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Abstract

Various supervised inference methods can
be analyzed as convex duals of the gener-
alized maximum entropy (MaxEnt) frame-
work. Generalized MaxEnt aims to find a
distribution that maximizes an entropy func-
tion while respecting prior information rep-
resented as potential functions in miscella-
neous forms of constraints and/or penalties.
We extend this framework to semi-supervised
learning by incorporating unlabeled data via
modifications to these potential functions re-
flecting structural assumptions on the data
geometry. The proposed approach leads to a
family of discriminative semi-supervised al-
gorithms, that are convex, scalable, inher-
ently multi-class, easy to implement, and
that can be kernelized naturally. Experimen-
tal evaluation of special cases shows the com-
petitiveness of our methodology.

1 Introduction

The scarcity of labeled training samples in many ap-
plications ranging from natural language processing to
bio-informatics has motivated the research on semi-
supervised learning algorithms that exploit unlabeled
data. A variety of methods, e.g., (Chapelle et al.,
2006) and references therein, have been proposed for
semi-supervised learning. The intuition behind many
of the semi-supervised learning algorithms is that the
outputs should be smooth with respect to the struc-
ture of the data, i.e., the labels of two inputs that are
similar with respect to the intrinsic geometry of data
are likely to be the same. This idea is often further
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specified via the cluster assumption, the manifold as-
sumption or the semi-supervised smoothness assump-
tion. This paper presents a novel semi-supervised ap-
proach by using unlabeled data to impose smoothness
criteria in the generalized maximum entropy frame-
work.

Maximum entropy framework has been studied exten-
sively in the supervised setting. Here, the goal is to
find a distribution p that maximizes an entropy func-
tion and satisfies data constraints that enforce the ex-
pected values of some (pre-defined) features with re-
spect to p to match their empirical counterparts ap-
proximately. Using different entropy measures, differ-
ent model spaces for p and different approximation cri-
teria for data constraints, we obtain a family of super-
vised learning methods (e.g., logistic regression, least
squares and boosting) via convex duality techniques
(Altun & Smola, 2006; Dud́ık & Schapire, 2006; Fried-
lander & Gupta, 2006). This framework is known as
the generalized maximum entropy framework.

We propose integrating unlabeled data to the entropy
maximization problem via additional penalty func-
tions that restrict the model outputs to be consis-
tent within local regions. We investigate two types
of penalty functions. Pairwise penalties aim to mini-
mize the discrepancy of the conditional class distribu-
tions for each sample pair with respect to their prox-
imity. Expectation penalties are a relaxed variant of
the former, where the conditional output distribution
of an instance is enforced to match the weighted aver-
age of the conditional distribution over local regions.
The proximity of two samples is defined according to
a similarity function that reflects our prior knowledge
on the geometry of the data. Augmenting the pri-
mal maximum entropy problem and applying convex
duality techniques yields convex semi-supervised ob-
jective functions, which we refer as the dual problems.
In this paper we describe two special cases, namely
semi-supervised logistic regression and kernel logistic
regression, in detail.

Our approach offers a number of advantages over pre-
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vious methods. First, by using different entropy mea-
sures, we obtain a family of semi-supervised algo-
rithms. Second, these algorithms can be kernelized al-
lowing the model to exploit unlabeled data in a nonlin-
ear manner as opposed to other information theoretic
semi-supervised learning methods such as (Grandvalet
& Bengio, 2005; Mann & McCallum, 2007). The re-
sulting objective functions are convex since the unla-
beled data is incorporated in the primal MaxEnt prob-
lem and the objective functions are then derived us-
ing convex duality techniques. Another key advantage
is that our method is inherently multi-class. This is
often not the case for discriminative semi-supervised
classifiers, e.g., Transductive Support Vector Machines
(TSVMs), as in multi-class settings they require fur-
ther elaboration in inference such as the one-vs-rest
error assessment scheme. Finally, even though our mo-
tivation is similar to other SSL methods that are based
on the smoothness criterion, the resulting formulation
is substantially different as it enables the algorithm
to choose which similarities are salient unlike many
SSL algorithms that treat similarities uniformly such
as Laplacian SVMs. This is a significant advantage
of encoding the similarities in the primal problem via
features, as opposed to encoding them within a regu-
larization term in the dual.

