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Abstract

In time series analysis, inference about cause-
effect relationships among multiple times se-
ries is commonly based on the concept of
Granger causality, which exploits temporal
structure to achieve causal ordering of de-
pendent variables. One major problem in the
application of Granger causality for the iden-
tification of causal relationships is the pos-
sible presence of latent variables that affect
the measured components and thus lead to
so-called spurious causalities. In this paper,
we describe a new graphical approach for
modelling the dependence structure of mul-
tivariate stationary time series that are af-
fected by latent variables. To this end, we
introduce dynamic maximal ancestral graphs
(dMAGs), in which each time series is rep-
resented by a single vertex. For Gaussian
processes, this approach leads to vector au-
toregressive models with errors that are not
independent but correlated according to the
dashed edges in the graph. We discuss
identifiability of the parameters and show
that these models can be viewed as graph-
ical ARMA models that satisfy the Granger
causality restrictions encoded by the associ-
ated dynamic maximal ancestral graph.

1 INTRODUCTION

The notion of causality and the identification of new
causal relationships play a central role in scientific re-
search. In time series analysis, inference about cause-
effect relationships is commonly based on the concept
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of Granger causality (Granger 1969), which is defined
in terms of predictability and exploits the direction
of the flow of time to achieve a causal ordering of
dependent variables. This concept of causality does
not rely on the specification of a scientific model and
thus is particularly suited for empirical investigations
of cause-effect relationships. On the other hand, it is
commonly known that Granger causality basically is a
measure of association between the variables and thus
can lead to so-called spurious causalities if important
relevant variables are not included in the analysis (e.g.,
Hsiao 1982). Since in most analyses involving time se-
ries data the presence of latent variables that affect the
measured components cannot be ruled out, this raises
the question whether and how the causal structure can
be recovered from time series data.

Recent advances in the understanding of such latent
variable structures were based on graphical models,
which provide a general framework for describing and
inferring causal relations (e.g., Pearl 2000, Lauritzen
2001). For time series, this graphical approach for the
discussion of causal relationships in systems that are
affected by latent variables has been considered first in
Eichler (2005). Based on previously developed graph-
ical representations of Granger-causal relationships in
multivariate time series (Eichler 2001, 2007), a new
class of path diagrams for the representation of the in-
terrelationships in multivariate time series with latent
variables was introduced. These em general path dia-
grams allow a better encoding of the conditional inde-
pendencies if the system is affected by latent variables.
In Eichler (2005), a multi-step procedure for the iden-
tification of such general path diagrams was proposed,
where each step requires the fitting of a new autore-
gressive model. As a consequence, this approach pro-
hibits the application of most model selection strate-
gies as well as the statistical comparision of two graph-
ical representations of the dependence structure of a
process.

In this paper, we consider an alternative approach and



         194

Graphical Modelling of Time Series with Latent Variables

present a new class of graphical time series models that
are associated with general path diagrams and, in par-
ticular, dynamic maximal ancestral graphs (dMAGs).
In section 2, we review path diagrams for vector au-
togression processes and their relation to the notion
of Granger causality as well as their Markov proper-
ties. In section 3, we discuss graphical representations
of multivariate time series affected by latent variables
and introduce dMAGs. The parametric model for
Gaussian processes is presented in Section 4; Section
5 contains some concluding remarks.

2 VECTOR AUTOREGRESSIONS

AND PATH DIAGRAMS

Let XV =
(

XV (t)
)

t∈Z with XV (t) =
(

Xv(t)
)′

v∈V
be

a stationary Gaussian process with mean zero and co-
variances Γ(u) = EXV (t)XV (t−u)′. Throughout the
paper, we assume that XV has a mean-square conver-
gent autoregressive representation

XV (t) =
∞
∑

u=1
Φ(u)XV (t − u) + εV (t), (1)

where Φ(u) is a square summable sequence of V × V
matrices and

(

εV (t)
)

is a Gaussian white noise process
with non-singular covariance matrix Σ. The autore-
gressive structure of the process XV can be visualized
by a path diagram in which the vertices correspond
to the variables of XV while the edges—arrows and
lines—between vertices indicate non-zero coefficients
in the autoregressive representation of XV .

