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Abstract

As we devise more complicated prior distri-
butions, will inference algorithms keep up?
We highlight a negative result in computable
probability theory by Ackerman, Freer, and
Roy (2010) that shows that there exist com-
putable priors with noncomputable posteri-
ors. In addition to providing a brief survey
of computable probability theory geared to-
wards the A.I. and statistics community, we
give a new result characterizing when condi-
tioning is computable in the setting of ex-
changeable sequences, and provide a com-
putational perspective on work by Orbanz
(2010) on conjugate nonparametric models.
In particular, using a computable extension
of de Finetti’s theorem (Freer and Roy 2009),
we describe how to transform a posterior pre-
dictive rule for generating an exchangeable
sequence into an algorithm for computing the
posterior distribution of the directing random
measure.

1 Introduction

Bayesian statistics has been revolutionized by the
ready availability of vast computing resources that can
power a range of numerical techniques, both random-
ized and deterministic. Probabilistic modeling is an
essential tool across all fields of science, and ideas from
computer science are playing an ever more central role
as models grow in complexity, both in terms of the
large size of datasets and the sophistication of the sta-
tistical models. Probabilistic programming languages
and probabilistic logics are pushing this complexity
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to new heights; devising generic inference algorithms
for the full extent of models expressible in these lan-
guages and logics poses a significant challenge. It is
critical to develop a theoretical understanding of the
possibilities and fundamental limitations of statistical
computation. Computable probability theory provides
a framework for exploring these questions. We present
aspects of this theory in Section 2.

One of the most important computational tasks in
Bayesian statistics is the calculation of conditional
probabilities, and in particular the calculation of pos-
terior distributions given observed data.

In many settings, computing conditional probabilities
is straightforward. For a random variable θ and dis-
crete random variable X, the formula

P{θ ∈ A |X = x} =
P{θ ∈ A, X = x}

P{X = x}
(1)

gives us the conditional probability that θ ∈ A given
X = x, provided that P{X = x} > 0. In the case
where the conditioned random variable is continuous
(and thus P{X = x} = 0), the situation is more com-
plicated.

A common situation is where the conditional distri-
bution P[X | θ] has a conditional density p(x |ϑ), in
which case we say that the likelihood model is dom-
inated. Then, the conditional probability is given by
Bayes’ rule

P[θ ∈ A |X = x] =

∫
A

p(x |ϑ)Pθ(dϑ)∫
p(x |ϑ)Pθ(dϑ)

, (2)

where Pθ is the distribution of θ and Pθ(dϑ) simplifies
to pθ(ϑ) dϑ if θ is absolutely continuous with density
pθ. Like the discrete setting, the dominated continuous
setting admits a concrete formula for the conditional
probability.

However, in infinite-dimensional nonparametric set-
tings, the likelihood is often not dominated.1 In these

1For a discussion of dominated models and Bayes’ theo-
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cases, previous work has determined the form of the
conditional or has identified underlying finite dimen-
sional structure (e.g., the Chinese restaurant process)
that can be used to compute conditional probabilities.
One can imagine the difficulty of devising a generic al-
gorithm capable of handling the full extent of known
nonparametric models, never mind the infinitude of
those yet to be proposed.

Can we build models in such a way that we can always
determine the posterior? Orbanz (2010) describes a
method for building conjugate nonparametric models
with closed form update rules for posterior analysis.
Here we study the minimal requirement: when there
exists some algorithm that computes the posterior dis-
tribution to arbitrary precision. Even this is not al-
ways possible, as we will see in Section 2.3.

While conditioning is not computable in the gen-
eral case, we can sometimes exploit additional struc-
ture to compute conditional distributions. In particu-
lar, we study the setting of exchangeable sequences.
By de Finetti’s theorem, an exchangeable sequence
{Xi}i≥1 is conditionally i.i.d. given a latent variable
ν called the directing random measure. Using a com-
putable extension of de Finetti’s theorem (Freer and
Roy 2009) we show that there is an algorithm for com-
puting the posterior distributions {P[ν |X1:k]}k≥1 if
and only if there is an algorithm for sampling from
the predictive distributions {P[Xk+1 |X1:k]}k≥1.