The rest of the paper is organized as follows: In Sec-
tion 2, we overview the generalized Maximum En-
tropy framework. Section 3 provides the details of
our approach. In Section 4, we give a summary of
related work. An experimental evaluation of these
algorithms on benchmark data sets is presented in
Section 5. Comparison to a large number of semi-
supervised learning methods shows that our method
performs competitively.

2 Duality of Maximum Entropy and
Supervised Learning Methods

In this section, we outline a brief summary of the du-
ality relation between generalized Maximum Entropy
and various supervised learning methods1. We fo-
cus on conditional distributions P = {p | p(y|x) ≥
0,

∑
y∈Y p(y|x) = 1, ∀x ∈ X , y ∈ Y}, where Y

and X are output and input spaces respectively. The
goal in generalized MaxEnt is to minimize the diver-
gence of the target distribution p from a reference dis-
tribution while penalizing the discrepancy between ob-
served values ψ̃ of some pre-defined model feature func-
tions ψ : X × Y → B and their expected values with
respect to the target distribution. Here, ψ̃ can be de-

1We use entropy maximization and divergence mini-
mization interchangeably since they are equivalent up to
a constant for a fixed reference distribution.

rived from a sample, e.g., ψ̃ = 1/n
∑n
i=1 ψ(xi, yi). The

conditional expectation is defined as

Ep[ψ] =
∑
x

p̃(x)Epx
[ψ] =

∑
x

p̃(x)Ey∼p(.|x)[ψ(x, y)], (1)

where p̃ denotes the empirical marginal distribution
over the input space.

When the target distribution is defined on a finite di-
mensional space with differentiable discrepancy func-
tions over finite dimensional spaces, the maximum en-
tropy problem can be solved using Lagrangian tech-
niques. However, in the generalized MaxEnt frame-
work with non-differentiable penalty functions as out-
lined in (Dud́ık & Schapire, 2006) or with infinite di-
mensional spaces as (Altun & Smola, 2006) points out,
a more general duality technique such as Fenchel’s du-
ality is required for a proper analysis of the primal-
dual space relations. Here we briefly introduce key
concepts required for the rest of this paper. For a
detailed reference on convex analysis the reader may
refer to (Borwein & Zhu, 2005).

Let B be a Banach space and B∗ be its dual. The
convex conjugate of a function h : B → < is h∗ :
B∗ → < where h∗ is defined as

h∗(b∗) = sup
b∈B
{〈b, b∗〉 − h(b)}.

Examples of convex conjugacy used in this paper
are KL divergence, approximate norm constraints
and norm-square penalty functions: h1(b; a) =∫
t
b(t) ln b(t)/a(t), h∗1(b∗; a) =

∫
t
a(t) exp(b∗(t) − 1);

h2(b; a, ε) = I(‖b − a‖B ≤ ε), h∗2(b∗; a, ε) = ε‖b∗‖B∗ +
〈b∗, a〉; h3(b; a, ε) = ‖b− a‖2B/(2ε), h∗3(b∗; a, ε) =
ε‖b∗‖2B∗/2 + 〈b∗, a〉. Here, I(a) = 0 if a holds; and ∞
otherwise.

The following lemma shows the duality of generalized
MaxEnt for conditional distributions and various dis-
criminative supervised learning methods. The proof is
given in Appendix A.

Lemma 1 (MaxEnt Duality for conditionals)
Let p, q ∈ P be conditional distributions and D be
a divergence function that measures the discrepancy
between two distributions,

D(p|q) =
∑
x

p̃(x)Dx (px|qx) . (2)

Moreover, let ψ : X × Y → B be a feature map to a
Banach space B, g be a lower semi-continuous (lsc)
convex function and Ep is the conditional expectation
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operator in (1). Define

t := min
p∈P
{D(p|q) + g

(
Ep[ψ]; ψ̃, ε

)
}, (3)

d := max
λ∈B∗
{−
∑
x

p̃(x)D∗x(〈ψ(x, .), λ〉 ; qx) (4)

− g∗(λ; ψ̃, ε)},

where q is a reference distribution (reflecting the prior
knowledge for target distribution). Then, d = t.

