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Abstract

We propose an algorithm for estimating the
finite-horizon expected return of a closed loop
control policy from an a priori given (off-policy)
sample of one-step transitions. It averages cu-
mulated rewards along a set of “broken trajecto-
ries” made of one-step transitions selected from
the sample on the basis of the control policy.
Under some Lipschitz continuity assumptions on
the system dynamics, reward function and con-
trol policy, we provide bounds on the bias and
variance of the estimator that depend only on the
Lipschitz constants, on the number of broken tra-
jectories used in the estimator, and on the sparsity
of the sample of one-step transitions.

1 Introduction

Discrete-time stochastic optimal control problems arise in
many fields such as finance, medicine, engineering as well
as artificial intelligence. Many techniques for solving such
problems use an oracle that evaluates the performance of
any given policy in order to navigate rapidly in the space of
candidate optimal policies to a (near-)optimal one.

When the considered system is accessible to experimenta-
tion at low cost, such an oracle can be based on a Monte
Carlo (MC) approach. With such an approach, several “on-
policy” trajectories are generated by collecting information
from the system when controlled by the given policy, and
the cumulated rewards observed along these trajectories are
averaged to get an unbiased estimate of the performance of
that policy. However if obtaining trajectories under a given
policy is very costly, time consuming or otherwise difficult,
e.g. in medicine or in safety critical problems, the above
approach is not feasible.

In this paper, we propose a policy evaluation oracle in a
model-free setting. In our setting, the only information
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available on the optimal control problem is contained in
a sample of one-step transitions of the system, that have
been gathered by some arbitrary experimental protocol, i.e.
independently of the policy that has to be evaluated.

Our estimator is inspired by the MC approach. Similarly to
the MC estimator, it evaluates the performance of a policy
by averaging the sums of rewards collected along several
trajectories. However, rather than “real” on-policy trajec-
tories of the system generated by fresh experiments, it uses
a set of “broken trajectories” that are rebuilt from the given
sample and from the policy that is being evaluated. Under
some Lipschitz continuity assumptions on the system dy-
namics, reward function and policy, we provide bounds on
the bias and variance of our model-free policy evaluator,
and show that it behaves like the standard MC estimator
when the sample sparsity decreases towards zero.

The core of the paper is organized as follows. Section 2
discusses related work, Section 3 formalizes the problem,
and Section 4 states our algorithm and its theoretical prop-
erties. Section 5 provides some simulation results. Proofs
of our main theorems are sketched in the Appendix.

2 Related work

Model-free policy evaluation has been well studied, in par-
ticular in reinforcement learning. This field has mostly fo-
cused on the estimation of the value function that maps
initial states into returns of the policy from these states.
Temporal Difference methods (Sutton, 1988; Watkins and
Dayan, 1992; Rummery and Niranjan, 1994; Bradtke and
Barto, 1996) are techniques for estimating value functions
from the sole knowledge of one-step transitions of the sys-
tem, and their underlying theory has been well investigated,
e.g., (Dayan, 1992; Tsitsiklis, 1994). In large state-spaces,
these approaches have to be combined with function ap-
proximators to compactly represent the value function (Sut-
ton et al., 2009). More recently, batch-mode approximate
value iteration algorithms have been successful in using
function approximators to estimate value functions in a
model-free setting (Ormoneit and Sen, 2002; Ernst et al.,
2005; Riedmiller, 2005), and several papers have analyzed
some of their theoretical properties (Antos et al., 2007;
Munos and Szepesvari, 2008).
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The Achilles’ heel of all these techniques is their strong
dependence on the choice of a suitable function approxi-
mator, which is not straightforward (Busoniu et al., 2010).
Contrary to these techniques, the estimator proposed in
this paper does not use function approximators. As men-
tioned above, it is an extension of the standard MC es-
timator to a model-free setting, and in this, it is related
to current work seeking to build computationally efficient
model-based Monte Carlo estimators, e.g., (Dimitrakakis
and Lagoudakis, 2008).