2 Computable probability theory

Computable probability theory provides a framework
for exploring the circumstances in which statistical op-
erations can be performed via algorithms. The the-
ory is based on a long tradition of mathematical work
in computable analysis studying the computability of
continuous functions and higher-order types (see, e.g.,
(Weihrauch 2000)), and also builds upon work in do-
main theory and the semantics of programming lan-
guages (see, e.g., (Edalat 1997)).

rem, see (Schervish 1995, Thm. 1.31). To see that a Bayes’
rule can fail to exist in the nonparametric setting, let α > 0,
let H be a continuous distribution, and sample a random
distribution F ∼ DP(αH) from a Dirichlet process prior
(Ferguson 1973). Note that F is an (almost surely) dis-
crete distribution whose atoms are i.i.d. samples from H.
Let X ∼ F be a sample from F . (Note that an independent
sample G ∼ DP(αH) will almost surely have a completely
disjoint set of point masses. Hence, the conditional distri-
bution P[X |F ] is not dominated.) The posterior distribu-
tion P[F |X] is almost surely concentrated on the measure
zero set (under the Dirichlet process prior) of random mea-
sures that have a point mass at X. Intuitively, a Bayes’
rule reweights the prior to form the posterior, but a mea-
sure zero set cannot be reweighted to a positive measure
set. Hence, in this case, there is no Bayes’ rule.

In examining the computability of statistical opera-
tions, we are concerned with tasks that we can perform
to arbitrary accuracy, and also with what we cannot
do, even approximately. Some results in computable
probability theory, such as the computable extension
of de Finetti’s theorem (described in Section 3) provide
explicit algorithms. Other results, such as the noncom-
putability of conditioning (described in Section 2.3)
prove the fundamental nonexistence of algorithms to
perform certain tasks.

In situations where there is provably no exact algo-
rithm to perform an operation, it is sometimes possible
to improve these results, using techniques from com-
putability theory, to show the impossibility of always
computing non-trivial approximations, let alone arbi-
trarily good ones (see Section 2.3). Hence computable
probability is not just about the possibilities and limi-
tations of exact computation, but is also directly rele-
vant to floating point and fixed precision calculations.

2.1 Basic notions

Objects like real numbers and probability measures
have, in general, only infinite descriptions. In con-
trast, on actual computers, we will only be able to
interact with these objects in finitary ways. One stan-
dard and flexible approach to computable analysis is
to represent points in a space using the topology of the
space. For example, the standard Euclidean topology
on the real line is generated by the countable subba-
sis IQ := {(`, r) ⊆ R : `, r ∈ Q and ` < r} of open
intervals with rational endpoints. Each of these open
sets can be thought of as an approximation to some
real number contained within it. The idea of the com-
putable topological approach is to represent a point by
a sequence of better and better approximations. Such
a sequence is called a representation of the point.

Definition 1 (Computable topological space). Let S
be a T0 topological space with a countable subbasis S,
and let s : N → S be an enumeration of S. We say that
(S,S, s) is a computable topological space when there
is a program that enumerates those triples a, b, c ∈ N
for which s(a) ⊆ s(b) ∩ s(c).

In particular, in a computable topological space, al-
though there may be many names for a given subbasis
element, there is a program that can recognize names
for identical subbasis elements. Computable topolog-
ical spaces, as defined here, are instances of the com-
putable T0 spaces defined in (Grubba, Schröder, and
Weihrauch 2007, §3). The following definitions are de-
rived from those in (Weihrauch 2000) and (Schröder
2007).
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Example 1. The real numbers R along with a
straightforward enumeration of the open rational in-
tervals IQ forms a computable topological space. Like-
wise, Rn is a computable topological space under an
enumeration of the n-dimensional open boxes with ra-
tional corners. The space R∞ of real sequences is a
computable topological space under an enumeration of
the k-dimensional open rational cylinders of the form
(`1, r1)× · · · × (`k, rk)×R∞, for all k ≥ 1. Intuitively,
a k-dimensional cylinder approximates the first k ele-
ments of a sequence to some finite accuracy, and says
nothing about the remaining elements of the sequence.

A point in a computable topological space is repre-
sented by a sequence of subbasis elements whose inter-
section is the tightest possible approximation to {x}.

Definition 2 (Representation of a point). Let (S,S, s)
be a computable topological space, and let x ∈ S be a
point in S. Define Nx := {B ∈ S : x ∈ B} to be the
set of subbasis elements containing x. A representation
of x is a sequence a1, a2, . . . of s-encodings of subbasis
elements containing x for which

⋂∞
i=1 s(ai) =

⋂
Nx.