Setting divergence function to KL, Dx(px|qx) =∑
y h1(p(y|x); q(y|x)), we can get `1 and `22 regularized

logistic regression by defining g as h2 and h3 respec-
tively. In the latter case, if B is a reproducing kernel
Hilbert space (RKHS), we get kernel logistic regres-
sion. Other special cases can be found in (Altun &
Smola, 2006).

3 Semi-Supervised via Generalized
Maximum Entropy

In semi-supervised learning, we are given a sample S
that consists of labeled data L = {(xi, yi)}li=1 drawn
i.i.d. from the probability distribution on X × Y and
unlabeled data U = {xi}ni=l+1 drawn i.i.d. from the
marginal distribution PX . We focus on multi-class
problems where Y = {1, . . . , C}. Sx = {xi}ni=1 de-
notes the (labeled and unlabeled) observations in the
sample.

If the optimal classification function is smooth with
respect to PX , in the sense that the outputs of two
similar input points x,x′ are likely to be the same, one
can utilize unlabeled data points to impose the predic-
tive function to be smooth. Various approaches to en-
force this smoothness assumption have lead to a large
collection of semi-supervised learning methods. For
example, Sindhwani et al., (Sindhwani et al., 2005) im-
plement this assumption by adding a new regularizer∑
x,x′ s(x, x

′)
∑
y(f(x, y)−f(x′, y))2, to various objec-

tive functions where f(x, y) is the predictive function
and s(x, x′) is the similarity between the samples x, x′.
With the same motivation, we extend the primal gen-
eralized MaxEnt problem to minimize the discrepancy
between conditional probability distributions of simi-
lar instances. This yields new optimization methods
favoring model outputs that are smooth with respect
to the underlying marginal distribution.

Theoretically, the discrepancy function can be any
convex proper lsc function. However, one should
consider efficiency, feasibility and compatibility with
the divergence function D when choosing the discrep-
ancy function. For example, defining discrepancy as
I (s(x, x′)‖px − px′‖ ≤ ε,∀x, x′) may lead to infeasible
solutions for small ε values or may render unlabeled

data ineffective for large ε values. Adjusting ε for
each x, x′ pair, on the other hand, leads to a very
large number of hyper-parameters rendering optimiza-
tion intractable. Examining various combinations of
the across-sample discrepancy functions and the di-
vergence functions, we observed that `p, `2p norms of
the differences are compatible with many divergence
functions. We leave a more thorough analysis as fu-
ture work.

3.1 Pairwise Penalties

One way of encoding the smoothness criteria is by aug-
menting the supervised MaxEnt problem (3) with a
discrepancy for all similar x, x′ pairs.

ts := min
p∈P
{D(p|q) + g

(
Ep[ψ]; ψ̃, ε

)
+ ḡ(p)}, (5)

where ḡ(p) = ĥ(
∑
x,x′ h(px, px′)) for h, ĥ such that ḡ

is lsc convex.

Corollary 2 The dual of semi-supervised MaxEnt
with pairwise similarities, (5), is given by

ds := max
λ∈B∗
{−g∗(λ; ψ̃, ε)

−
∑
x

p̃(x)(D + ḡ)∗x(〈ψ(x, .), λ〉; qx)}. (6)

The equality of (5) and (6) follows from Fenchel’s du-
ality and Lemma 1 by defining fq(p) = D(p|q) + q̃(p).
Note (D + ḡ)∗ = D∗�ḡ∗, where � denotes the infimal
convolution function. This term can be solved when D
and g functions are specified.

An interesting setting of ts is when g = ḡ is a norm. In
this case, the difference between the conditionals can
be written as a linear operator Φ which can then be
combined with Ep[ψ] given in (1). Let Φp =

∑
x Φxpx

be the expectation operator over similarity feature
functions φ,

φj,k,y(xi, y′) =


s(xi, xk) if i = j, j 6= k and y = y′,
−s(xi, xj) if i = k, j 6= k and y = y′,
0 otherwise,

(7)

for j, k ∈ {1, . . . , n}. Then,

(Φp)i,j,y = s(xi, xj)(p(y|xi)− p(y|xj)).