3 Problem statement

We consider a discrete-time system whose behavior over
T stages is characterized by a time-invariant dynamics
41 = flag,ug,wy) t=0,1,...,T — 1, where z; be-
longs to a normed vector space X of states, and u, belongs
to a normed vector space U/ of control actions. An instanta-
neous reward 7, = p(x, ug, wy) € R is associated with the
transition from ¢ to ¢ + 1. The stochasticity of the control
problem is induced by the unobservable random process
wy € VW, which we suppose to be drawn i.i.d. according
to a probability distribution pyy(.), V¢t = 0,...,7 — 1. In
the following, we signal this by w; ~ pw/(.) and, as in-
duced by the notation, we assume that pyy(.) depends nei-
ther on (z¢,u¢) noron ¢t € 0,7 — 1] (using the notation
[0,T—1] ={0,...,T—1}). T € Ny is referred to as the
optimization horizon of the control problem.

Let h : [0,T — 1] x X — U be a deterministic closed-
loop time-varying control policy that maps the time ¢ and
the current state x; into the action u; = h(¢,x¢), and let
J"(4) denote the expected return of this policy h, defined
as follows :

J h (.130) = E

wo,..,wr —1~pw (+)

[Rh(xo)} )

where R"(zo) = Zt o U p(xe, h(t, xe),we) and zpq =
fxe, h(t, x¢), wy). A realization of the random variable
R"(x¢) corresponds to the cumulated reward of h when
used to control the system from the initial condition xq
over T stages while disturbed by the random process w; ~

pw(.). We suppose that R"(zo) has a finite variance
o (20) = Var [R"(x0)].
W, Wr—1~pw (+)

In our setting, f, p and py(.) are fixed but unknown
(and hence inaccessible to simulation). The only in-
formation available on the control problem is gathered
in a given sample of n one-step transitions F, =
(2!, ul,rt yh)] |, where the first two elements (2! and
u') of every one-step transition are chosen in an arbitrary
way, while the pairs (r!, y') are consistently determined by
(p(x!,ul,.), (2!, ul,.)), drawn according to pyy(.). We
want to estimate from such a sample F,,, the expected re-
turn J" () of the given policy h for a given initial state
Zo.

4 A model-free Monte Carlo-like estimator
of J h (I 0)

We first remind the classical model-based MC estimator
and its bias and variance in Section 4.1. In Section 4.2 we
explain our estimator which mimics the MC estimator in a
model-free setting, and in Section 4.3 we provide a theo-
retical analysis of the bias and variance of this estimator.

4.1 Model-based MC estimator

The MC estimator works in a model-based setting (i.e., in
a setting where f, p and pyy(.) are known). It estimates
J"(x0) by averaging the returns of several (say p € Np)
trajectories of the system which have been generated by
simulating the system from z using the policy . More
formally, the MC estimator of the expected return of the
policy i when starting from the initial state xy writes

p T-1

ZZ xt’ tmt w;)

i=1 t=0

h
M .%‘0

’UM—‘

with vt € [0,T — 1],V € [1,p]: w; ~ pw(.), 2 =
zo x4, = f(x}, h(t,z}), w})). Itis well known that the

bias and variance of the MC estimator are

| E [Mg(xo) - Jh(xo)} ~0,
wi~pw(.),i=1...p,t=0...T—1
2
. Var {MZ(TO)} = Zix: (70) )
wirpw (.),i=1...p,t=0...T—1 p

4.2 Model-free MC estimator

From a sample F,,, our model-free MC (MFMC) estimator
works by selecting p sequences of transitions of length T'
from this sample that we call “broken trajectories”. These
broken trajectories will then serve as proxies of p “actual”
trajectories that could be obtained by simulating the pol-
icy h on the given control problem. Our estimator aver-
ages the cumulated returns over these broken trajectories
to compute its estimate of J”(z). The main idea behind
our method consists of selecting the broken trajectories so
as to minimize the discrepancy of these trajectories with a
classical MC sample that could be obtained by simulating
the system with policy h.

To build a sample of p substitute broken trajectories of
length T starting from x( and similar to trajectories that
would be induced by a policy h, our algorithm uses each
one-step transition in JF,, at most once; we thus assume
that pT' < n. The p broken trajectories of 1" one-step tran-
sitions are created sequentially. Every broken trajectory is
grown in length by selecting, among the sample of not yet
used one-step transitions, a transition whose first two ele-
ments minimize the distance — using a distance metric A
in X x U — with the couple formed by the last element of
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MFMC sampling (arguments: F,, h(.,.), zo, A(.,.), T, p)

Let G denote the current set of not yet used one-step
transitions in F,,; initially, set G = F,;

For 7 = 1 to p, extract a broken trajectory by doing:

Sett =0 and xi = x0;
While ¢ < T do
Set u} = h(t,x%); then compute the set
H = argmin (A((z,u), (v},u})));
(z,u,r,y)EG
Let I} be the lowest index in F,, of the transi-
tions that belong to H;

Sett:t#—l,xiv:yvli; o
Set G =G\ {(al, ult, vl yi)};
end While

end For

Return the set of indices {I{}/=4"}=) '

Figure 1: MFMC algorithm to generate a set of size p of
T —length broken trajectories from a sample of n one-step
transitions.

the previously selected transition and the action induced by
h at the end of this previous transition.