Definition 2.1. Let XV be a stationary Gaussian
process with autoregressive representation (1). Then
the path diagram associated with XV is the graph
G = (V, E) with vertex set V and edge set E such
that for distinct a, b ∈ V

(i) a� b /∈ E ⇔ Φba(u) = 0 ∀u ∈ N;

(ii) a � b /∈ E ⇔ Σab = Σba = 0.

Since path diagrams of this form may contain two
types of edges, they will be referred to as mixed graphs.
Furthermore, we note that two vertices a and b may
be connected by up to three edges, namely a � b,
a � b, and a � b. Similar path diagrams have
been used to represent linear structural equation mod-
els (e.g., Wright 1934, Goldberger 1972, Koster 1999,
Drton et al. 2009)1.

1In path diagrams for structural equation systems, cor-
related errors commonly are represented by bi-directed
edges (�) instead of dashed lines (� ). Since in our ap-
proach directions are associated with temporal ordering,
we prefer (dashed) undirected edges to indicate correlation
between the error variables. Dashed edges with a similar
connotation are used for covariance graphs (e.g. Cox and

2.1 GRANGER CAUSALITY AND PATH

DIAGRAMS

One fundamental tool for the investigation of the
dynamic dependencies and the causal relationships
among the variables of a multivariate time series is
the concept of Granger causality (Granger 1969). This
concept of causality is based on the common sense con-
ception that causes always precede their effects. This
temporal ordering implies that the past and present
values of a series X that influences another series Y

should help to predict future values of this latter series
Y . Furthermore, the improvement in the prediction
should persist after any other relevant information for
the prediction has been exploited. To make this idea
more precise, let XA(t) =

(

XA(s)
)

s≤t
for any A ⊆ V

denote the past and present values of XA at time t.

Definition 2.2. Let A and B be disjoint subsets of
S ⊆ V . Then XA is Granger-noncausal for XB with
respect to XS , denoted as XA 9 XB [XS ], ifE(

(XB(t + 1)
∣

∣XS(t)
)

= E(

(XB(t + 1)
∣

∣XS\A(t)
)

for all t ∈ Z. Furthermore, XA and XB are said
to be contemporaneously uncorrelated with respect to
XS , denoted as XA ≁ XB [XS ], if

corr
(

XA(t + 1), XB(t + 1)
∣

∣XS(t)
)

= 0

for all t ∈ Z.

It is well known that the pairwise Granger-causal re-
lationships among the variables of a Gaussian process
XV are reflected in the autoregressive coefficients of
the process and, thus, in the presence and absence of
edges in the associated path diagram. More precisely,
we have the following result (see Eichler 2007).

Lemma 2.3. Let G = (V, E) be the path diagram as-

sociated with a stationary Gaussian process XV of the

form (1). Then

(i) a� b /∈ E ⇔ Xa 9 Xb [XV ]

(ii) a � b /∈ E ⇔ Xa ≁ Xb [XV ]

Because of this result, the path diagram associated
with a process XV has also been called the Granger

causality graph of XV (e.g., Eichler 2006).

2.2 MARKOV PROPERTIES

Under the assumptions imposed on XV , more general
Granger-causal relationships than those in Lemma 2.3
can be derived from the path diagram associated with
XV . This global Markov interpretation is based on

Wermuth 1996), whereas undirected edges (� ) are com-
monly associated with nonzero entries in the inverse of the
variance matrix (e.g. Lauritzen 1996).
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a path-oriented concept of separating subsets of ver-
tices in a mixed graph, which has been used previously
to represent the Markov properties of linear struc-
tural equation systems (e.g. Spirtes et al. 1998, Koster
1999). Following Richardson (2003) we will call this
notion of separation in mixed graphs m-separation.