Concatenating Φp to Ep[ψ] and 0 vector (of size n2C)
to ψ̃, we get the dual of the semi-supervised MaxEnt
as

ds := max
λ,γ
{−g∗((λ, γ); (ψ̃,0), ε) (8)

−
∑
x

p̃(x)D∗x(〈ψ(x, .), λ〉+ 〈φ(x, .), γ〉 ; qx)}.
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by Lemma 1.

The augmented MaxEnt (5) promotes target distribu-
tions that are smooth with respect to the similarity
measure s in (7) and remains indifferent to distant
instance pairs. s can be defined with respect to the
geodesic distances in order to impose the manifold as-
sumption, with respect to the ambient distances on
high density regions in order to impose the smooth-
ness assumption or with respect to data clusters in
order to impose cluster assumption. We assume that
s(x, x̃) ≥ 0,∀x, x̃ ∈ X .

Investigating the difference between the dual super-
vised and semi-supervised formulations, (4) and (8),
we observe that D∗x term is evaluated on both labeled
and unlabeled data in the semi-supervised case, since
the marginal distribution p̃ is now with respect to Sx.
Furthermore, the expectation term Epx is evaluated on
the similarity features φ as well as the original model
features ψ. This results adding n2C parameters to the
optimization problem, where n is the total size of the
data and C is the number of classes.

The increase in the number of parameters may be pro-
hibitively expensive for very large data sets. One so-
lution to this problem is to define a sparse similar-
ity function. Then, the parameters for x̂ and x̄ be-
comes redundant if s(x̂, x̄) = 0. Hence, the num-
ber of parameters can be reduced significantly. In
Section 3.2, we propose an alternative solution. We
now present two special cases of (8), namely Pair-
wise Semi-Supervised Logistic Regression and Pairwise
Semi-Supervised Kernel Logistic Regression.

3.1.1 Semi-Supervised Logistic Regression
with Pairwise Penalty

The semi-supervised logistic regression with `22 regular-
ization and pairwise semi-supervised penalty is given
by setting the divergence function to KL, Dx = h1 with
uniform q, and g to norm-square penalty function h3,

min
p∈P

KL(p||q) + ‖ψ̃ − Ep[ψ]‖22 + ‖Φp‖22.

Note that

‖Φp‖22 =
∑
x,x′

∑
y

(s(x, x′)(p(y|x)− p(y|x′)))2 .

Plugging the convex conjugates of the corresponding
functions to (8) and negating it, we get the minimiza-

tion problem of

Q(λ, γ) =
∑
x∈Sx

logZx(λ; γ)−
〈
λ, ψ̃

〉
+ ε‖λ‖22 + ε‖γ‖22,

(9)

Zx(λ, γ) =
∑
y

exp (F (x, y;λ, γ)) ,

F (x, y;λ, γ) = 〈λ, ψ(x, y)〉+
∑
x̂

s(x̂, x)γx̂xy

−
∑
x̄

s(x, x̄)γxx̄y , (10)

where the relation between the primal parameter p
and the dual parameters λ, γ is given by p(y|x) =
exp(F (x, y))/Zx. Note that Q(λ, γ) is no longer the
negative log-likelihood term. First, there is no inner
product term on similarity parameters. Second, the
log-partition function is computed for both labeled and
unlabeled data. The similarity terms in F can be seen
as a flow problem, where the weighted average of in-
coming flow from neighbors s(x̂, x)γx̂xy is matched to
the outgoing flow s(x, x̄)γxx̄y.

It is important to note that p(y|x) is well-defined for
all x, hence it can be applied to out-of-sample data.
From this perspective, this is a proper semi-supervised
learning method. However, for out-of-sample data the
similarity features are all 0. Hence, the penalty func-
tion remains ineffective for these instances. From this
perspective, this is a transduction method since the
performance is expected to improve from supervised
to semi-supervised optimization only on the in-sample
unlabeled data. As in other transductive methods, one
can use interpolation techniques to improve the per-
formance on the out-of-sample instances.

