
 177

Neural conditional random fields

Trinh-Minh-Tri Do†‡ Thierry Artières‡
†Idiap Research Institute

Martigny, Switzerland
Tri.Do@idiap.ch

‡LIP6, Université Pierre et Marie Curie
Paris, France

Thierry.Artieres@lip6.fr

Abstract

We propose a non-linear graphical model
for structured prediction. It combines the
power of deep neural networks to extract high
level features with the graphical framework
of Markov networks, yielding a powerful and
scalable probabilistic model that we apply to
signal labeling tasks.

1 INTRODUCTION

This paper considers the structured prediction task
where one wants to build a system that predicts a
structured output from an (structured) input. It is
a common framework for many application fields such
as bioinformatics, part-of-speech tagging, information
extraction, signal (e.g. speech) labeling and recogni-
tion and so on. We focus here on signal and sequence
labeling tasks for signals such as speech and handwrit-
ing.

For decades, Hidden Markov Models (HMMs) have
been the most popular approach for dealing with se-
quential data (e.g. for segmentation and classifica-
tion). They rely on strong independence assumptions
and are learned using Maximum Likelihood Estima-
tion which is a non discriminant criterion. This latter
point comes from the fact that HMMs are generative
models and they define a joint probability distribution
on the sequence of observations X and the associated
label sequence Y.

Discriminant systems are usually more powerful than
generative models, and focus more directly on mini-
mizing the error rate. Many studies have focused on
developing discriminant training for HMM, for exam-
ple Minimum Classification Error (MCE) (Juang &

Appearing in Proceedings of the 13th International Con-
ference on Artificial Intelligence and Statistics (AISTATS)
2010, Chia Laguna Resort, Sardinia, Italy. Volume 9 of
JMLR: W&CP 9. Copyright 2010 by the authors.

Katagiri, 1992), Perceptron learning (Collins, 2002),
Maximum Mutual Information (MMI) (Woodland &
Povey, 2002) or more recently large margin approaches
(Sha & Saul, 2007; Do & Artières, 2009).

A more direct approach is to design a discriminative
graphical model that models the conditional distribu-
tion P (Y|X) instead of modeling the joint probability
as in generative model (Mccallum et al., 2000; Lafferty,
2001). Conditional random fields (CRF) are a typical
example of this approach. Maximum Margin Markov
network (M3N) (Taskar et al., 2004) go further by fo-
cusing on the discriminant function (which is defined
as the log of potential functions in a Markov network)
and extend the SVM learning algorithm for structured
prediction. While using a completely different learning
algorithm, M3N is based on the same graphical mod-
eling as CRF and can be viewed as an instance of a
CRF. Based on log-linear potentials, CRFs have been
widely used for sequential data such as natural lan-
guage processing or biological sequences (Altun et al.,
2003; Sato & Sakakibara, 2005). However, CRFs with
log-linear potentials only reach modest performance
with respect to non-linear models exploiting kernels
(Taskar et al., 2004). Although it is possible to use
kernels in CRFs (Lafferty et al., 2004), the obtained
dense optimal solution makes it generally inefficient in
practice. Nevertheless, kernel machines are well known
to be less scalable.

Besides, in recent years, deep neural architectures have
been proposed as a relevant solution for extracting
high level features from data (Hinton et al., 2006; Ben-
gio et al., 2006). Such models have been successfully
applied first to images (Hinton et al., 2006), then to
motion caption data (Taylor et al., 2007) and text
data. In these fields, deep architectures have shown
great capacity to discover and extract relevant features
as input to linear discriminant systems.

This work introduces neural conditional random fields
which are a marriage between conditional random
fields and (deep) neural networks (NNs). The idea
is to rely on deep NNs for learning relevant high level

 178

Neural conditional random fields

features which may then be used as inputs to a linear
CRF. Going further we propose such a global architec-
ture that we call NeuroCRF and that can be globally
trained with a discriminant criterion. Of course, using
a deep NN as a feature extractor makes the learning
become a non convex optimization problem. This pre-
vents relying on efficient convex optimizer algorithms.
However recently a number of researchers have pointed
out that convexity at any price is not always a good
idea. One has to look for an optimal trade-off be-
tween modeling flexibility and optimization ease (Le-
Cun et al., 1998; Collobert et al., 2006; Bengio & Le-
Cun, 2007).