When S is a T1 topological space (e.g., those in Ex-
ample 1) the above representation of x reduces to
{x} =

⋂∞
i=1 s(ai).

Definition 3 (Computable point). We say that a
point x ∈ S is computable when there is a program
that, on input i, outputs ai, for some representation
(ai)∞i=1 of x.

We may also think of a computable point as being
given by a program that (on empty input) outputs an
infinite stream whose ith term is ai.

Example 2. A real number α ∈ R is computable
when there is a computable sequence of rational in-
tervals that converges to {α}. Equivalently, one can
take the sequence to be rapidly converging; e.g., one
can show that α is computable if and only if there is
a program that, on input k ≥ 1 outputs a rational
qk ∈ Q satisfying |α − qk| < 2−k. A real sequence
{αi}i≥1 ∈ R∞ is represented by a sequence of cylin-
ders that eventually approximates every element to ar-
bitrary accuracy. Equivalently, one might require that
the kth term of the representation is a k-cylinder that
specifies the first k elements α1, α2, . . . , αk to precision
2−k (and says nothing about the remaining terms).

A computable function maps representations of input
points to representations of output points.2 The es-

2The input representation is typically infinite. One way
to formalize this is via oracle Turing machines. Another
approach is to work directly with machines that handle
infinite streams, as in the Type-two Theory of Effectivity
(TTE) described in (Weihrauch 2000).

sential property is that when a program has produced
a finite portion of its output (e.g., one term of a rep-
resentation sequence), it has done so in finite time,
having consumed a finite, but unbounded, portion of
its input.

Definition 4 (Computable function). Let (S,S, s)
and (T, T , t) be computable topological spaces. Let
f : S → T be a continuous function. We say that
the function f is computable3 when there is a program
that, given as input a representation of a point x ∈ S,
outputs a representation of the point f(x).

Let f : S → T and g : T → U be computable
functions. Then their composition g ◦ f : S → U is
also a computable function. Also note that a com-
putable function maps computable points to com-
putable points (as can seen by wrapping the trans-
formation describing the function around the program
generating the computable point).

In order to study the computability of operations like
conditioning, we must choose suitable notions of com-
putability for distributions and random variables. Fol-
lowing the same pattern, we will make the space P(S)
of (Borel) probability measures on S into a computable
topological space, and then perform computations on
measures via their representations as points. Before
we specify an appropriate topology for P(S), we first
define the notion of a computable random variable,
as it will suggest an appropriate topology to use for
defining computable measures.

2.2 Computable random variables

Intuitively, random variables map an input source of
randomness to an output, inducing a distribution on
the output space. From the perspective of computabil-
ity, there are various equivalent sources of random-
ness. Here we will use a sequence of independent fair
coin flips, which generates the same rich class of com-
putable distributions as that generated by more so-
phisticated sources, such as uniform random variables.

The space {0, 1}∞ of infinite binary sequences is a
computable topological space (under a straightforward
enumeration of the product topology). We will use this
space as a source of randomness, and so we will con-
sider it as a probability space where the distribution
is that of an i.i.d. sequence of fair coins.

Definition 5 (Computable random variable). Let
(S,S, s) be a computable topological space. Then an

3Computable functions S → T can equivalently be
viewed as the computable points in the computable topo-
logical space of continuous functions S → T under the
compact-open topology (Weihrauch 2000, Lem. 6.1.7).
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S-valued random variable ξ : {0, 1}∞ → S is com-
putable4 when there is a program that, given as input
a representation of a bit tape ω ∈ {0, 1}∞, outputs a
representation of the point ξ(ω) for all but a measure
zero subset of bit tapes ω.

As with computable functions, the essential property is
that for every finite portion of the output stream, the
program has consumed only a finite number of input
bits. When a random variable does not produce a valid
output representation, this means that at some point,
it consumes its entire input stream without producing
another output.

Even though the source of randomness is a sequence of
discrete bits, there are computable random variables
with continuous distributions, as we now demonstrate
by constructing a uniform random variable.

Example 3. Given a bit tape ω ∈ {0, 1}∞, for each
k ≥ 1 set xk(ω) :=

∑k
i=1 ωi2−i. Define Xk to be the

rational interval (xk(ω), xk(ω) + 2−k). Note that, for
every ω, we have |xk(ω)− xk+1(ω)| ≤ 2−(k+1), and so
limk xk(ω) exists. Thus the sequence of rational inter-
vals (Xk(ω))∞k=1 is a representation of the real number
limk xk(ω), and the distribution of the real number it
defines (as ω ∈ {0, 1}∞ varies according to fair coin
flip measure) is uniform on [0, 1]. Because each inter-
val Xk(ω) is computed using only finitely many bits of
ω, the function defined by ω 7→ (Xk(ω))∞k=1 constitutes
a computable random variable.