The gradients of the objective function with respect to
the dual variables is given by

∂Q(λ, γ)
∂λ

=Epx
[ψ(x, y)]− ψ̃ + 2ελ ,

∂Q(λ, γ)
∂γx̂,x̄,y

=− p(y|x̄)s(x̂, x̄) + p(y|x̂)s(x̂, x̄) + 2εγx̂,x̄,y ,

Any gradient based optimization can be applied to find
λ, γ that minimize Q. In practice, we use the quasi-
Newton method BFGS.

3.1.2 Semi-Supervised Kernel Logistic
Regression with Pairwise Penalty

In addition to the assumptions of the previous section,
if the domain of ψ is a Reproducing Kernel Hilbert
Space H with kernel k, the dual problem gives the
semi-supervised kernel logistic regression with pairwise
penalty function. Semiparametric Representer Theo-
rem (Schölkopf & Smola, 2001, Theorem 4.3) states
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Ayşe Naz Erkan, Yasemin Altun

that optimal λ in (9) admits the form

λy =
n∑
i=1

αiyk(xi, x).

Plugging this λ into the formulas in the previous sec-
tion gives the semi-supervised kernel logistic regression
with pairwise penalties, which is convex and can be
optimized with any gradient method.

3.2 Expectation Penalties

As mentioned earlier the number of parameters for
pairwise penalties can get intractable with the increas-
ing size of data. In order to reduce the number of pa-
rameters, we consider a relaxed version of the pairwise
penalties. Here, instead of minimizing the discrepancy
of conditional distributions across all x, x′ pairs, we
minimize the discrepancy of distributions over local
regions. In particular, we impose minimization of var-
ious norms of the following discrepancy(∑

x̄∈Sx

(s(x̂, x̄)p(y|x̂)− s(x̂, x̄)p(y|x̄))

)
, (11)

over (x̂, y) pairs. This corresponds to imposing the
conditional distribution of an instance x̂ to be similar
to the weighted average of the conditional distribution
of instances within the vicinity of x̂.

As in the case of pairwise penalties, we can express
(11) in terms of a linear operator Φp =

∑
x Φxpx over

similarity feature functions φ given by

φk,y(xi, y′) =


s(xk, xi) if y = y′ and i 6= k,
−
∑
j s(xj , xi) if y = y′ and i = k,

0 otherwise.
(12)

for i ∈ {1, . . . , n}. Then (Φp)i,y yields (11) for x̂ = xi.
We augment the primal MaxEnt problem with some
norm of Φp.

This formulation requires at most nC additional
parameters and hence yields smaller models than
the semi-supervised approach with pairwise penalties.
Furthermore, it can be more robust to conflicting (true
but hidden) labels of similar samples.

The semi-supervised logistic regression with `22 regu-
larization and expectation semi-supervised penalty is
given by (9) with F defined as

F (x, y;λ, γ) = 〈λ, ψ(x, y)〉+
∑
x̂

s(x̂, x)γxy

−
∑
x̄

s(x, x̄)γx̄y.

The gradients of γ is given by

∂Q(λ, γ)
∂γxy

=
∑
x̆

p(y|x̆)s(x̆, x)−
∑
x̂

p(y|x)s(x̂, x).

The kernel version follows as in Section 3.1.2.

4 Related Work

Recently constraint driven semi-supervised approaches
have attracted attention, (Bellare et al., 2009; Chang
et al., ; Liang et al., 2009; Mann & McCallum, 2007).
Chang et al. were one of the first to guide semi-
supervised algorithms with constraints (Chang et al.,
). Their model is trained via an EM like proce-
dure with alternating steps. The authors impose con-
straints on the outputs y rather than the model dis-
tribution p(y|x), as proposed in this paper. They
also have a constraint violation mechanism where the
hyper-parameters are manually set.

Bellare et al. impose expectation constraints on unla-
beled data (Bellare et al., 2009). They define an aux-
iliary distribution that respects general convex con-
straints and has low divergence with the model distri-
bution. The fundamental difference with our approach
is that the authors impose the penalty functions on
the dual objective of the MaxEnt framework. This in
turn yields a non-convex optimization problem which
is solved by alternating projections. In contrast, we
impose constraints on the target distribution directly
to the primal problem which yields convex loss func-
tions.