A tabular version of the algorithm for building the broken
trajectories is given on Figure 1. It returns a set of indices
of one-step transitions {l@}:i’l’iig ~! from F,, based on h,
xg, the distance metric A and the parameter p. Based on
this set of indices, we define our MEMC estimate of the ex-
pected return of the policy & when starting from the initial
state xg by:

T-1

SN
0

=1 t=

EDTZ(J-'n,:ro) =

SRR

Figure 2 illustrates the MFMC estimator. Note that the
computation of the MFMC estimator 9)?2(.7:”7350) has a
linear complexity with respect to the cardinality n of F,
and the length 7" of the broken trajectories.

4.3 Analysis of the MFMC estimator

In this section we characterize some main properties of our
estimator. To this end, we proceed as follows:

1. we first abstract away from the given sample F,
by instead considering an ensemble of samples of
pairs which are “compatible” with F,, in the follow-
ing sense: from F, = [(2!,u!, 7!, y")]" |, we keep
only the sample P,, = [(z!,u!)]’", € (X x U)" of
state-action pairs, and we then consider the ensem-
ble of samples of one-step transitions of size n that

could be generated by completing each pair (z!,u')
of P,, by drawing for each [ a disturbance signal w'
at random from pyy(.), and by recording the resulting
values of f(z!,u!,w') and p(z!,u',w'). We denote
by F,, one such “random” set of one-step transitions
defined by a random draw of n disturbance signals
w' 1 = 1...n. The sample of one-step transitions

F,, is thus a realization of the random set F,,;

2. we then study the distribution of our estimator
93?’};” (fn, Zo), seen as a function of the random set Fu:
in order to characterize this distribution, we express its
bias and its variance as a function of a measure of the
density of the sample P,,, defined by its “k—sparsity”;
this is the smallest radius such that all A-balls in X' </
of this radius contain at least k& elements from P,,.
The use of this notion implies that the space X x U
is bounded (when measured using the distance metric
A).

The bias and variance characterization will be done under
some additional assumptions detailed below. After that,
we state the main theorems formulating these characteri-
zations. Proofs are given in the Appendix.

Lipschitz continuity of the functions f, p and h. We
assume that the dynamics f, the reward function p and the
policy h are Lipschitz continuous, i.e., we assume that the
states and actions belong to a normed vector space and that
there exist finite constants Ly, L, and L, € R* such that
V(2,2 u, v, w) € X2 x U2 x W,

1/ (2, u,w) = f(@',u' w0l < Ly(lle - a'[lx + u— ' [l),
(@, u,w) — pa', o, w)| < Ly(lle — 2/l + [l — '),

vt € [0, T — 1], [|h(t, x) — h(t, 2" ) lu < Li|lz — 2’| x ,
where ||.||x and ||.]|zs denote the chosen norms over the
spaces X and U, respectively.

Distance metric A and Fk—sparsity of a sam-
ple P,. We assume that V(x,2',u,u’) €
X2 XU, A(@, ), (7' 0')) = ([l — 2+ [l — o o).
We suppose that X' x U is bounded when measured using
the distance metric A, and, given £k € Ny with & < n,
we define the k—sparsity, ay(P,,) of the sample P,, by
ar(Pp) = sup {Af(x,u)} , where A?:"(x,u)
(zu)eX xU

denotes the distance of (z, ) to its k—th nearest neighbor
(using the distance metric A) in the P,, sample.

Bias of the MFMC estimator. We propose to compute
an upper bound of the bias and variance of the MFMC es-
timator. To this end, we denote by Egﬂ% (z0) the expected
value:

E}p (o) = E

wl . w~pw (L)

We have the following theorem (proof in Appendix A):
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Figure 2: The MFMC estimator builds p broken trajectories made of one-step transitions.