Let G = (V, E) be a mixed graph and a, b ∈ V . A path

π in G is a sequence π = 〈e1, . . . , en〉 of edges ei ∈ E
with an associated sequence of nodes v0, . . . , vn such
that ei is an edge between vi−1 and vi. The vertices
v0 and vn are the endpoints while v1, . . . , vn−1 are the
intermediate vertices of the path. Notice that paths
may be self-intersecting since we do not require that
the vertices vi are distinct. An intermediate vertex c
on a path π is said to be an m-collider on π if the edges
preceding and suceeding c both have an arrowhead or
a dashed tail at c (i.e.� c�, � c � , � c�,� c � ); otherwise c is said to be an m-noncollider on
π. A path π between a and b is said to be m-connecting

given a set C if

(i) every m-noncollider on π is not in C and

(ii) every m-collider on π is in C;

otherwise we say that π is m-blocked given C. If all
paths between a and b are m-blocked given C, then a
and b are said to be m-separated given C. Similarly,
two sets A and B are said to be m-separated given
C if for every pair a ∈ A and b ∈ B, a and b are
m-separated given C.

With this notion of separation, it can be shown that
path diagrams for multivariate time series have a sim-
ilar Markov interpretation as path diagrams for linear
structural equation systems (cf Koster 1999), that is,
if two sets A and B are m-separated given a third set
C, then the corresponding series XA and XB are con-
ditionally independent given XC ; for details we refer
to Eichler (2007). Derivation of such conditional inde-
pendence statements requires that all paths between
two sets are m-blocked. In contrast, for the derivation
of Granger-causal relationships, it suffices to consider
only a subset of these paths, namely those having an
arrowhead at one endpoint. For a formal definition,
we say that a path π between a and b is b-pointing

if it has an arrowhead at the endpoint b; similarly, a
path between sets A and B is said to be B-pointing

if it is b-pointing for some b ∈ B. Then, to establish
Granger noncausality from XA to XB, it suffices to
consider only all B-pointing paths between A and B.
Similarly, a graphical condition for contemporaneous
correlation can be obtained based on bi-pointing path,
which have an arrowhead at both endpoints.

Definition 2.4. A stationary Gaussian process XV is
Granger-Markov for a graph G if, for all disjoint sub-
sets A, B, C ⊆ V , the following two conditions hold:

(i) if every B-pointing path between A and B is m-
blocked given B∪C, then XA is Granger-noncausal
for XB with respect to XA∪B∪C ;

(ii) if the sets A and B are not connected by an undi-
rected edge (� ) and every bi-pointing path be-
tween A and B is m-blocked given A ∪ B ∪ C, then
XA and XB are contemporaneously uncorrelated
with respect to XA∪B∪C .

With this definition, it can be shown that path dia-
grams for vector autoregressions can be interpreted in
terms of such global Granger-causal relationships.

Theorem 2.5. Let XV be a stationary Gaussian pro-

cess given by (1), and let G be the associated path di-

agram. Then XV is Granger-Markov for G.

3 SYSTEMS WITH LATENT

VARIABLES

The notion of Granger causality is based on the as-
sumption that all relevant information in included in
the analysis (Granger 1969, 1980). It is well known,
that the omission of important variables can lead to
temporal correlations among the observed components
that are falsely detected as causal relationships. The
detection of such so-called spurious causalities (Hsiao
1982) becomes a major problem when identifying the
structure of systems that may be affected by latent
variables.

Of particular interest will be spurious causalities of
type I, where a Granger-causal relationship with re-
spect to the complete process vanishes when only a
subprocess is considered. Since the path diagrams
from the previous section are defined, by Lemma 2.3,
in terms of the pairwise Granger-causal relationships
with respect to the complete process, they provide no
means to distinguish such spurious causalities of type
I from true causal relationships. To illustrate this re-
mark, we consider the four-dimensional vector autore-
gressive process XV with components

X1(t) = α X4(t − 2) + ε1(t),

X2(t) = β X4(t − 1) + γ X3(t − 1) + ε2(t),

X3(t) = ε3(t),

X4(t) = ε4(t),

(2)

where εi(t), i = 1, . . . , 4 are uncorrelated white noise
processes with mean zero and variance one. The true
dynamic structure of the process is shown in Fig. 1(a).
In this graph, the 1-pointing path 3 � 2 � 4 �
1 is m-connecting given S = {2}, but not given the
empty set. By Theorem 2.5, we conclude that X3 is
Granger-noncausal for X1 in a bivariate analysis, but
not necessarily in an analysis based on X{1,2,3}.
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Figure 1: Graphical representations of the four-
dimensional VAR(2) process in (2): (a) path diagram as-
sociated with X{1,2,3,4}; (b) path diagram associated with
X{1,2,3}; (c) general path diagram for X{1,2,3}.