Related works. Some previous works have success-
fully designed NN systems for structured prediction.
For instance, graph transformer nets (Bottou et al.,
1997) have been applied to a complex check reading
system that uses convolution net at character level.
(Graves et al., 2006) used a recurrent NN for handwrit-
ing and speech recognition where neural net outputs
(sigmoid units) are used as conditional probabilities.
Motivated by the success of deep belief nets on feature
discovering, Collobert and his colleagues investigated
the use of deep learning for information extraction on
text data (Qi et al., 2009). A common point between
these works is that the authors proposed mechanics
to adapt NN for the structured prediction task rather
than a global probabilistic framework, which is investi-
gated in this paper. Recently, (Peng et al., 2009) also
investigated the combination of CRFs and NNs in a
parallel work. Our approach is different in the use of
deep architecture and backpropagation, and it works
for general loss function.

2 NEURAL CONDITIONAL
RANDOM FIELDS

In this section, we propose a non-linear graphical
model for structured prediction. We start with a gen-
eral framework with any graphical structure. Then we
focus on linear chain models for sequence labeling.

2.1 Conditional random fields

Structured output prediction aims at building a model
that predicts accurately a structured output y for any
input x. The output Y = {Yi} is a set of predicted
random variables whose components belong to a set
of labels L and are linked by conditional dependen-
cies encoded by an undirected graph G = (V,E) with
cliques c ∈ C. Given x, inference stands for finding
the output that maximizes the conditional probability1

p(y|x). Relying on the Hammersley-Clifford theorem

1We use the notation p(y|x) = p(Y = y|X = x).

a CRF defines a conditional probability according to:

p(y|x) = 1/Z(x)
∏

c∈C ψc(x,yc)
with : Z(x) =

∑
y∈Y

∏
c∈C ψc(x,yc) (1)

where Z(x) is a global normalization factor. A com-
mon choice for potential functions is the exponential
function of an energy, Ec:

ψc(x,yc) = e−Ec(x,yc,w) (2)

To ease learning, a standard setting is to use linear
energy functions Ec(x,yc,w) = −〈wyc

c ,Φc(x)〉 of the
parameter vector wyc

c and of a feature vector Φc(x).
This leads to a log-linear model (Lafferty, 2001). A lin-
ear energy function is intrinsically limiting the CRF.
We propose neural CRFs to replace this linear energy
function by non linear energy functions that are com-
puted by a NN.

2.2 Neural conditional random fields

Neural conditional random fields is a combination of
NNs and CRFs. They extend CRFs by placing a NN
structure between input and energy function. This
NN, visualized in Figure 1, is described in detail next.

X

Y1
Y2

Y3

input layer

Neural network

Output layer

Hidden layers

Y4

Figure 1: Example of a tree-structured NeuroCRF

The NN takes an observation as input and outputs
a number of quantities which we call energy outputs2

{Ec(x,yc,w)|c,yc} parameterized by w. The NN is
feed forward with multiple hidden layers, non-linear
hidden units, and an output layer with linear output
units (i.e. a linear activation function). With this
setting, a NeuroCRF may be viewed as a standard log-
linear CRF working on the high-level representation
computed by a neural net. In the remainder of the
paper we call the top part (output layer weights) of
a NeuroCRF its CRF-part and we call the remaining
part its deep-part (see Figure 2-right). Let wnn and
wyc

c be the neural net weights of the deep-part and

2We use the terminology energy output to stress the
difference between NN outputs and model outputs y.

 179

Trinh-Minh-Tri Do,Thierry Artières

the CRF-part respectively. NeuroCRF implements the
conditional probability as:

p(y|x) ∝
∏
c∈C

e−Ec(x,yc,w) =
∏
c∈C

e〈w
yc
c ,Φc(x,wnn)〉 (3)

where Φc(x,wnn) stands for the high level representa-
tion of the input x at clique c computed by the deep
part. This is illustrated in Figure 2-left, where the last
hidden layer includes units that are grouped in a num-
ber of sets, e.g. one for every clique Φc(x,wnn). Each
output unit −Ec(x, yc,wc) is connected to Φc(x,wnn)
in the last hidden layer, with the weight vector wyc

c .
Note that the number of energy outputs for each clique
c equals |Yc|, hence there are |Yc| weight vectors wyc

c

for each clique c.

