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Abstract

We study the problem of image denoising
where images are assumed to be samples from
low dimensional (sub)manifolds. We propose
the algorithm of locally linear denoising. The
algorithm approximates manifolds with lo-
cally linear patches by constructing nearest
neighbor graphs. Each image is then locally
denoised within its neighborhoods. A global
optimal denoising result is then identified by
aligning those local estimates. The algorithm
has a closed-form solution that is efficient to
compute. We evaluated and compared the
algorithm to alternative methods on two im-
age data sets. We demonstrated the effective-
ness of the proposed algorithm, which yields
visually appealing denoising results, incurs
smaller reconstruction errors and results in
lower error rates when the denoised data are
used in supervised learning tasks.

1 INTRODUCTION

Many algorithms developed for tasks in computer vi-
sion, such as object recognition, segmentation and
others, assume that the input images contain little
or no noise. Thus, for vision systems accomplish-
ing those tasks, it is important to remove excessive
noise in images at processing stages as early as pos-
sible. Image denoising is an important preprocessing
step for achieving that goal (Elad and Aharon, 2006;
Buades et al., 2005; Perona and Malik, 1990). Denois-
ing techniques are also widely used in computer graph-
ics (Fleishman et al., 2003), digital photography (Fer-
gus et al., 2006) and other applications.
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Principal component analysis (PCA) is a popular de-
noising technique. It is especially effective when im-
ages are contaminated with small amounts of Gaussian
noise. Probabilistic approaches, based on learning pri-
ors for appearance, geometry and other visually salient
properties, have also been intensively studied (Roth
and Black, 2005; Kivinen et al., 2007). In these works,
the prior models are learnt using image corpora, such
as those of natural scenes, where images are randomly
collected and are not meaningfully related to each
other (Martin et al., 2001). Many state-of-the-art de-
noising techniques are based on statistical signal pro-
cessing and optimal filtering (Elad and Aharon, 2006;
Buades et al., 2005; Guerrero-Colon et al., 2008; Dabov
et al., 2007; Portilla et al., 2003). A key assumption
in many of these work is that for a given image, many
pixels’ neighborhoods (or local patches) are similar to
each other. Such similarity is leveraged to estimate
models of noise and clean images.

While the majority of existing work has been focusing
on denoising a single image, we investigate the prob-
lem of denoising collectively a collection of images. In
many cases, latent intrinsic structures underpin those
images. For instance, an image library of an object can
be compactly described with a few parameters such as
the lighting condition, the camera position, etc. We
assume that these latent variables lie on a smooth low
dimensional manifold. Identifying image manifolds is
an active research topic in manifold learning and latent
variable models (Tenenbaum et al., 2000; Roweis and
Saul, 2000; Belkin and Niyogi, 2003; Lawrence, 2005).
We consider the problem of denoising in this context.
Specifically, we view images as random samples (with
noise) from the manifold. A natural question arises:
can the intrinsic structure be exploited for denoising?
Note that the intrinsic structure is often unknown a
priori, therefore needs to be inferred from the (noisy)
data. How can we achieve robust denoising and infer-
ence at the same time?

Our work investigates these questions. We propose a
simple and effective procedure for denoising data on
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manifolds. Our study shows clearly that exploiting
the intrinsic structure of image collections is advanta-
geous. Our iterative procedure consists of 3 steps: i)
construct a nearest neighbor graph to approximate the
manifold with locally linear patches; ii) denoise data
points locally within each patch; iii) align denoised
data globally with regularization enforcing smoothness
on manifolds. Each of the three steps is computation-
ally tractable, involving nearest neighbor search, ma-
trix eigendecomposition and matrix inversion. We ap-
plied our algorithm to image denoising on manifolds of
handwritten digits and faces. We evaluate the quality
of the denoising by visual inspection, deviation from
uncorrupted images and classification error rates on
denoised images. We compare our algorithm to alter-
native methods systematically under various types of
noise conditions. Our algorithm generally outperforms
other approaches.

The rest of the paper is organized as follows. In sec-
tion 2, we summarize briefly related work. We derive
and describe our algorithm in section 3. Experimental
evaluation is presented in section 4. We discuss future
research directions in section 5.

2 RELATED WORK

Manifold learning algorithms also aim to exploit in-
trinsic structures in data. They are different from our
effort in their primary goals of discovering and pro-
jecting data onto low dimensional structures for visu-
alization and exploratory data analysis (Tenenbaum
et al., 2000; Roweis and Saul, 2000; Belkin and Niyogi,
2003). In contrast, the primary goal of denoising is to
obtain denoised output in the same dimensionality as
the noisy input. Note that, for manifold learning al-
gorithms, it is possible to build statistical models or
functions that map data in the low dimensional space
to the original input space (Lawrence, 2005; Teh and
Roweis, 2003; Gao et al., 2008). The outputs of those
models could be seen as denoised inputs. Intuitively, it
is difficult to ensure the effectiveness and advantage of
this type of denoising procedures since both phases —
projection and backward mapping — introduce errors.
Empirically, our experimental results did not support
this procedure as a robust option for denoising.