It is also possible for a computable random variable
to describe an infinite sequence of values, even though
infinitely many bits of randomness are already needed
for the first element of the sequence. This is accom-
plished by dovetailing.

Example 4. We extend the example of a uniform
random variable to an i.i.d.-uniform sequence. First
divide up5 ω into a countable sequence of disjoint sub-
sequences (πn(ω))∞n=1. For k ≥ 1, let the random
rational intervals Xk be as in Example 3, and for
n < k define the random rational interval yn,k(ω) :=
Xk(πn(ω)). Finally, for each k ≥ 1 define the random
k-dimensional cylinder Yk(ω) := y1,k(ω) × y2,k(ω) ×
· · · × yk,k(ω) × R∞. As before, for each n ≥ 1,
the sequence

(
yn,k(ω)

)∞
k=1

is a representation of the
real limk xk(πn(ω)), and the sequence of cylinders(
Yk(ω)

)∞
k=1

is a representation of the sequence of these

4Computable S-valued random variables can likewise
be viewed as the computable points in a computable topo-
logical space, which can be constructed as a subspace of
the function space of continuous maps from {0, 1}∞ to a
suitable augmentation of S (Schröder 2007, §3.3).

5Set πn(ω) := ω〈n,1〉ω〈n,2〉ω〈n,3〉 · · · , where 〈n, k〉 :=
(n+k−1)(n+k−2)

2
+ k is a pairing function that bijectively

maps pairs of positive integers to positive integers.

reals. Because the subsequences (πn(ω))∞n=1 are dis-
joint, the random reals limk xk(πn(ω)) are indepen-
dent, and by Example 3, uniformly distributed. Be-
cause each cylinder Yk(ω) is computed using only
finitely many bits of ω, the function defined by ω 7→(
Yk(ω)

)∞
k=1

is a computable sequence-valued random
variable.

In Examples 3 and 4, the computable random variable
has been defined by a program that outputs a rep-
resentation on every bit tape ω ∈ {0, 1}∞. We now
describe a procedure that sometimes fails to output a
representation, but only for a measure zero subset of
{0, 1}∞.

Example 5. Let α ∈ [0, 1] be a computable real, as in
Example 2. Sample x(ω) from a uniform random vari-
able using bit tape ω ∈ {0, 1}∞. With probability one,
x 6= α, and using the computable sequence defining α
we can eventually output 1 when x < α and 0 when
x > α. This procedure constitutes a computable ran-
dom variable, and so the Bernoulli(α) distribution is
computable. Note that this procedure fails to output
a representation6 when x(ω) = α, which occurs when
ω represents the binary expansion of α.

What can we learn from observing the behavior of a
computable random variable? Consider a computable
random variable ξ on a computable topological space
(S,S, s) and let Pξ be its distribution. Note that if a
program computing ξ outputs an integer n encoding
a particular subbasis element N = s(n) ∈ S, having
read only the first k bits ω1 · · ·ωk of its bit tape, then
Pξ(A) ≥ 2−k for every subbasis element A ∈ S for
which A ⊇ N , because for every bit tape beginning
with ω1 · · ·ωk, the program also outputs n. Given a
representation of ξ, we can record, for each rational
interval, those finite bit tape prefixes that are mapped
to subsets, thereby tabulating arbitrarily good rational
lower bounds on the quantities Pξ(A) for all A ∈ S.

In fact, lower bounds such as these, on a somewhat
richer class of open sets, are precisely what is needed
to sample from a distribution, and define a natural
subbasis for the weak topology on the space of proba-
bility measures.

Lemma 1 (Schröder (2007, Lem. 3.2)). Let (S,S, s)
be a computable topological space, and let AS be the
closure of S under finite unions and finite intersec-
tions. Then the collection of sets of the form

{µ ∈ P(S) : µ(A) > q}, (3)

6It is essential that computable random variables be al-
lowed to fail on a measure zero set, or else natural examples
like this one would have to be ruled out. For example, one
can show that for any computable Bernoulli(2/3) random
variable, there is a bit tape on which it does not halt.
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where A ∈ AS and q ∈ Q, forms a subbasis for the
weak topology on the space P(S) of probability mea-
sures on S.