Inference in NeuroCRFs consists of finding ŷ that best
matches input x (i.e. with lowest energy):

ŷ = argmaxy p(y|x,w)
= argminy

∑
c∈C Ec(x, yc,w) (4)

This can be done in two steps. First one feeds the NN
with input x and forward information to compute all
energy outputs Ec(x, yc,w). In a second step one uses
dynamic programming to find the output ŷ with the
lowest energy.

input layer input layer

high-level features

}
} CRF-part

deep-part

Figure 2: NN architecture with non shared weights
(left) or shared weights (right).

Shared weights network architecture. Various
architectures may be used for the NN. One can use
a different NN for every energy function, which may
result in overfitting and high computational cost. In-
stead, as we presented NeuroCRFs above, one may
share weights to compute a high level representa-
tion per clique (and the corresponding energy out-
puts) (Figure 2-left). Or one may choose to com-
pute a shared high level representation of the input,
from which all energy outputs are computed (Figure
2-right). In this latter case a NeuroCRF implements
the conditional probability as:

p(y|x) ∝
∏
c∈C

e〈w
yc
c ,Φ(x,wnn)〉 (5)

2.3 LINEAR CHAIN NEUROCRFS FOR
SEQUENCE LABELING

While the NeuroCRF framework we propose is quite
general, in our experiments we focused on linear chain

NeuroCRFs based on a first-order Markov chain struc-
ture (Figure 3). This allows investigating the potential
power of NeuroCRFs on standard sequence labeling
tasks. In a chain-structured NeuroCRF there are two
kinds of cliques:

• local cliques (x, yt) at each position t, whose po-
tential functions are noted by ψt(x, yt), and cor-
responding energy functions are noted by Eloc

• transition cliques (x, yt−1, yt) between two succes-
sive positions at t−1 and t, whose potential func-
tions are noted as ψt−1,t(x, yt−1, yt), and corre-
sponding energy functions are noted by Etra

Yt-1 Y t

X t
X t-1 X t+1

Yt+1

input layer

high-level features

Figure 3: A chain-structured NeuroCRF

In such models it is usual to consider that energy func-
tions are shared between similar cliques at different
times (i.e. positions in the graph) (Lafferty, 2001)3.
Then energy functions take an additional argument to
specify the position in the graph, which is time t.

ψt(x, yt) = e−Eloc(x,t,yt,w)

ψt−1,t(x, yt−1, yt) = e−Etra(x,t,yt−1,yt,w) (6)

The additional parameter t allows the consideration of
a part of input x, whose size may vary and cannot be
handled by a fixed size input NN. Time is used to build
the input to the NN in order to compute Eloc(x, t, yt).
It may consist of xt, the tth element of x only (see
Figure 3), or it may include a richer temporal context
such as (xt−1, xt, xt+1). At the end, the conditional
probability of output y given input x is defined as:

p(y|x,w) = e
−

∑
t≥1 Eloc(x,t,yt,w)−

∑
t>1 Etra(x,t,yt−1,yt,w)

Z(x)
(7)

with Z(x) being the normalization factor. With this
modeling, one can derive a compact architecture of
a NN with |L| + |L|2 outputs to compute all energy
outputs.

3These authors consider two set of parameters, one for
local cliques and one for transition cliques.

 180

Neural conditional random fields

3 PARAMETER ESTIMATION

Let (x1,y1), ..., (xn,yn) ∈ X ×Y be a training set of n
input-output pairs. We seek parameters w such that:

yi = argmax
y∈Y

p(y|xi,w) (8)

This translates into a general optimization problem:

min
w

λΩ(w) +R(w) (9)

where R(w) = 1
n

∑
iRi(w) is a data-fitting measure-

ment (e.g. empirical risk), and Ω(w) is a regularization
term, with λ being a regularization factor that is used
to find a tradeoff between a good fit on training data
and a good generalization. A common choice of Ω(w)
is to use L2 regularization.

Now, we discuss different criterion for training Neuro-
CRFs. Then, we explain how we optimize these cri-
terion to learn NeuroCRFs. Finally, we discuss about
regularization and evoke semi-supervised learning.

3.1 CRITERIA

There are many discriminative criteria for training
CRFs (more generally log-linear models), which can
all be used for learning NeuroCRFs as well.