Theorem 4.1 (Bias of the MFMC estimator)

| J" (x0) = By p, (w0)] < Copr(Pn)

T-1T—-t—1

withC' =1L,y Y [Le(1+Ly)]".

t=0 =0

This formula shows that the bias is bounded closer to the
target estimate if the sample sparsity is small. Note that the
sample sparsity itself actually only depends on the sample
‘P, and on the value of p (it will increase with the number
of trajectories used by our algorithm).

Variance of the MFMC estimator. We denote by
V5 (x0) the variance of the MFMC estimator defined by

VP (20) = Var
. (20) wh o py ()

(M (F 20) = Ebp, (20))°]

[mz (.7':n, $0)]
= E
wl,.w?~pyw (L)

and we give the following theorem.

Theorem 4.2 (Variance of the MFMC estimator)

Vi ) < (22 1 200y ()

T-1T-t-1

with C' =1L,y Y [Le(1+Ln)]".

t=0 =0

The proof of this theorem is given in Appendix B. We see
that the variance of our MFMC estimator is guaranteed to

be close to that of the classical MC estimator if the sample
sparsity is small enough. Note, however, that our bounds
are quite conservative given the very weak assumptions that
we exploit about the considered optimal control problem.

5 Illustration

In this section, we illustrate the MFMC estimator on an
academic problem.

Problem statement. The system dynamics and the re-

ward function are given by z;;; = sin (g(a:t + up + wt))

and p(xs, ug, wy) = %6_%@%4’_“%) + w; with the state

space X being equal to [—1, 1] and the action space U to
[—3. 4] . The disturbance wy is an element of the interval
W = [-35, 5] with e = 0.1 and pyy is a uniform prob-
ability distribution over the interval JV. The optimization
horizon T is equal to 15. The policy h whose performances
have to be evaluated writes h(t,z) = —%,Vo € X, Vt €
[0, T —1] . The initial state of the system is set zg = —0.5.
The samples of one-step transitions F,, that are used as
substitute for f, p and pyy(.) in our experiments have been
generated according to the mechanism described in Section

4.3.

Results. For our first set of experiments, we choose to
work with a value of p = 10 i.e., the MFMC estima-
tor rebuilds 10 broken trajectories to estimate J"(—0.5).
In these experiments, for different cardinalities n; =
(10j)> j = 1...10, we generate 50 sets F, , ..., F.’

ng
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Figure 3: Computations of the MFMC estimator for differ-
ent cardinalities of the sample of one-step transitions with
p = 10. Squares represent J" (zg).

Figure 4: Computations of the MC estimator with p = 10.

and run our MFMC estimator on each of these sets. For
a given cardinality n; = m?, all the different samples
Fpyseer Fp) are generated considering the same couples
(z',u') 1 = 1...n; that uniformly cover the space ac-
cording to the relationships z! = —1 + % and u! =
-1+ %’ with j1, j2 € [0, mj — 1]. The results of this first
set of experiments are gathered in Figure 3. For every value
of n; considered in our experiments, the 50 values out-
putted by the MFMC estimator are concisely represented
by a box plot. The box has lines at the lower quartile, me-
dian, and upper quartile values. Whiskers extend from each
end of the box to the adjacent values in the data within 1.5
times the interquartile range from the ends of the box. Out-
liers are data with values beyond the ends of the whiskers
and are displayed with a red + sign. The squares represent
an accurate estimate of J"(—0.5) computed by running
thousands of Monte Carlo simulations. As we observe,
when the samples increase in size (which corresponds to
a decrease of the pT'—sparsity c,r(Py)) the MFMC es-
timator is more likely to output accurate estimations of
J"(—0.5). As explained throughout this paper, there exist
many similarities between the model-free MFMC estima-
tor and the model-based MC estimator. These can be em-
pirically illustrated by putting Figure 3 in perspective with

Figure 4. This figure reports the results obtained by 50 in-
dependent runs of the MC estimator, every of these runs
using also p = 10 trajectories. As expected, one can see
that the MFMC estimator tends to behave similarly to the
MC estimator when the cardinality of the sample increases.
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Figure 5: Computations of the MFMC estimator for differ-
ent values of the number of broken trajectories p. Squares
represent J" (zg).
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Figure 6: Computations of the MC estimator for different
values of the number of broken trajectories p. Squares rep-
resent J" (zg).