Now suppose that variable X4 is latent. Simple deriva-
tions show (cf Eichler 2005) that the autoregressive
representation of X{1,2,3} is given by

X1(t) =
α β

1 + β2
X2(t − 1) +

α β γ

1 + β2
X3(t − 2) + ε̃1(t),

X2(t) = γ X3(t − 1) + ε̃2(t),

X3(t) = ε3(t),

where ε̃2(t) = ε2(t) + β X4(t − 1) and

ε̃1(t) = ε1(t) −
αβ

1 + β2
ε2(t − 1) +

α

1 + β2
X4(t − 2).

The path diagram associated with X{1,2,3} is depicted
in Fig. 1(b). In contrast to the graph in Fig. 1(a), this
path diagram contains an edge 3� 1 and, thus, does
not entail that X3 is Granger-noncausal for X1 in a
bivariate analysis.

As a response to such situations, two approaches have
been considered in the literature. One approach sug-
gests to include all latent variables explicitly as ad-
ditional nodes in the graph (e.g., Pearl 2000, Eich-
ler 2007); this leads to models with hidden variables,
which can be estimated, for example, by application
of the EM algorithm (e.g., Boyen et al. 1999). For a
list of possible problems with this approach, we refer
to Richardson and Spirtes (2002, §1).

The alternative approach focuses on the conditional
independence relations among the observed variables;
examples of this approach include linear structural
equations with correlated errors (e.g. Pearl 1995,
Koster 1999) and the maximal ancestral graphs by
Richardson and Spirtes (2002). In the time series
setting, this approach has been discussed by Eichler
(2005), who considered path diagrams in which dashed
edges represent associations due to latent variables.
For the trivariate subprocess X{1,2,3} in the above ex-
ample, such a path diagram is depicted in Fig. 1(c).

3.1 GENERAL PATH DIAGRAMS

We consider mixed graphs that may contain three
types of edges, namely undirected edges (� ), directed
edges (�), and dashed directed edges (�). For the

Table 1: Creation of edges by marginalizing over i.

Subpath π in G Associated edge eπ in G{i}

a� i� b a� b
a� i� b a� b
a � i� b a� b
a� i� b a� b
a� i� b a� b

sake of simplicity, we also use a� b as an abbrevia-
tion for the triple edge a��� b. Unlike path diagrams
for autoregressions, these graphs in general are not
defined in terms of pairwise Granger-causal relation-
ships, but only through the global Markov interpre-
tation according to Definition 2.4. To this end, we
simply extend the concept of m-separation introduced
in the previous section by adapting the definition of
m-noncolliders and m-colliders. Let π be a path in
a mixed graph G. Then an intermediate vertex n is
called an m-noncollider on π if at least one of the edges
preceding and suceeding c on the path is a directed
edge (�) and has its tail at c. Otherwise, c is called
an m-collider on π. With this extension, we leave all
other definition such as m-separation or pointing paths
unchanged.

The main difference between the class of mixed graphs
with directed (�) and undirected (� ) edges and
the more general class of mixed graphs that has been
just introduced is that the latter class is closed under
marginalization. This property makes it suitable for
representing systems with latent variables.