For a computable topological space S, we will use the
subbasis given by (3) to turn P(S) into a computable
topological space. For our purposes, Lemmas 2 and 3
justify this choice of topology.7

Lemma 2 (Schröder (2007, Prop. 4.3)). Let ξ be
a random variable on a computable topological space
(S,S, s). There is a program that takes as input a rep-
resentation of ξ and outputs a representation of the
distribution of ξ. In particular, the distribution of a
computable random variable is computable.

Lemma 3 (Schröder (2007, Prop. 4.3)). Let µ be a
distribution on a computable topological space (S,S, s).
There is a program that takes as input a representation
of µ and outputs a representation of a random variable
with distribution µ.

Note that from a representation of µ, we can also com-
pute a representation of an i.i.d.-µ sequence, as in Ex-
ample 4.

2.3 Conditional distributions

Conditioning is a fundamental operation in statistics;
it is the process by which a probabilistic model is up-
dated to include new observations. The central chal-
lenge facing probabilistic programming language de-
signers is to build inference algorithms that cover as
wide a range of scenarios as possible.

Let ξ be a random variable in a computable topolog-
ical space (S,S, s), and let η be a random variable
in Rk with distribution Pη. A measurable function
φ : Rk → P(S) is called a version8 of the conditional
distribution P[ξ | η] when it satisfies

P{ξ ∈ A, η ∈ B} =
∫

B

φ(t)(A)Pη(dt), (4)

for all measurable sets A ⊆ S and B ⊆ Rk.

Definition 6 (Computable conditional distributions).
We say that a version φ of the conditional distri-
bution P[ξ | η] is computable9 when there is a pro-
gram that, given as input a representation of a point

7Furthermore, it can be shown that the representation
of measures as points in this space is complete among repre-
sentations for which the integral operator (for lower semi-
continuous and bounded countinuous functions) is com-
putable (Schröder 2007, Prop. 3.6). Hence expectation of
bounded random variables and marginalization are com-
putable operations.

8Any two measurable functions φ1, φ2 satisfying (4)
need only agree Pη-almost everywhere.

9Computable versions of conditional distributions are

t ∈ Rk, outputs a representation of the measure φ(t),
for Pη-almost all inputs t.

Note that any computable version φ is Pη-almost ev-
erywhere continuous.

Given an observation of a computable integer-valued
random variable, we can compute conditional distribu-
tions using Eq. (1). However, the class of computable
distributions is not closed under conditioning on com-
putable continuous random variables.

Theorem 1 (Noncomputability of conditioning (Ack-
erman, Freer, and Roy 2010)). There is a pair of
computable random variables ξ, η in [0, 1] for which
there is an Pη-almost everywhere continuous version
of the conditional distribution P[ξ | η], but no version
of P[ξ | η] is computable.

The proof reduces the halting problem to an expres-
sion involving conditional probabilities. If there were
a generic algorithm for conditioning, there would then
be an algorithm for solving the halting problem, a con-
tradiction.

Theorem 1 implies that is it impossible to compute
exact conditional distributions. In fact, the result can
be strengthened to show that there is no algorithm
that, on every input, outputs some nontrivial finite
approximation to the conditional distribution.10

Hence a challenge for computable probability theory
is to characterize broadly applicable circumstances
where conditioning (and therefore Bayesian analysis)
is computable.11

3 Computable de Finetti measures

A random probability measure on R is a random vari-
able ν : {0, 1}∞ → P(R). The distribution of ν is a
point in the space P(P(R)).

Example 6. Let u : {0, 1}∞ → [0, 1] be a uniform
random variable. Then ν := uδ1 + (1 − u)δ0 is a ran-
dom Bernoulli measure whose parameter is uniformly
distributed. The distribution of ν is a distribution

computable points in a computable topological space, con-
structed as in the random variable case.

10Furthermore, for every algorithm that only sometimes
outputs approximations, and every input on which it does
output some valid finite approximation, there is another
input representing the same pair of random variables, on
which it outputs nothing.

11Note that it will not suffice to restrict to a small class of
primitives, as long as recursion remains: the random vari-
ables ξ and η are defined in terms of simple random vari-
ables (uniform, Bernoulli, and geometric) using recursion.
Removing recursion, however, would destroy the source of
much of the power and flexibility of probabilistic program-
ming languages.
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on probability measures that is concentrated on the
Bernoulli measures.