Probabilistic criterion. In (Lafferty, 2001), esti-
mation of CRF parameters w was done by maximizing
the conditional likelihood (CML) which results in:

RCML
i (w) = − log p(yi|xi,w)

=
∑

c Ec(xi, yi
c,w)

+
∑

y∈Y exp[−
∑

c Ec(xi, yc,w)]
(10)

Large margin criterion. The large margin method
focuses more directly on giving highest discriminant
score to the correct output. In NeuroCRFs, the dis-
criminant function is a sum of energy functions over
cliques (see Eq. (4)):

F (x,y,w) = −
∑
c∈C

Ec(x, yc,w) (11)

Large margin training for structured output (Taskar
et al., 2004) aims at finding w so that:

F (xi,yi,w) ≥ F (xi,y,w) + ∆(yi,y) ∀y ∈ Y (12)

where ∆(yi,y) allows taking into account differences
between labelings (e.g. Hamming distance between y
and yi). We assume a decomposable loss (alike Ham-
ming distance) such that ∆(yi,y) =

∑
c δ(y

i
c, yc) so

that it can be factorized along the graph structure and

integrated in the dynamic programming pass needed
to compute argmaxy∈Y p(y|x).

The elementary loss function of NeuroCRFs is then:

RLM
i (w)

= maxy∈Y F (xi,y,w)− F (xi,yi,w) + ∆(yi,y)
= maxy∈Y

∑
c ∆Ec(xi, yi

c, yc,w) + δ(yi
c, yc)

(13)
with ∆Ec(xi, yi

c, yc,w) = Ec(xi, yi
c,w)−Ec(xi, yc,w).

Perceptron approach. Perceptron learning is a
simple approach for discriminative training which has
been originally proposed for training linear classifiers
(Rosenblatt, 1988) but can also be applied to graphi-
cal models (Collins, 2002). The idea can be extended
to NeuroCRFs by considering the following loss term:

RPerc
i (w) = max

y∈Y

∑
c

Ec(xi, yi
c,w)−

∑
c

Ec(xi, yc,w)

(14)
which is very similar to the large margin criterion.

3.2 LEARNING

Due to non-convexity, initialization is a crucial step
for NN learning, especially in the case of deep archi-
tectures (see (Erhan et al., 2009) for an analysis). For-
tunately, an unsupervised greedy-wise pretraining al-
gorithm for deep architectures has recently been pro-
posed to tackle this problem with notable success (Hin-
ton et al., 2006). (Bengio et al., 2006) provides a com-
prehensible analysis about greedy pretraining. We de-
scribe in detail NN initialization first, then we discuss
fine tuning the NeuroCRF.

3.2.1 INITIALIZATION

Initialization of hidden layers in the NeuroCRF is done
incrementally as it has been popularized for learning
deep architectures. In our implementation, the deep-
part of the NeuroCRF is initialized layer by layer in an
unsupervised manner using restricted Boltzmann ma-
chines4 (RBMs) as proposed by Hinton and colleagues
(Hinton et al., 2006). Depending on the task, inputs
may be real valued or binary valued, this may be han-
dled by slightly different RBMs. We considered both
cases in our experiments, while coding (hidden) layers
always consisting of binary units.

Once a cascade of successive RBMs have been trained
one at a time, one obtains a deep belief net which is
then transformed into a feed forward NN which imple-
ments the deep-part of the NeuroCRF (without out-
put layer). Once the deep-part is initialized, the NN is

4The NN weights are initialized with zero-mean Gaus-
sian noise before RBM learning.

 181

Trinh-Minh-Tri Do,Thierry Artières

used to compute a high-level representation (i.e. the
vector of activations on the last hidden-layer) of input
samples. The CRF-part may then be initialized by
training (in a supervised way) a linear CRF with this
high-level coding of input samples. As we said, such a
linear CRF is actually an output layer which is stacked
over the deep part. The union of the weights of the
deep-part and of the CRF-part constitutes an initial-
ization solution w0 which is fine tuned, as described
below, using supervised learning.

3.2.2 FINE TUNING

Fine tuning aims at learning the NeuroCRF parame-
ters globally based on an initial and reasonable solu-
tion. None of the criterion we discussed earlier (Sub-
section 3.1) are convex since we naturally consider NNs
with non linear (sigmoid) activation functions in hid-
den layers. However, provided one can compute an ini-
tial and reasonable solution and provided one can com-
pute the gradient of the criterion with respect to NN
weights, one can use any gradient-based optimization
method such as stochastic gradient or bundle method
to learn the model and reach a (eventually local) mini-
mum. We show now how to compute the gradient with
respect to the NN weights.