Let G = (V, E) be a mixed graph and i ∈ V . For ev-
ery subpath π = 〈e1, e2〉 of length 2 between vertices
a, b ∈ V \{i} such that i as an intermediate vertex
and an m-noncollider on π, we define an edge eπ ac-
cording to Tab. 1. Let A{i} the set of all such edges
eπ. Furthermore, let E{i} be the subset of edges in
E that have both endpoints in V \{i}. Then we de-
fine G{i} =

(

V \{i}, E{i} ∪ A{i}
)

as the graph ob-
tained by marginalizing over {i}. Furthermore, for
L = {i1, . . . , in} we set GL = ((G{i1}){i2} · · · ){in},
that is, we proceed iteratively by marginalizing over
ij, for j = 1, . . . , n. Similarly as in Koster (1999), it
can be shown that the order of the vertices does not
matter and that the graph GL is indeed well defined.

We note that the graph GL obtained by marginaliz-
ing over the set L in general contains self-loops. Sim-
ple considerations, however, show that GL is Markov-
equivalent to a graph G̃L with all subpaths of the form
a � b � b and a � b � b replaced by a�� b
and a � b, respectively, and all self-loops deleted.
It therefore suffices to consider mixed graphs without
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self-loops. We omit the details.

Now suppose that, for some subsets A, B, C ⊆ V \L,
π is an m-connecting path between A and B given S.
Then all intermediate vertices on π that are in L must
be m-noncolliders. Removing these vertices according
to Table 1, we obtain a path π′ in GL that is still m-
connecting. Since the converse is also true, we obtain
the following result.

Proposition 3.1. Let G = (V, E) be a mixed graph,

and L ⊆ V . Then it holds that, for all distinct a, b ∈
V \L and all C ⊆ V \L, every path between a and b in G
is m-blocked given C if and only if the same is true for

the paths in GL. Furthermore, the same equivalence

holds for all pointing path and for all bi-pointing paths.

It follows that, if a process XV is Markov for a graph
G, the subprocess XV \L is Markov for GL and GL

encodes all relationships about XV \L that are also
encoded in G. Fig. 2 illustrates this marginaliza-
tion property. Fig. 2(a) shows the complete path di-
agram including two latent variables L1 and L2 while
Fig. 2(b) depicts the corresponding generalized path
diagram after marginalizing over L1 and L2. The only
independence relationship encoded by both graphs is
that X1 and X3 are contemporaneously uncorrelated
in a bivariate analysis.

We note that insertion of edges according to Tab. 1
is sufficient but not always necessary for representing
the relations in the subprocess XV \L. This applies
in particular to the last two cases in Tab. 1. For an
example, we consider again the process (2) with as-
sociated path diagram in Fig. 1(a). By Tab. 1, the
subpath 1� 4� 2 should be replaced by 1� 2,
which suggests that X1 Granger-causes X2 (as does
the path 1� 4� 2 in the original path diagram),
while in fact the structure can be represented by the
graph in Fig. 1(c) (see Section 4.3).

3.2 DYNAMIC MAXIMAL ANCESTRAL

GRAPHS

For systems with latent variables, the set of Granger-
causal relationships and contemporaneous indepen-
dencies that hold for the observed process does not
uniquely determine a graphical representation within
the class of general path diagrams. As an example,
Fig. 3 displays two graphs that are Markov equiva-
lent, that is, they encode the same set of Granger-
causal and contemporaneous independence relations
among the variables. Therefore, the corresponding
graphical models—models that obey the conditional
independence constraints imposed by the graph—are
statistically indistinguishable. This suggests to choose
one unique representative for each Markov equivalence
class and to restrict model selection to these.

1

L1

2

L2

3

(a)
1 2 3

(b)

1 2 3
(c)

Figure 2: Graphical representations: (a) Full graph with
two latent variables; (b) general path diagram; (c) dynamic
maximal ancestral graph.

1
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3 4
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1

2

3 4

(b)

Figure 3: Two Markov equivalent graphs: (a) non-
ancestral graph and (b) corresponding ancestral graph.