Liang et al. propose measurements (Liang et al., 2009),
a mechanism for partial supervision that unifies labels
and constraints. A measurement is the expectation of
a function over the outputs of the unlabeled samples.
This approach allows fully-labeled examples, partially-
labeled examples and general constraints on the model
predictions such as label proportions to be treated sim-
ilarly as these can be cast as instances of measure-
ments. However, the loss function computations be-
come intractable and approximate inference methods
are required. Our approach shares the basic principle
to enforce constraints on the predicted model distribu-
tion using Fenchel’s duality and the maximum entropy
framework. Yet, we use such constraints to integrate
prior information about the geometry of the data over
local regions using a similarity metric which can also
be interpreted as matching predicted moments of sim-
ilarity features. Moreover, we analyze the primal-dual
relations of model features in RHKS along with simi-
larity features.

Various other techniques with information theoretic
justification have been previously proposed in the SSL
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literature. Information regularization (IR) (Grand-
valet & Bengio, 2005) minimizes the conditional en-
tropy of the label distribution predicted on unlabeled
data, favoring minimal class overlap, along with the
negative log-likelihood of the labeled data. Despite its
high empirical performance, IR is criticized for its sen-
sitivity to hyper-parameter tuning to balance the loss
and regularization terms. Furthermore, if the labeled
data is very scarce, IR tends to assign all unlabeled
data with the same label. Expectation Regularization
(ER) (Mann & McCallum, 2007) augments the neg-
ative conditional log-likelihood with a regularization
term, enforcing the model expectation on features from
unlabeled data to match either user-provided or em-
pirically computed expectations. The authors provide
experimental results for label features minimizing the
KL divergence between the expected class distribution
and the desired class proportions. In (Mann & McCal-
lum, 2008) the same authors extend ER to CRFs for
semi-supervised structured prediction. Note that both
ER and IR algorithms use unlabeled data to regularize
the log-likelihood, i.e., manipulate the dual objective
of MaxEnt. We believe enforcing the data to match
certain conditions directly in the primal is a more nat-
ural approach as it enables an easier interpretation and
yields a convex optimization problem.

Using similarities to encode the data geometry is rem-
iniscent of the similarity graphs used in label propaga-
tion methods and manifold methods (e.g.,(Sindhwani
et al., 2005)). As in these methods, we use similarity
graphs to impose smoothness, in the sense that simi-
lar inputs should have similar outputs. However, our
approach of imposing this assumption in the primal
MaxEnt problem leads to a feature representation of
the similarities and allows the model to choose which
similarity evaluations are useful via optimizing γ pa-
rameters, as opposed to the uniform treatment of sim-
ilarities in previous SSL method. This renders our
approach less sensitive to the choice of similarity func-
tion and yields good performance across many data
sets as opposed to other SSL methods (see Section 5).

5 Experiments

5.1 Similarity Metric

For the empirical evaluation we use the following sim-
ilarity definition

s(xi, xj) =

{
K(xi, xj) if xj ∈ Nκxi

,
0 otherwise.

(13)

where K is a Mercer kernel and Nκxi
is the κ-nearest

neighborhood of xi with respect to K. Note that this
similarity metric is sparse and non-symmetric.

Table 1: Properties of data sets. See (Chapelle et al.,
2006; Chapelle & Zien, 2005) for more details. C:
Number of classes, Dim: Data dimension.

C |U | |L| Dim. Splits
Digit1 2 1400 100 241 12
COIL 6 1400 100 241 12

USPS2 2 1400 100 241 12
USPS10 10 1957 50 256 10

text 2 1856 50 7511 10
MNIST 10 5000 100/250 784 10

5.2 Data Sets

We present experiments on data sets that have been
extensively analyzed in previous SSL work for fair
and extensive comparison. We chose Digit1, USPS2

and COIL data sets among the benchmarks data sets
from (Chapelle et al., 2006), USPS10 and text data
sets from (Chapelle & Zien, 2005) and MNIST (LeCun
et al., 1998). Table 1 summarizes essential properties
of the data sets. For further details see (Chapelle et al.,
2006; Chapelle & Zien, 2005).