As long as Ri(w) is continuous and there is an effi-
cient method for computing ∂Ri(w)

∂Ec(x,yc,w) (this is true
for all criteria discussed in the previous section) the
(sub)gradient of R(w) with respect to w can be com-
puted with a standard backpropagation procedure.
Let Ei be the set of energy outputs corresponding to
input xi. Using the chain rule for every ∂Ri(w)

∂w :

∂R(w)
∂w

=
1
n

∑
i

∂Ri(w)
∂w

=
1
n

∑
i

∂Ri(w)
∂Ei

∂Ei

∂w
(15)

where ∂Ei

∂w is the Jacobian matrix of the NN outputs
(for input xi) with respect to weights w.

Then by setting ∂Ri(w)
∂Ei

as backpropagation errors of
the NN output units, we can backpropagate and get
∂Ri(w)

∂w using the chain rule over hidden layers.

3.2.3 REGULARIZATION AND
SEMI-SUPERVISED LEARNING

In our implementation, we used the initial solution for
building a quadratic regularization term of the form:

Ω(w) =
1
2
‖w −w0‖2 (16)

The idea is that since the deep-part of a NeuroCRF is
initialized in an unsupervised manner, we may expect
using this solution for regularizing will avoid overfit-
ting during fine tuning (we found that this gives better

experimental results than using standard regulariza-
tion by 0). Since the CRF-part is not initialized with
a generative model, we regularize this part with 0 -
both for initialization and fine-tuning.

Note that NeuroCRF permits semi-supervised learn-
ing in a very natural way. Indeed one may easily use
unlabeled data for initializing the deep-part while la-
beled data are used in fine tuning only. One can ex-
pect that a good initialization of the deep-part will
improve the global performance of a NeuroCRF, since
the deep-part plays an important role of finding a rel-
evant high-level representation of the input. It is a
perspective of our work that we did not explore yet.

4 EXPERIMENTS

We performed experiments on two sequence labeling
tasks with two well-known datasets. We first investi-
gate the behaviour of NeuroCRFs in a first series of ex-
periments on Optical Character Recognition with the
OCR dataset (Kassel, 1995). Then we report exper-
imental comparative results of NeuroCRFs and state
of the art methods for the more complex task of au-
tomatic speech recognition using the TIMIT dataset
(Lamel et al., 1986). In both cases we replicated ex-
perimental settings of previous works in order to get
fair comparison, building on the compilation of Ben
Taskar5 for the OCR dataset, and using standard par-
titioning of the data and standard preprocessing for
the TIMIT corpus. We use linear chain NeuroCRF for
both tasks.

In fine-tuning we use a variant of our batch optimizer
named non-convex regularized bundle method (Do &
Artières, 2009) rather than a stochastic gradient pro-
cedure. As usual in bundle methods, our stopping con-
dition is based on the Gap (G) between the Best ob-
served objective function value (B) and the minimum
of the approximation. We stop when the ratio of G/B
is below 1%. This is a good trade-off for reaching low
error-rates with a limited number of iterations (100 for
OCR, 150 for ASR experiments).

4.1 OPTICAL CHARACTER
RECOGNITION

OCR dataset consists of 6877 words which correspond
to roughly 52K characters (Kassel, 1995; Taskar et al.,
2004). OCR data are sequences of isolated characters
(each represented as a binary vector of dimension 128)
belonging to 26 classes. The dataset is divided in 10
folds for cross validation. We investigated two settings,
using a large training set by training on 9 folds and
testing on 1 fold (this is the large setting) and using a

5http://ai.stanford.edu/∼btaskar/ocr/

 182

Neural conditional random fields

small one by training on 1 fold and testing on 9 folds
(this is the small setting). Note that OCR results
are cross-validation results, we do not use any extra
validation set to set lambda.

We learned NeuroCRFs with one or two hidden layers.
Transition energy outputs has only one connection to
a bias unit, meaning that we do not use any input in-
formation for building transition energy. We learned
standard RBMs for initializing the deep part of Neu-
roCRFs, which are learned with 50 iterations through
the training set. Learning is performed using 1 step
Contrastive Divergence.