Following Richardson and Spirtes (2002), one suit-
able choice are maximal ancestral graphs. For vertices
a, b ∈ V , we say that a is an ancestor of b if a = b
or there exists a directed path a � . . . � b in G.
The set of ancestors of b is denoted by an(b). Then
G = (V, E) is an ancestral graph if

a ∈ an(b) ⇒ a� b /∈ E. (3)

for all distinct a, b ∈ V . We note that, in contrast
to Richardson and Spirtes (2002), we do not require
acyclicity (which is hidden in the time ordering). Fur-
thermore, an ancestral graph G is maximal if addition
of further edges changes the independence models; for
details, we refer to Richardson and Spirtes (2002). We
call these graphs dynamic maximal ancestral graphs
(dMAG). For the example in Fig. 2, a Markov equiv-
alent dMAG is shown in Fig. 2(c).

4 PARAMETRIC MODELLING

In this section, we present a parametric model that is
associated with general path diagrams. In particular,
the absence of an edge in a general path diagram will
correspond to zero constraints on one or more model
parameters.

The undirected edges in path diagrams associated with
vector autoregressions are defined by the dependencies
of the error process ε. To allow dashed directed edges
in path diagrams, we weaken the restriction that the
error process ε is white noise.

More precisely, we consider multivariate stationary
Gaussian processes XV that are given by

XV (t) =
p
∑

u=1
Φ(u)XV (t − u) + εV (t), (4)

where εV is a stationary Gaussian process with mean
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zero and covariances

cov
(

εV (t), εV (t − u)
)

=

{

Ω(u) if |u| ≤ q
0 otherwise

(5)

for some q ∈ N. The distribution of these processes
can be parametrized by the vector θ = (φ, ω) with

φ = vec(Φ(1), . . . ,Φ(p))

ω =
(

vech
(

Ω(0)
)′

, vec
(

Ω(1), . . . ,Ω(q)
)′)′

,

where as usual the vec operator stacks the columns of a
matrix and the vech operator stacks only the elements
contained in the lower triangular submatrix. The pa-
rameter φ corresponds to the autoregressive structure
of the process XV while ω parametrizes the depen-
dence structure of the error process εV .

Theorem 4.1. Let XV be a stationary Gaussian pro-

cess of the form (4) and (5). Furthermore, let G =
(V, E) be a mixed graph such that:

(i) if a� b /∈ E then Φba(u) = 0 for all u > 0;

(ii) if a� b /∈ E then Ωba(u) = 0 for all u > 0;

(iii) if a � b /∈ E then Ωba(0) = Ωab(0) = 0.

Then XV is Granger-Markov for G.

Proof. For a sketch of the proof, we regard XV as a
linear equation system with correlated errors. Simi-
lar to Koster (1999), it can be shown that this system
is Markov for the path diagram G′ by representing
each variable Xv(t) as a separate node vt and inserting
edges at−u � bt and at−u � bt whenever the corre-
sponding parameters Φba(u) and Ωba(u), respectively,
are not constrained to zero. The two path diagrams G
and G′ are related by

a� b /∈ E ⇔ at−u� bt /∈ E′ ∀u ∈ N ∀t ∈ Z,

a� b /∈ E ⇔ at−u� bt /∈ E′ ∀u ∈ N ∀t ∈ Z,

a � b /∈ E ⇔ at� bt /∈ E′ ∀t ∈ Z.

Noting that every b-pointing path from a to b in the
general path diagram G corresponds to a path from
{at−u : u ∈ N} to bt in the path diagram G′ (and
similar for bi-pointing paths), the result follows from
the Markov property for G′.

4.1 IDENTIFIABILITY

In order to prove that the parameters of the model
are identifiable if the associated graph is a dMAG, we
first derive equations that are of similar form as the
Yule-Walker equations for vector autoregressions (e.g.,
Brockwell and Davis 1991).

Multiplying the model equation (4) by XV (t−h)′, we
obtain

XV (t)XV (t − h)′ =
p
∑

k=1

Φ(k)XV (t − k)XV (t − h)′

+ εV (t)XV (t − h)′
(6)

Since the assumptions imply that the characteristic
polynomial Φ(z) is invertible, XV has a moving aver-
age representation

XV (t − h) =
∞
∑

k=0

Ψ(k) εV (t − h − k),

where Ψ(0) = I. Substituting into (6) and taking
expectations, we obtain

Γ(h) =
p
∑

k=1

Φ(k)Γ(h − k) +
q−h
∑

k=0

Ω(h + k)Ψ(k)′ (7)

for u = 0, . . . , p, where we have used that Ω(h + k) =
0 if k > p − h. We note that these equations are
similar to the Yule-Walker equations for autoregressive
processes.