Let X = {Xi}i≥1 be an infinite sequence of real
random variables. We say that X is exchangeable
if, for every finite set {k1, . . . , kj} of distinct indices,
(Xk1 , . . . , Xkj ) is equal in distribution to (X1, . . . , Xj).

Theorem 2 (de Finetti’s theorem (Hewitt and Savage
1955)). Let X = {Xi}i≥1 be an exchangeable sequence
of real random variables. There is an (a.s. unique)
random probability measure ν on R such that X is con-
ditionally i.i.d. with respect to ν:

P[X1 ∈ B1, X2 ∈ B2, . . . | ν] =
∏

i≥1 ν(Bi) a.s.,

for Borel sets Bi ⊆ R.

The random measure ν is called the directing ran-
dom measure. Its distribution µ (a measure on prob-
ability measures) is called the mixing measure or the
de Finetti measure. Note that ν is, in general, an in-
finite dimensional object. However, in many settings,
the random measure corresponds to a particular mem-
ber of a parametrized family of distributions, and in
this case, the mixing measure corresponds to a distri-
bution on parameters.12

Example 7. Consider the sequence {Yk}k≥1 where,
for each k ≥ 1, we sample Yk ∼ N ( 1

k

∑k−1
i=1 Yi, 1 + 1

k ).
The sequence {Yk}k≥1 can be shown to be exchange-
able and its directing random measure is a random
Gaussian with unit variance but random mean, and
so each realization of the directing random measure is
associated with (and completely characterized by) a
corresponding mean parameter. Let Z be the mean of
the directing random measure. The sequence {Yk}k≥1

is conditionally i.i.d. given Z. Furthermore, it can be
shown that the distribution PZ of Z is a standard nor-
mal N (0, 1) distribution. The mixing measure can be
derived from PZ , as follows: Let M : R → P(R)
be the map that takes a real m to the Gaussian
N (m, 1). Then the mixing measure µ is given by
µ(B) = PZ(M−1(B)), where B is a (Borel measur-
able) subset of P(R) and M−1(B) is the inverse image
of B under the map M . In summary, while a random
Gaussian distribution renders the sequence condition-
ally i.i.d., the latent mean parameter Z of the random
Gaussian captures the structure of the sequence.

The classical de Finetti’s theorem shows that the dis-
tribution of an exchangeable sequence is completely

12The mixing measure is often interpreted as a prior in
the Bayesian setting. However, it is important to reiter-
ate that it is uniquely pinned down by the distribution of
the exchangeable sequence, which itself may be described
without reference to any such prior.

characterized by its mixing measure. A natural ques-
tion is whether a computable exchangeable sequence
necessarily has a computable mixing measure, and fur-
thermore whether it is possible to recover a represen-
tation of the mixing measure from a representation of
the sequence distribution. The following computable
extension13 of de Finetti’s theorem shows that this is
in fact possible.

Theorem 3 (Computable de Finetti (Freer and Roy
2009)). Let X = {Xi}i≥1 be an exchangeable sequence
of random variables with distribution χ, and let ν be its
directing random measure (with distribution µ). Then
there is a program that computes a representation of
the mixing measure µ from a representation of the se-
quence distribution χ, and vice versa.

Example 8. Consider the sequence {Xk}k≥1 of ran-
dom variables induced by the following urn scheme
(Blackwell and MacQueen 1973) whose combinatorial
structure is known as the Chinese restaurant process
(Aldous 1985). Let α > 0 be a computable real and
let H be a computable distribution on R. For k ≥ 0,
sample Xk+1 ∼ 1

k+α

∑k
i=1 δXi

+ α
k+αH. The sequence

{Xk}k≥1 is exchangeable and its directing random
measure is known to be a Dirichlet process (Black-
well and MacQueen 1973). By Lemma 2, the dis-
tribution of the exchangeable sequence is computable
from the sampler. The computable de Finetti theo-
rem can automatically transform the sequence distri-
bution into its mixing measure, which in this case is
the “Dirichlet process prior”14 with parameter αH.
Coming full circle, by Lemma 3, we can use this rep-
resentation to sample a Dirichlet process F , and in
turn repeatedly sample observations X̂k ∼ F from
the Dirichlet process, generating an exchangeable se-
quence {X̂k}k≥1 of reals equal in distribution to the

13The directing random measure is classically given by
an explicit limiting expression. However, without a com-
putable handle on the rate of convergence of the limit, it
cannot be used directly to compute the de Finetti measure.
Nevertheless, it is possible to reconstruct the de Finetti
measure using the moments of a set of derived random
variables. For more details, see (Freer and Roy 2009).