Influence of network architecture. Figure 4 re-
ports error rates gained on the small setting with Neu-
roCRF with one or two hidden layers of varying size.
As can be seen, increasing the size of hidden layers im-

50 100 200 300 400 500
0.08

0.1

0.12

0.14

0.16

number of hidden units per layer

er
ro

r
ra

te

1 hidden layer
2 hidden layers

Figure 4: Influence of NN architecture on OCR dataset
(small training set).

proves performance for one hidden layer and two hid-
den layer NeuroCRFs. Also two hidden layers architec-
tures systematically outperform single hidden layer ar-
chitectures. Note that whatever the number of hidden
layers, performance reaches a plateau when increasing
the hidden layers’ size. However the plateau is lower
and reached faster for the two hidden layer architec-
ture. These results suggest that increasing both the
size of hidden layers and the number of hidden layers
may significantly improve performance.

Accuracy. We compared the performance of two
variants of NeuroCRFs, one trained with conditional
maximum likelihood (CML), the other one trained
with a large margin criterion (LM) with state of the art
methods : linear and cubic M3Ns, linear CRFs, con-
ditional neural fields (CNFs) with one hidden layer.
NeuroCRFs have 2 hidden layers of 200 units each.
Table 1 reports cross validation error rates of these
models for the small setting and the large setting. We
also report the performance of initial solutions (i.e.
before fine tuning) for NeuroCRFs (in brackets).

NeuroCRFs significantly outperform all other meth-
ods, including M3N with non-linear kernel (whose re-

Table 1: Comparative error rates of NeuroCRF and
state of the art methods on OCR dataset with either a
small and a large training sets. Performance of Neuro-
CRF before fine tuning are indicated in brackets. Re-
sults of SVM cubic, M3N cubic and CNF come from
(Taskar et al., 2004; Peng et al., 2009).

small large
CRF linear 0.2162 0.1420
M3N linear 0.2113 0.1346
SVM cubic 0.19 not available
M3N cubic 0.13 not available
CNF 0.131 not available
NeuroCRFCML 0.1080(0.1224) 0.0444(0.0697)
NeuroCRFLM 0.1102(0.1221) 0.0456(0.0736)

sults are not reported for the large setting due to scala-
bility). Also looking at the performance of NeuroCRF
before fine tuning shows that initialization by RBMs
and CRFs indeed produce a good starting point, but
fine tuning is essential for obtaining optimal perfor-
mance. Finally, one sees here that both NeuroCRF
training criteria are similar with a slight advantage of
conditional likelihood criterion on large margin crite-
rion. Surprisingly, we observed that the large margin
criterion required more iterations than the conditional
likelihood criterion6. In the following, we only consid-
ered NeuroCRFs trained with the CML criterion.

Note that (Perez-Cruz & Pontil, 2007) address the
structured prediction with a different way and they
are able to reach an error rate of 0.125 in small setting
and 0.031 in large setting (using RBF kernel). Their
approach considers an approximated problem that can
be transformed into many multiclass SVM problems.
Nevertheless, the non-linear SVM problems still scale
quadratically with the problem size. Such a scaling
prevents working with large data sets with millions of
tokens (such as ASR experiments in next section).

Training time. We investigated the learning time
of NeuroCRF and its scalability. We performed ex-
periments on the OCR dataset both for small and
large settings. Training time decomposes into RBM
unsupervised learning, linear CRF initialization, and
fine tuning the whole model. Roughly speaking RBM
learning and fine tuning take about 45% of the time
each, while CRF initialization takes about 10%. More
importantly, overall training time in the large setting
took about 10 times the training time in the small set-
ting while the training dataset is 9 times bigger, which

6Actually we did not succeed at optimizing the large
margin criterion. We conjecture that the parameter search
space might be more complex in this case.

 183

Trinh-Minh-Tri Do,Thierry Artières

suggests a quasi-linear scaling with the problem size.

4.2 AUTOMATIC SPEECH
RECOGNITION

We performed ASR experiments on the TIMIT dataset
(Lamel et al., 1986) with standard train-test partition-
ing. The wave signal was preprocessed using the pro-
cedure described in (Sha & Saul, 2007), except that
we do not use whitening by PCA. The 39-dimensional
MFCC are simply normalized to have zero mean and
unit variance. There are roughly 1.1 million frames
in the training set, 120K frames and 57K frames re-
spectively in the development and test sets. We used
2-layered NeuroCRFs trained with the CML criterion.