In our second set of experiments, we choose to study the in-
fluence of the number of broken trajectories p upon which
the MFMC estimator bases its prediction. In these experi-
ments, for each value p; = j2 j = 1...10 we generate
50 samples Fy go0, - - - » F10.000 Of One-step transitions of
cardinality 10,000 and use these samples to compute the
MFMC estimator. The results are plotted in Figure 5. This
figure shows that the bias of the MFMC estimator seems to
be relatively small for small values of p and to increase with
p. This is in accordance with Theorem 4.1 which bounds
the bias with an expression that is increasing with p.

In Figure 6, we have plotted the evolution of the values out-
putted by the model-based MC estimator when the num-
ber of trajectories it considers in its prediction increases.
While, for small number of trajectories, it behaves sim-
ilarly to the MFMC estimator, the quality of its predic-
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tions steadily increases with p, while it is not the case for
the MFMC estimator whose performances degrade once p
crosses a threshold value. Notice that this threshold value
could be made larger by increasing the size of the samples
of one-step system transitions used as input of the MFMC
algorithm.

6 Conclusions

We have proposed in this paper an estimator of the expected
return of a policy in a model-free setting. The estimator
named MFMC works by rebuilding from a sample of one-
step transitions a set of broken trajectories and by averaging
the sum of rewards gathered along these latter trajectories.
In this respect, it can be seen as an extension to a model-
free setting of the standard model-based Monte Carlo pol-
icy evaluation technique. We have provided bounds on the
bias and variance of the MFMC estimator ; these were de-
pending among others on the sparsity of the sample of one-
step transitions and the Lipschitz constants associated with
the system dynamics, reward function and policy. These
bounds show that when the sample sparsity becomes small,
the bias of the estimator decreases to zero and its variance
converges to the variance of the Monte Carlo estimator.

The work presented in this paper could be extended along
several lines. For example, it would be interesting to con-
sider disturbances whose probability distributions are con-
ditioned on the states and the actions and to study how the
bounds given in this paper should be modified to remain
valid in such a setting. Another interesting research direc-
tion would be to investigate how the bounds proposed in
this paper could be useful for choosing automatically the
parameters of the MFMC estimator which are the number
p of broken trajectories it rebuilds and the distance metric
A it uses to select its set of broken trajectories.

However, the bound on the variance of the MFMC estima-
tor depends explicitly on the “natural” variance of the sum
of rewards along trajectories of the system when starting
from the same initial state. Using this bound for determin-
ing automatically p (and/or A) suggests therefore to inves-
tigate how an upper bound on this natural variance could be
inferred from the sample of one-step transitions. Finally,
this MFMC estimator adds to the arsenal of techniques that
have been proposed in the literature for computing an es-
timate of the expected return of a policy in a model-free
setting. However, it is not yet clear how it would compete
with such techniques. All these techniques have pros and
cons and establishing which one to exploit for a specific
problem certainly deserves further research.
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Appendix
A Proof of Theorem 4.1

Before giving the proof of Theorem 4.1, we first give
three preliminary lemmas. Given a disturbance vector
Q = [20),...,T — 1)] € WT, we define the -
disturbed state-action value function Qé}’?t (x,u) fort €
[0,T — 1] as follows: Q;ﬂ’s_lt(z,u) = p(x,u, Q) +
Zt’ t1 P(l‘t' h(t',xy), Qt))with zy 1 = f(z,u, Q1))
and zp11 = fapy, h(t',zp), Q) V' € [t +1,T —
1]. Then, we define the expected return given ) the
quantity E[R"(z0)[0] — E  [R"o)lwo -
wo,..., WT —1~PW )

Q(0),...,wr—1 = QT — 1)]. From there, we have the
two following trivial results: (2, z0) € W1 x X,

E[R" (20)|9] = Q% (0, (0, 7)) (1)

and V(z,u) € X x U, ¥Q € WT,

QL () = pla,u, Qt — 1)) + Q% (
f2,u,Q(t = 1)), h(t, f(z,u,Qt - 1)), 2

Then, we have the following lemma.