5.3 Model Selection

The hyper-parameters of our algorithm are the neigh-
borhood size κ in (13), the regularization constant
ε1 for the model feature parameters and ε2 for the
similarity feature parameters and finally the kernel
bandwidth α in the case of a RBF kernel. We per-
formed cross validation on a subset of labeled samples
for model selection. From each data split we trans-
ferred 25% of the labeled samples to the corresponding
unlabeled data split and found the model parameters
that give the best average transduction performance
on these samples only. In other words, model selec-
tion is completely blind to the true labels of the unla-
beled samples in order to reflect the real-life scenario
as closely as possible. We considered a range of hyper-
parameters for model selection, κ ∈ {5, 15, 20, 30}
and ε1, ε2 ∈ {e−1, e−2, e−3, e−4}. We set α = η−2

where η is the median of pairwise distances. Sub-
sequently, we retrained the algorithm with these pa-
rameters on the original set of labeled and unlabeled
samples. In the following section, we report transduc-
tion error on the unlabeled samples averaged over all
splits. Following previous work, we used cosine kernel,
K(xi,xj) = 〈xi,xj〉 /‖xi‖‖xj‖ for text and RBF ker-
nel, K(xi,xj) = exp(−α‖xi − xj‖2) for all other data
sets. In all experiments the same kernel is used for
the kernel logistic regression (KLR) and the similarity
metric.
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5.4 Results

Tables 2, 3, 4 demonstrate our empirical evaluation.
In Table 2, we report transduction error on Digit 1,
USPS2 and COIL data sets from (Chapelle et al.,
2006) for Logistic Regression (LR) and Kernel Lo-
gistic Regression (KLR) both augmented with pair-
wise (PW) and expectation (EXP) penalties. All re-
sults are averages over all splits for the model pa-
rameters selected with cross validation as discussed
previously. The first four lines correspond to the su-
pervised methods, namely 1-nearest neighborhood (1-
NN), Support Vector Machine (SVM), LR and KLR,
where the algorithms are trained only on the labeled
samples. At the bottom of the table, the perfor-
mances of the most competitive semi-supervised al-
gorithms reported in (Chapelle et al., 2006), namely
Transductive SVM (TSVM) (Vapnik, 1998), Clus-
ter Kernel (Chapelle et al., ), Discrete Regulariza-
tion (Chapelle et al., 2006), Data Dependent Regular-
ization (Chapelle et al., 2006), Low Density Separation
(LDS) (Chapelle & Zien, 2005). The reader may re-
fer to (Chapelle et al., 2006) for a comparison with a
wider selection of algorithms.

A comparison of the results of our framework to su-
pervised learning methods shows a consistent improve-
ment for all data sets. This is not the case for many
semi-supervised learning methods. We conjecture that
this is due to the feature representation of the simi-
larities, where the model can choose which similarity
evaluations are useful. Regarding the relative perfor-
mance with respect to other SSL methods, we observe
that our approach is very competitive. In particu-
lar, it yields the best performance in Digit1 data set
with 20% error reduction. For the other data sets, the
method achieves the second and third best results. In-
terestingly the linear logistic regression algorithm is as
good as the kernel logistic regression algorithm in most
cases, indicating that using similarity features captures
the non-linearities sufficiently. Investigating the differ-
ences between pairwise and expectation penalties, we
observe that pairwise constraints are almost always
more informative.

Table 3 reports the 10 class USPS data set and the
text data. Performances of ∇TSVM, a variant of
TSVM (Chapelle & Zien, 2005), Laplacian SVM (Sind-
hwani et al., 2005), LDS (Chapelle & Zien, 2005), La-
bel Propagation (Zhu & Ghahramani, 2002), Trans-
ductive Neural Network (TNN) (Karlen et al., 2008)
and Manifold Transductive Neural Network (Karlen
et al., 2008) (ManTNN) algorithms are provided for
comparison. The comparative analysis yields a similar
pattern to Table 2. On text data, the performance of
our approach is not as good as the most competitive
methods reported for this data set.

Table 2: Transduction error on benchmark data sets
averaged over all splits. Here we report only the
most competitive results from previous work, for the
full comparison table see the analysis of benchmarks
chapter in (Chapelle et al., 2006). 1-NN: 1-nearest
neighborhood.