Handling continuous feature. Note here that in-
puts (real valued vectors of MFCC coefficients) are
continuous while RBMs originally use binary logistic
units for both visible and hidden variables. We used
an extension of RBM for dealing with continuous vari-
ables that have Gaussian noise (In our implementation
we consider a Gaussian noise with standard derivation
0.2) (Taylor et al., 2007). This Gaussian-Binary RBM
was trained for 100 passes through the training data of
1.1M frames, using one step Contrastive Divergence.
Once this first RBM is trained, we forward the input
to the hidden layer and obtain a binary-logistic repre-
sentation of the speech data, which is the inputs (i.e.
visible data) for learning a second binary RBM. Since
binary RBM converge much faster, we performed only
10 learning iterations through the training data for the
second layer. The remaining initialization is performed
as in section 3.2.1.

Table 2: Comparative phone recognition error rate on
TIMIT dataset for discriminant and non discriminant
HMM systems and for two hidden layer NeuroCRFs
(of 500 or 1000 hidden units each) trained with CML.

CDHMM
ML CML MCE PT LM

1 Gaussian 40.1 36.4 35.2 35.6 31.2
2 Gaussians 36.5 34.6 33.2 34.5 30.8
4 Gaussians 34.7 32.8 31.2 32.4 29.8
8 Gaussians 32.7 31.5 31.9 30.9 28.2

NeuroCRF (CML)
500x500 29.6

1000x1000 29.1

Results. Table 2 reports the phone error rates for
CDHMMs and NeuroCRFs with increasing complex-
ity (number of Gaussians in CDHMMs or number of
hidden units in NeuroCRFs). We compared Neuro-

CRFs with non discriminant CDHMMs (i.e. Maxi-
mum Likelihood) and with state of the art approaches
for learning CDHMMs with a discriminant criterion,
Maximum Conditional Likelihood (CML) (Woodland
& Povey, 2002), Minimum Classification Error (MCE)
(Juang & Katagiri, 1992), Large margin (LM) (Sha &
Saul, 2007), Perceptron learning (PT) (Cheng et al.,
2009) (note that all results come from a compilation
in (Sha & Saul, 2007) and from (Cheng et al., 2009)).

These results call for a few comments. First increasing
the hidden layers’ size improves the NeuroCRF error
rate. Unfortunately we do not know if it still improves
when using larger hidden layers (due to lack of time)
but one can reasonably expect that even better results
may be reached by using larger hidden layers and/or
adding hidden layers. Second, NeuroCRFs outperform
all other discriminant and non discriminant methods
except Large Margin training of (Sha & Saul, 2007)
when using up to 8 Gaussian distributions per state.
While this may not look like an impressive result at
first glance, we claim this result to be very promis-
ing. Indeed, all other systems in Table 2 rely on the
learning of a preliminary CDHMM system, which is
then used as initialization and/or for regularization.
Hence all these systems integrate prior information
from decades of research on how to learn and tune
a non discriminant CDHMM for speech. In contrast
NeuroCRF are trained from scratch with a non super-
vised initialization and a supervised fine tuning, they
require no prior information.

Note that we did not compare NeuroCRF to multiple
states per phone CDHMM systems as those tradition-
ally used in ASR although such systems may reach bet-
ter performance (especially for ML CDHMM). Reason
is that comparison would have not been so fair. Indeed
one may imagine extending this work in order to have
multiple nodes per phone in NeuroCRF and one may
expect this to provide even better results, that would
be more directly comparable with multiples states per
phone HMM systems.

5 CONCLUSION

We presented a model combining CRFs and deep NNs
aiming at taking advantage of both the ability of deep
networks to extract high level features and the dis-
criminant power of CRFs for sequence labeling tasks.
Results on OCR data show significant improvement
over state of the art methods and demonstrate the rel-
evance of the combination. On the larger scale speech
recognition task our systems outperform most state of
the art discriminant systems without relying on any
prior in contrast to all other systems relying on an ini-
tial solution gained with a non discriminant criterion.

 184

Neural conditional random fields

Acknowledgements

Authors acknowledge the support by PASCAL 2 EU
Network of Excellence.

References

Altun, Y., Johnson, M., & Hofmann, T. (2003). Inves-
tigating loss functions and optimization methods for
discriminative learning of label sequences. EMNLP.

Bengio, Y., Lamblin, P., Popovici, D., & Larochelle, H.
(2006). Greedy layer-wise training of deep networks
(Technical Report 1282). Université de Montréal.