Lemma A.1 (Lipschitz Continuity of Q"))

vt € [0,T — 1],¥(z, ', u,u’) € X% x U2,

Q7 (@, ) = Q% (&', W) < Lar Al(w,w), (o,u)
with Loy — L, ZT L L))

Proof of Lemma A.1 We prove by induction that H(T —
t)istrue V¢t € {0,...,T —1}. For the sake of conciseness,
we denote ]Q;& (z,u) — QW2 («/, u')| by A%,

Basis: t = T — 1 We have AY = |p(z,u, Q(T — 1)) —
p(z’,u , Q(T — 1), and the Lipschitz continuity of p al-
lows to write AY < L,(|lz — 2'||x + [Ju — «/|lu) =
L,A((z,u), («',u")). This proves H(1 )
Inducnon step: We suppose that H(T

T — 1. Using Equation (2), one has

A? t+1 T ‘Q’%’?Hl(x,u) QT t+1($ U)’ =

’P aj,u,Q(t—l))—p(m’7u',Q(t—l))—i—QTit(f(x,u,Q(t—

1))7h(t’f(x’u79(t - 1)))) - Qh7Q (f(LL‘/ UI,Q(t -

1)), h(t, f(2',u/,Q(t — 1))))]| and, from there,

A? o é (e, Qt = 1) — pla’ Ot~
(z,u, Qt — 1)),

)|+ Q724 ( h(t, f(z,u,Qt - 1)))) -
B2 (f(2 u ,sw — 1)), h(t, f(z', o, Qt —1))))].

H(T — t) and the Lipschitz continuity of p give

—t)istrue, 1 <t <

AP, < LA((z,u), (/) +
LQT—tA((f(x7u7Q(t - )) (t f(:E u, Q(t -
D)), (F(a !, Q= 1)), hi(t, F(x' !, Qt — 1))

Using the Lipschitz continuity of f and h, we have

AZ < LA((z,u), (¢, 0)))  +

Lor_ (LyA((x, ), ( u') + LnLyA(z,u), (', 1)),
and, from there, AT—t+1 < Lgp o A((z,u), (27, u)))
since Lg,_,,, = L, + Lg,_,Ly(1+ Ly). This proves
H (T — t + 1) and ends the proof.

Given a broken trajectory 7° = (b, ule, rle yli)]TB1 we
denote by Q7' its associated disturbance vector Q7 =
[w b, ... whr- 1], i.e. the vector made of the 7' unknown
disturbances that affected the generation of the one-step
transitions (2!, ult, vl y't) (cf. first item of Section 4.3).

We give the following lemma.

Lemma A.2 (Bounds on the expected return given (2)
Vi € [1,p], b"(7%, x0) < E[R"(20)|Q7] < a”(7%, 20) ,
with

V(7 m0) = Xy [ — Lar.67]

a(r',x0) = Y1 [r t+ Lo, 01,

0 = A, ul), (g1, At y'1))) Ve € [0,T — 1]

yll—l = x0,Vi € [1,p].

Proof of Lemma A.2 Let us first prove the lower
bound. With ug = h(O ), the Lipschitz continuity

of QC}FQ gives |QT o (w0, up) — ?’QTZ (o, uld)| <
Laor Al(wo, o), (20, u')) .

Equation (1) gives Q%Q
Thus,

" (20, u0) = EERh(xo)m“].
|E[R" (x0)|27"] Qr (@l W) =

Q4 (2o, h(0,20)  — QY (alo,uld) <
LQTA((xO’h(O’xO))a (xléaulé)) .

It follows that

QLY (ko ulh) — Lo,6h < E[RM(x0)|Q7'] . Using

Equation (2) we have
7 (el ulo) - plato,ulo wlo) 4

h(1, f(xa ua wl?)))).

7 (f(th,uls, wh),
By definition of 7', we have: p(z'0,ulo, w') = rl and

f(xl?i"ulé’wlé) = yo . From there

BT (alh, ufh) = ol QT (s, h(1,y)
and

R W h(Ly)) + 1% — Loy dh < ERM(r0)07]
The Lipschitz continuity of QT_1 gives
QB W (L)~ QBT (afhut)) <
LQTfiA((ylév h(la ylé))v (xlivuli)) = LQT—151?

which implies that
1O (@t uth)

We therefore have

Qi (@ uth) + 1%~ Lo}

E[R"(w0)|27"].

The proof is completed by iterating this derivation. The

upper bound is proved similarly. We give a third lemma.

Low 61 < QU (4o, n(1,y'h)) .