Digit1 USPS2 COIL
1-NN 3.89 5.81 17.35
SVM 5.53 9.75 22.93

LR 7.31 12.83 35.17
KLR 6.02 9.20 24.63

LR+EXP 2.35 5.69 15.33
LR+PW 2.27 5.18 12.37

KLR+EXP 1.94 6.44 15.22
KLR+PW 2.26 5.54 11.34

TSVM 6.15 9.77 25.80
Discrete Reg. 2.77 4.68 9.61

Cluster-Kernel 3.79 9.68 21.99
Data-Dep. Reg. 2.44 5.10 11.46

LDS 3.46 4.96 13.72

Finally Table 4 reports the performance on a ran-
domly chosen subset of the MNIST data set for LR
with pairwise and expectation penalties. Here, we see
that expectation penalties are preferable over pairwise
penalties, which can be explained by the larger size of
the unlabeled data set as opposed to other benchmark
data sets. Hence, the empirical marginal distribution
and its aggregate is more informative. The perfor-
mance on USPS10, COIL, MNIST data sets indicates
that our algorithm can successfully handle multi-class
problems.

6 Conclusions and Future Work

We presented a novel approach to integrate unlabeled
data within the generalized maximum entropy frame-
work through modifications to the potential functions.
We demonstrated two such modifications, namely pair-
wise and expectation penalties on the MaxEnt objec-
tive. These penalties restrict the entropy maximiza-
tion problem using the similarity relationships between
data samples reflecting our prior knowledge.

Generalized MaxEnt framework encompasses a fam-
ily of inference algorithms. We provided details for
two special cases, logistic regression and kernel logis-
tic regression for semi-supervised learning. Our ap-
proach can yield semi-supervised formulations of other
instances of the MaxEnt framework such as Condi-
tional Random Fields (CRFs) and kernel CRFs. Fu-
ture work includes the development of these methods
and further theoretical analysis.
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Table 3: Transduction error averaged over all splits
of USPS10 and text data sets. Supervised training
error for single layer neural network and SVM and
other semi-supervised methods have been provided for
comparison. NN stands for neural network. Results of
previous work obtained from (Karlen et al., 2008).

USPS10 text
SVM 23.18 18.86

NN 24.57 15.87
LR 26.07 15.64

KLR 28.81 15.70
LR+EXP 20.02 13.03
LR+PW 14.96 12.87

KLR+EXP 19.76 13.20
KLR+PW 16.15 12.06
∇TSVM 17.61 5.71
LapSVM 12.70 10.40

LDS 15.80 5.10
Label Propagation 21.30 11.71

TNN 16.06 6.11
ManTNN 11.90 5.34

Table 4: Transduction error on MNIST data set.

|L| = 100 |L| = 250
LR 27.23 19.69

LR+EXP 21.21 12.78
LR+PW 24.01 13.53
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A. Proof of Lemma 1

Proof Let fq(p) = D(p|q), Axpx = Epx [ψ]
and Ap = Ep[ψ]. Fenchel’s Duality (Bor-
wein & Zhu, 2005, Theorem (4.4.3)) states that
inf
p∈P
{fq(p) + g(Ap)} = sup

λ∈B∗
{−f∗(A∗λ) − g∗(−λ)}

via strong duality. The adjoint transformation A∗

is given by 〈Ap, λ〉 = 〈A∗λ, p〉. For the expec-
tation operator,

〈∑
x p̃(x)

∑
y p(y|x)ψ(x, y), λ

〉
=∑

x p̃(x)
∑
y p(y|x) 〈ψ(x, y), λ〉 =

∑
x p̃(x) 〈A∗xλ, px〉

for A∗xλ = 〈λ, ψ(x, .)〉. Then, f∗(A∗λ) =
supp{〈p,A∗λ〉 − f(p)} = sup{px}{

∑
x p̃(x) 〈Axpx, λ〉 −∑

x p̃(x)f(px)} =
∑
x p̃(x) suppx

{〈A∗xpx, λ〉 − f(px)}
for independent x. This is in turn equal to∑
x p̃(x)f∗(A∗xλ). Plugging values to Fenchel’s

duality completes the proof.