14We note the following fact about the computability
of the stick breaking representation (Sethuraman 1994),
which is the list of atoms (and their masses) that comprise
the Dirichlet process. When two computable reals are not
the same, we can eventually recognize this, but when they
are the same, we cannot recognize this. Likewise, given a
representation of a distribution that is known to be dis-
crete, although we can list the atoms (as points in R∞),
it is not possible to recover their masses. Therefore it is
not possible to computably transform a Dirichlet process
to its stick-breaking representation. Thus, even in settings
where the computable de Finetti theorem tells us that the
directing random measure is computably distributed, this
may (as in Example 7) or may not (as described here) be
true of other random variables that render the sequence
conditionally independent.
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original sequence {Xk}k≥1 induced by the Blackwell-
MacQueen urn scheme.

As a practical matter, the particular transformation
from an exchangeable sequence to its de Finetti mea-
sure given by the proof of Theorem 3 is sometimes
rather inefficient. It is an open challenge to identify
circumstances where the de Finetti measure can be
computed efficiently.

4 Posterior analysis of exchangeable
sequences

Let X = {Xi}i≥1 be an exchangeable sequence. Even
if the distribution of X is computable, P[Xk+1|X1:k]
is not necessarily computable. However, in most cases,
our knowledge of an exchangeable sequence is, in fact,
precisely of this form: a rule which, given samples for
a prefix X1:k, describes the conditional distribution of
the next element, Xk+1. By induction, we can use the
prediction rule to subsequently sample from the con-
ditional distribution of Xk+2 given X1:k+1, and so on,
hallucinating an entire infinite exchangeable sequence
given the original prefix. The following result shows
that the ability to hallucinate consistently (i.e., from
the true posterior predictive) is equivalent to being
able to compute the posterior distribution of the la-
tent distribution that is generating the sequence.

Theorem 4. Let X = {Xi}i≥1 be an exchangeable
sequence of random variables with directing random
measure ν. There is a program that, given a rep-
resentation of the sequence of posterior predictives
{P[Xk+1 |X1:k]}k≥0, outputs a representation of the
sequence of posterior distributions {P[ν |X1:k]}k≥0,
and vice-versa.

Proof sketch. Suppose we are given (a representa-
tion of) {P[ν |X1:k]}k≥0. Fix j ≥ 0 and an obser-
vation x1:j ∈ Rj . By Lemma 2, we can compute (a
representation of) P[Xj+1 |X1:j ] by computing sam-
ples from the distribution P[Xj+1 |X1:j = x1:j ], given
x1:j . But by assumption and Lemma 3, we can sample
ν̂ ∼ P[ν |X1:j = x1:j ], and then sample X̂k+1 ∼ ν̂.

To prove the converse, fix j ≥ 0 and observe that,
conditioned on X1:j , the sequence {Xj+1, Xj+2, . . . }
is an exchangeable sequence whose de Finetti measure
is P[ν |X1:j ]. We show how to compute the conditional
distribution of this exchangeable sequence, and then
invoke the computable de Finetti theorem to compute
the posterior P[ν |X1:j ].

Suppose we are given (a representation of)
{P[Xk+1 |X1:k]}k≥0. By Lemma 3, given ob-
served values x1:j for a prefix X1:j , we can sample
X̂j+1 ∼ P[Xk+1 |X1:k = x1:k]. Then, treating

{x1:j , X̂j+1} as observed values for X1:j+1, we can
sample X̂j+2 ∼ P[Xj+2 |X1:j+1 = {x1:j , X̂j+1}].

By an inductive argument, we can therefore sample
from the conditional distribution of the exchangeable
sequence Xj+1:∞ given X1:j = x1:j . By Lemma 2,
we can compute the conditional distribution of the ex-
changeable sequence.

Finally, by Theorem 3, we can compute the de Finetti
measure, P[ν |X1:k], from the distribution of the con-
ditionally exchangeable sequence Xj+1:∞.

Note that the “natural” object here is the direct-
ing random measure ν itself, and not some other
parametrization Θ for which ν = P[X1 |Θ]. While a
particular parametrization may be classically uniden-
tifiable or noncomputable, the directing random mea-
sure is always identifiable and computable.

