMF, SVD, NMF, IMF
and INMF on “Domino” and “Firewall” datasets.

the False-Positive ratio is small, which indicates the
desirable performance on the top of the list.

5 Conclusions

Using the new equivalence classes of infinite binary
matrices, we have developed two novel approximate
inference algorithms for infinite matrix factorization
and infinite nonnegative matrix factorization, respec-
tively. These two methods are unified in the power-
EP framework. They learn the model dimensional-
ity automatically from the data, as well as all the
model hyper-parameters. Unlike the previous vari-
ational method (Doshi-Velez et al., 2009), the new
methods do not use a truncated stick-breaking rep-
resentation (so no truncation levels to be set) and
achieve faster convergence and lower prediction error
rates compared to alternative inference methods.
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A Lower bound of marginal likelihood
L(q; K+)

The lower bound L(q;K+) is given here.

L(q;K+) = T1 + T2 + T3 −H1 −H2 −H3

where

T1 =

N∑
i=1

D∑
j=1

[
− 1

2
ln(2πσ2

x) +
xij

2σ2
x
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ij

]
T2 =

D∑
j=1

[
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2
ln(2πσ2

A)− 1

2σ2
A

K+∑
k=1

Λj
kk

]
T3 =

∑
k≤K+

[
(
∑

i

q(zik = 0))
(
Ψ(β̂k)−Ψ(α̂k + β̂k)

)
+ (
∑

i

q(zik = 1)− 1)
(
Ψ(α̂k)−Ψ(α̂k + β̂k)

)
+ ln

α

k

]
H1 =

D∑
j=1

[
− 1

2
ln |Vj | −

K+

2
(1 + ln(2π))

]
H2 =

∑
k≤K+

[∑
i

q(zik = 1) ln q(zik = 1)

+ q(zik = 0) ln q(zik = 0)
]

H3 =
∑

k≤K+

∫
q(πk) ln q(πk)dπk

=
∑

k≤K+

[
(α̂k − 1){ψ(α̂k)− ψ(α̂k + β̂k)}

+ (β̂k − 1){ψ(β̂k)− ψ(α̂k + β̂k)}

− ln Γ(α̂k + β̂k) + ln Γ(α̂k) + ln Γ(β̂k)
]

where Λj = Vj + mjm
T
j , mj and Vj are the mean and

the covariance matrix of q(ãj) respectively, and mj(k) is

the k-th element of mj .