Bengio, Y., & LeCun, Y. (2007). Scaling learning algo-
rithms towards ai. In Large scale kernel machines.
Cambridge, MA: MIT Press.

Bottou, L., Bengio, Y., & LeCun, Y. (1997). Global
training of document processing systems using
graph transformer networks. In Proc. of Com-
puter Vision and Pattern Recognition (pp. 490–494).
Puerto-Rico. IEEE.

Cheng, C.-C., Sha, F., & Saul, L. K. (2009). Matrix
updates for perceptron training of continuous den-
sity hidden markov models. ICML (pp. 153–160).

Collins, M. (2002). Discriminative training methods
for hidden markov models: theory and experiments
with perceptron algorithms. EMNLP (pp. 1–8).

Collobert, R., Sinz, F., Weston, J., & Bottou, L.
(2006). Trading convexity for scalability. ICML.

Do, T.-M.-T., & Artières, T. (2009). Large margin
training for hidden Markov models with partially
observed states. ICML (pp. 265–272). Omnipress.

Erhan, D., Manzagol, P.-A., Bengio, Y., Bengio, S.,
& Vincent, P. (2009). The difficulty of training
deep architectures and the effect of unsupervised
pre-training. AISTATS.

Graves, A., Fernández, S., Gomez, F., & Schmidhuber,
J. (2006). Connectionist temporal classification: la-
belling unsegmented sequence data with recurrent
neural networks. ICML (pp. 369–376).

Hinton, G. E., Osindero, S., & Teh, Y.-W. (2006). A
fast learning algorithm for deep belief nets. Neural
Computation, 18, 1527–1554.

Juang, B., & Katagiri, S. (1992). Discriminative learn-
ing for minimum error classification. IEEE Trans.
Signal Processing, Vol.40, No.12.

Kassel, R. H. (1995). A comparison of approaches to
on-line handwritten character recognition. Doctoral
dissertation, Cambridge, MA, USA.

Lafferty, J. (2001). Conditional random fields: Proba-
bilistic models for segmenting and labeling sequence
data. ICML (pp. 282–289). Morgan Kaufmann.

Lafferty, J., Zhu, X., & Liu, Y. (2004). Kernel condi-
tional random fields: representation and clique se-
lection. ICML.

Lamel, L., Kassel, R., & Seneff, S. (1986). Speech
database development: Design and analysis of the
acoustic-phonetic corpus. DARPA (pp. 100–110).

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P.
(1998). Gradient-based learning applied to docu-
ment recognition. Proceedings of the IEEE, 86.

Mccallum, A., Freitag, D., & Pereira, F. (2000). Max-
imum entropy markov models for information ex-
traction and segmentation. ICML (pp. 591–598).

Peng, J., Bo, L., & Xu, J. (2009). Conditional neural
fields. NIPS.

Perez-Cruz, F, G. Z., & Pontil, M. (2007). Condi-
tional graphical models. In G. H. Bakir, T. Hof-
mann, B. Schlkopf, A. J. Smola, B. Taskar and
S. V. N. Vishwanathan (Eds.), Predicting structured
data. MIT Press.

Qi, Y., Kuksa, P. P., Collobert, R., Sadamasa, K.,
Kavukcuoglu, K., & Weston, J. (2009). Semi-
supervised sequence labeling with self-learned fea-
tures. ICDM’09. IEEE.

Rosenblatt, F. (1988). The perceptron: a probabilistic
model for information storage and organization in
the brain. Neurocomputing: foundations of research,
89–114.

Sato, K., & Sakakibara, Y. (2005). Rna secondary
structural alignment with conditional random fields.
ECCB/JBI (p. 242).

Sha, F., & Saul, L. K. (2007). Large margin hid-
den markov models for automatic speech recogni-
tion. NIPS 19 (pp. 1249–1256). MIT Press.

Taskar, B., Guestrin, C., & Koller, D. (2004). Max-
margin markov networks. NIPS 16. MIT Press.

Taylor, G. W., Hinton, G. E., & Roweis, S. T. (2007).
Modeling human motion using binary latent vari-
ables. In Nips, 1345–1352. MIT Press.

Woodland, P., & Povey, D. (2002). Large scale dis-
criminative training of hidden markov models for
speech recognition. Computer Speech and Language,
16, 25–47(23).