The hypothesis of Theorem 4 captures a common set-
ting in nonparametric modeling, where a model is
given by a prediction rule. Such representations can
exist even when there is no Bayes’ rule.

Example 9. Recall Example 8, defining a Dirichlet
process. Note that the Blackwell-MacQueen predic-
tion rule satisfies the hypotheses of Theorem 4. The
proof of Theorem 4 (if implemented as code) auto-
matically transforms the prediction rule into the (com-
putable) posterior distribution

{xi}i≤k 7→ DP(αH +
∑k

i=1 δxi
). (5)

Posterior computation for many other species sam-
pling models (Pitman 1996) is likewise possible be-
cause these models are generally given by computable
predictive distributions. As another example, exact
posterior analysis for traditional Pólya trees, a flexible
class of random distributions, is possible. In contrast,
nearly all existing inference techniques for Pólya trees
make truncation-based approximations. For arbitrary
Pólya trees, the noncomputability result implies that
there is no algorithm that can determine the error in-
troduced by a given truncation.

In fact, any model for which someone has constructed
an exact posterior algorithm necessarily has a com-
putable predictive, and so the hypotheses of the algo-
rithm are quite general.15

15Exchangeable structure need not be evident for The-
orem 4 to apply. Let G be a distribution on P(R);
sample F ∼ G, and then sample an observation X ∼
F from the random distribution F . Can we compute
P[F |X]? Theorem 4 implies that if we introduce nui-
sance variables X2, X3, . . . that are themselves independent
draws from F , then P[F |X] is computable if the sequence
P[X2 |X],P[X3 |X, X2], . . . is computable. So even though
the model only invokes a single sample from F , the abil-
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5 Related work

Orbanz (2010) proves a version of Kolmogorov’s ex-
tension theorem for families of conditional distribu-
tions, providing a new way to construct nonparamet-
ric Bayesian models. In particular, Orbanz shows how
to construct a (countable-dimensional) nonparametric
model as the limit of a conditionally projective fam-
ily of finite dimensional conditional distributions, and
shows that the limiting nonparametric prior will be
conjugate exactly when the projective family is.

Essentially, in order to obtain a closed form expres-
sion (in terms of sufficient statistics) for the posterior
of a nonparametric model, one must construct the non-
parametric model as the projective limit of models that
admit both sufficient statistics and a conjugate poste-
rior (the main examples of which are the projective
limits of exponential family models).

We now give a related statement: in order to com-
putably recover the posterior distribution from suffi-
cient statistics of the observations, it is necessary and
sufficient to be able to computably sample new obser-
vations given sufficient statistics of past observations.

For simplicity, we restrict our attention to sufficient
statistics of the form

∑k
i=1 T (Xi), where T : R → Rm

is a continuous function. This setting covers essentially
all natural exponential family likelihoods.

When the sufficient statistic and the conditional dis-
tributions P[Xk+1 |

∑k
i=1 T (Xi)], for k ≥ 1, are com-

putable (and hence their composition is a computable
predictive distribution), we get as an immediate corol-
lary that we can compute the posterior from the suf-
ficient statistic, and therefore, the sufficiency for the
predictive carries over to the posterior.
Corollary 1. Let X and ν be as above, and let∑k

i=1 T (Xi) for T : R → Rm be a sufficient statis-
tic for Xk+1 given X1:k. Then the sequence of poste-
rior distributions P[ν |

∑k
i=1 T (Xi)] for k ≥ 1 is com-

putable if and only if the sequence of conditional dis-
tributions P[Xk+1 |

∑k
i=1 T (Xi)], for k ≥ 1, and the

sufficient statistic T are computable.

Corollary 1 and Theorem 4 provide a framework for
explaining why ad-hoc methods for computing condi-
tional distributions have been successful in the past,
even though the general task is not computable.

However, the classical focus on closed form solutions
has necessarily steered the field into studying a nar-
row and highly constrained subspace of computable
distributions. The class of computable distributions
includes many objects for which we cannot find (or for

ity to do posterior analysis on F given X is linked to our
ability to sample the sequence X2, X3, . . . given X.

which there does not even exist) a closed form. But
computable distributions do provide, by definition, a
mechanism for computing numerical answers to any
desired accuracy.

Massive computational power gives us the freedom to
seek more flexible model classes. Armed with general
inference algorithms and the knowledge of fundamen-
tal limitations, we may begin to explore new frontiers
along the interface of computation and statistics.
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