By condition (3), it follows that for any dashed di-
rected edge a� b in G the vertex a cannot be an an-
cestor of b, a /∈ an(b). Furthermore, the child-parent
relations among the vertices correspond to the nonzero
non-diagonal entries in the matrices Φ(k). Since the
matrix Ψ(z) is the inverse of Φ(z) = I−Φ(1)z − . . .−
Φ(p)zp, it follows by a geometric series expansion that
a /∈ an(b) implies Ψba(u) = 0 for all u ∈ N. Summa-
rizing we find that

Ωba(k) 6= 0 for some k ∈ N ⇒ Ψba(u) = 0 ∀u ∈ N.

Let ps(b) = {v ∈ V |v� b} by the set of past spouses
of b. Then if a� b ∈ E we have for h = 1, . . . , p

Γba(h) =
p
∑

u=1
Φbpa(b)(u)Γpa(b)a(h − u)

+
q−h
∑

u=0
Ωbps(b)(h + u)Ψaps(b)(u)

=
p
∑

u=1
Φbpa(b)(u)Γpa(b)a(h − u).

Hence, we get the equation system for φ

γφ = Pφ

(

Γ ⊗ I
)

P′
φ ·Pφφ

where Pφ is the projection onto the unconstrained
parameters in φ, γφ = Pφ vec

(

Γ(1), . . . ,Γ(p)) and
Γ = (Γ(u−v))u,v=1,...,p. The equation system uniquely
determines the unconstrained parameters in φ. Next,
noting that Ψ(0) = I, the parameters Ω(1), . . . ,Ω(q)
can be determined from the equations by solving (7)
iteratively for Ω(k), k = q, . . . , 1:

Ωbps(b)(h) =Γbsp(b)(h)

−
p
∑

k=1

Φbpa(b)(k)Γpa(b)ps(b)(h − k)

−
q

∑

k=h+1

Ωbps(b)(k)Ψps(b)ps(b)(k − h)′.

Finally, Ω(0) can be determined similarly.
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Figure 4: General path diagram for the trivariate process
defined in (9) and (10).

It follows that under condition (3) the model param-
eters φ and ω are uniquely determined by the covari-
ance function Γ(u) of the process, which implies that
the parameters are identifiable.

4.2 RELATION TO MULTIVARIATE

ARMA MODELS

In the following, we briefly show that the models intro-
duced in the previous section can be viewed as graph-
ical multivariate ARMA models that satisfy the con-
ditional independence constraints encoded by general
path diagrams. We note that under the assumptions
the error process ε has a moving average representa-
tion. Since the covariance function Ω(u) vanishes for
|u| > q, it follows that the moving average representa-
tion is of order q and we have

εV (t) =
q

∑

u=0
Θ(u)ηV (t − u)

where Θ(0) = I and ηV is a Gaussian white noise
process with mean zero and covariance matrix Σ. The
coefficients of this moving average representation are
uniquely determined by the equation system

Ω(v) =
q−v
∑

u=0
Θ(u)′ ΣΘ(u + v), (8)

which can be iteratively solved for Θ(u) and Σ (Tunni-
cliffe Wilson 1972). It follows that the process XV can
be represented as a multivariate ARMA(p,q) process

XV (t) =
p
∑

u=1
Φ(u)XV (t − u)

+
q

∑

u=1
Θ(u)ηV (t − u) + ηV (t).

We note that, because of (8), the zero constraints on
the matrices Ω(u) do not translate into equally simple
constraints on the parameters Θ(1), . . . ,Θ(q) and Σ.