Lo, 07 <
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LemmaA3 Vi € [1, p]] a h(rt ) — b(7%m) <
2Capr(Pr) withC = Zt 0 " Lo, -

Proof of Lemma A.3 By construction of the bounds,
one has a"(r,x9) — b*(r',20) = N1y 2L, 00
The MFMC algorithm chooses p x T different one-step
transitions to build the MFMC estimator by minimizing
the distance A((y't-1, h(t,y'-1)), (z',u')), so by def-
inition of the k-sparsity of the sample P, with & =
pT, one has 0! = A((yh-1,h(t,yli-1)), (zh, ult)) <
AP (i1, h(t,yle-1)) < a,r(Py) , which ends the
proof

Using those three lemmas, one can now compute an upper
bound on the bias of the MFMC estimator.

Proof of Theorem 4.1 By deﬁnition of a (T' 330) and
b (7%, x0), we have Vi € [I, p]] (7’ $0)+a (7",20)

rt en, according to Lemmas A.2 and A.3, we
L Th ding to L A2 and A3
have Vi € [1,p] ,
) 7i T-1
| E [EB[R"(20)|Q7] — /5 rh] =
wl,..,wr~pw (L)
T'i T—1 (3

I [[E[R"(z0)|Q] — X,y '] =<
wh,wm~pw (L)
COsz(Pn).
Th
1us h Tt T-11
|52 il B [B[R"(20)|Q7] = =5 ]| <

----- wr~pw () r
7 1
I B [ERMeo)QT] - S| <
whwm~pw (L)
CaPT(Pﬂ)a
which can be reformulated
1 h T
2 R"(x)|2 <

ey 3 ot R0 = B, o) <

Coypr(Py) , since % le r 01 Pl = o (Frns o) -
Since the MFMC algorithm chooses p x T differ-

. liyi=p,t=T—1
ent one-step transitions, all the {w'};21",

are i.id. according to pw(.). For all
i € [l,p], the law of total expectation gives
- E [ E [RM(ao)QT]] =

Wl T Tpyy () 0w T =1 api ()
E [R"(x0)] = J"(z0) . This ends the proof.

wo,...,wr —1~pw (.)

B Proof of Theorem 4.2

We first have the following lemma.

Lemma B.1 (Variance of a sum of random variables)
Let X, ..., X7_1 be T random variables with variances
02,...,0%_, respectively. Then,

Var[ZtT;Ol Xt] < (Zf 0 Ut)

Proof of Lemma B.1 The proof is obtained by induc-
tion on the number of random variables using the for-
mula Cov(X;, X;) < g0, ,Vi,j € [0,T — 1] which is

a straightforward consequence of the Cauchy-Schwarz in-
equality.

Proof of Theorem 4.2 We denote by ‘ﬁ]’;(]}n,xo)

the random variable N(F,, x9) = IML(F,,20) —

S L E[R"(20)|Q7"]. According to Lemma B.1, we can
write

VP’?M%)SQM Var [12 E[R" (x0) ||

77777 wr~pw () P <

2
—l—\/ Var [‘ﬁ;}(]}n, xo)]) 3)
wl,..., w~pyy (L)

Since all the {w': }ifﬁig_l are i.i.d. according to pyy(.)
(cf proof of Theorem 4.1), the law of total expectation gives

1 u o2, (x
Var - Z \QT ]] Rh( ) ())
wl,. L wr~pw () P 4 P p
Now, let us focus on Var [N (Fn,20)]. By
wi ..... wm~pyy (L)
definition, we have N (F,,, z9) = 11] b [Z? ol —

E[R"(x)|2""]] . Then, according to Lemma B.1, we have

p

h = 1
Var [Ny (Fn, w0)] < z <Z

wh, L wh~pyy (L) et

— E[R"(x0)|Q7"]] ) Q)

o Var T3 - BIR (w0) 07 ]
St J%NPW()[(E” E[R" (20)|"'])°]
< E [(ah 7, 0) _bh(Tiny))z]

wl ..., wn~pyy (L)
= (a" (7", z0) — b}L(Ti7:c0))2
< AC% (apr(Pn))? . (6)

since ;' vl and E[R"(0)|Q2"'] both belong to the in-
terval [b" (7%, x0), a" (7%, z0)] whose width is bounded by
2C a1 (Py) according to Lemma A.3.

Using Equations (3), (4), (5) and (6), we have
Ve, (o) < (Z22(00) QCapT(Pn)>2
T VP

which ends the proof.

224