4.3 EXAMPLE

As an illustration, we consider the trivariate process
XV given by

X1(t) = φ X2(t − 1) + ε̄1(t),

X2(t) = ε̄2(t), (9)

X3(t) = ε̄3(t)

with error processes

ε̄1(t) = α ε4(t − 2) + ε1(t),

ε̄2(t) = δ ε5(t − 2) + ε2(t), (10)

ε̄3(t) = β ε4(t − 1) + γ ε5(t − 1) + ε1(t),

where ε1(t), . . . , ε5(t) are independent and identically
distributed with mean 0 and variance σ2. The pro-
cesses ε4 and ε5 can be viewed as latent variables act-
ing as common confounders for X3 and X1 respectively
for X3 and X2. The process X{1,2,3} belongs to the
graphical model associated with the general path dia-
gram G in Fig. 4. The model has orders p = 1 and
q = 1 and parameters given by

Φ(1) =





0 φ 0
0 0 0
0 0 0



 , Ω(0) =





ω11 0 0
0 ω22 0
0 0 ω33



 ,

Ω(1) =





0 0 ω13

0 0 ω23

0 0 0



 .

In particular, we have for the above process ω11 =
(α2 + 1)σ2, ω22 = (β2 + γ2 + 1)σ2, ω33 = (δ2 + 1)σ2,
ω13 = αβσ2, and ω23 = γδσ2.

As mentioned in the previous subsection, the process
can also be expressed in the usual ARMA parametri-
sation,

XV (t) = ΦXV (t − 1) + Θ εV (t − 1) + εV (t)

with var
(

εV (t)
)

= Σ. Simple calculations show that
the ARMA parameters of XV are given by

Φ =





0 φ 0
0 0 0
0 0 0



 , Θ =





0 0 θ13

0 0 θ23

0 0 0



 ,

Σ =





σ11 σ12 0
σ21 σ22 0
0 0 σ33





with the additional restriction that

σ12 = −θ13θ23σ33.

Unlike the dMAG parametrization, the ARMA model
has seven parameters which are restricted by one non-
linear constraint.

5 CONCLUDING REMARKS

The concept of Granger causality is widely used for
inference about causal relationships from time series
observations. One of the main problems in its appli-
cation, however, is the possible presence of latent vari-
ables that affect the measured variables and thus can
lead to so-called spurious causalities.
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In this paper, we have proposed a new graphical mod-
elling approach that allows to fit models under con-
ditional independence constraints typical for systems
affected by latent variables. These models can be re-
garded as time series versions of linear equation sys-
tems with correlated errors and are equivalent to mul-
tivariate ARMA models under the conditional inde-
pendence relations imposed by the associated path di-
agram. The aim of this approach is to learn the depen-
dence structure of a process by fitting such models; the
graphical representations associated with the best fit-
ting models then allow conclusions about the possible
causal structures and the presence of latent variables.

We have shown that the model parameters are iden-
tifiable if the associated path diagram is an ances-
tral graph. Although every general path diagram is
Markov equivalent to an ancestral graph, such path di-
agrams in general impose additional non-conditional-
independence constraints. Therefore, it is of interest to
extend the identifiability result to more general classes
such as, for example, bow-free path diagrams (e.g.,
Brito and Pearl 2002, Drton et al. 2009).

We have not yet addressed the problem of parameter
estimation and model selection. Having a parametric
model associated with a particular causal structure,
identification can be accomplished by minimization of
a model selection criterion such as AIC or BIC. For
estimation of the parameters, we could substitute em-
pirical covariances into the Yule-Walker type equations
that have been used for the proof of identifiability. The
resulting method of moment estimators could be easily
implemented. However, it is well known (e.g. Dahlhaus
1988, Drton et al. 2009) that such method of moment
often are inefficient and may even violate model re-
strictions such as positive definiteness of covariance
matrices or stability of a process. In a current project,
maximum likelihood estimation for the parameters is
investigated. As the number of possible models for the
examination of causal structures is large even formod-
erate dimensions, fast convergence is crucial for sucess-
ful application of the method; one possible canditate
is the iterative conditional fitting for fitting ancestral
graph models (Drton and Richardson 2004).
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