Our work is more similar in spirit to the diffusion map
based denoising algorithm (Hein and Maier, 2007).
They view denoising as reversing a diffusion process
of which graph Laplacian is the generator. Both their
and our approaches use graph Laplacian for regulariza-
tion. However, our approach is significantly different
from theirs as our iterative procedure uses intermedi-
ate denoising outputs differently to refine the existing
solution. In particular, their approach tends to overly

smooth the inputs. Our approach is less sensitive to
that problem.

3 LOCALLY LINEAR DENOISING

We assume that the (image) data lies on a d-
dimensional smooth submanifold embedded in an am-
bient space of dimensionality D > d. Let {z; €
RP,i = 1,2,...,N} be N data points sampled from
the manifold. Let X € RP*YN denote the matrix where
x; is the i-th column. Let z; € R¢ denote the cor-
responding coordinates for x; in the low dimensional
space. We assume that there exists a smooth func-
tion f, mapping the low dimensional coordinates to
the high dimensional space: x; = f(z;) + ¢;, where ¢;
represents noise.

We denote f(z;) by y;, ie, the noiseless data. We de-
fine the shorthand notation Y as we did for X. We are
interested in denoising noisy data x; thus identifying
y;. Note that our goal is different from most man-
ifold learning algorithms, which aim to identify {z;}
and sometimes the function f(-) (Tenenbaum et al.,
2000; Roweis and Saul, 2000; Belkin and Niyogi, 2003;
Zhang and Zha, 2004).

In what follows, we start by describing and deriving
our algorithm in details. We then analyze the algo-
rithm briefly and discuss a few possible extensions.

3.1 The LLD ALGORITHM

Our approach hinges on the basic notion that a
manifold can be seen as a collection of overlapping
small linear patches. Moreover, if data are sampled
densely, these small patches can be approximated with
nearest neighborhoods in point clouds. This is the
same intuition behind many manifold learning algo-
rithms (Tenenbaum et al., 2000; Roweis and Saul,
2000). Our algorithm exploits this intuition by denois-
ing in each patch independently. Then we compute a
global assignment of denoising outputs that align with
local results as much as possible. Specifically, our al-
gorithm consists of the following three steps:

3.1.1 Constructing nearest neighbor graph

We construct a weighted nearest neighbor graph from
the sampled data points. Let K denote the number of
nearest neighbors for each data point (including itself)
and N; denote the neighbors of x;. We use w;j to
denote the weight of the edge between the samples x;
and ;. Many choices of w;; are possible. In this work,
we have chosen the commonly used Gaussian kernels
w;; = exp(—||lx; —x;||?/o?) if ; € N or z; € Nj, and
0 otherwise. Let W denote the weight matrix where
the elements are w;.
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3.1.2 Denoising locally

We view x; and K points in its neighborhoood N
as random samples from a linear subspace, approx-
imating the manifold around the point x;. We de-
noise these K points with principal component anal-
ysis (PCA) (other strategies are also possible). Let
X; denote the points in N;. The local estimate of
y; — denoised x; — is given by the reconstruction
of x; with the d; principal components of X;. Simi-
larly, we compute reconstructions for other points in
N;. Concretely, let U; € RP*4 denote the d; princi-
pal components. The reconstruction Q; € RP*E for
these points is given by

Qi =UU"X;(I-ee"/K)+ X;ee" /K (1)

where e is a length-K column vector whose element
values are ones and I is the identity matrix.

The number of the principal components d; can be
estimated adaptively, mindful of the inhomogeneous
distribution of the noise at different parts of the mani-
fold. This is in sharp contrast to many manifold learn-
ing algorithms where a global dimensionality d needs
to be estimated. When there is noise in the data, es-
timating a global d is challenging as the noise and the
curvature of the manifold interplay. In our work, d;
is estimated with simple methods such as thresholding
on the residual variances.

3.1.3 Aligning globally

In addition to having its own neighborhood, any point
x; can be in the neighborhoods of other data points
as the approximating linear subspaces overlap for a
densely sampled manifold. Intuitively, the local de-
noising results for ; from other neighborhoods reflect
also information about the “true” location y;. To in-
tegrate this information from every neighborhood, we
seek a global assignment of denoising result Y that
minimizes the sum of discrepancies to all neighbor-
hoods. Specifically, we minimize the following loss
function

£a=3" 3 - Q) (2)

i g iEN;

where Q; (i) stands for the local denoising result for
x; from the neighborhood of x;.

The loss function £ 4 can be expressed compactly with
data selection matrices (Zhang and Zha, 2004). Let
S = [S1,S9,...,SNn] be a 1 x N block matrix where
each block S; € RV*X corresponds to the neighbor-
hood of x;. Moreoever, S; is a binary matrix and its
element s;, = 1 if and only if x; is the k-th near-
est neighbor of x;. Note that XS; = X;. The loss

function £ 4 is expressed as
La=]YS-Ql% (3)

where @ = [@1 Q2 -+ Q] and the subscript F in-
dicates the Frobenious norm.

In addition to aligning the global coordinates Y with
the local estimates Q, we also seek an output that is
smooth on the manifold. To this end, we also min-
imize the total variation of Y on the graph (Hein
and Maier, 2007). The total variation is computed
as the squared norm of the (discrete) difference, Lo =
S VY%, where Y,, is the m-th row of the de-
noised data Y and V is the discrete difference, approx-
imating the gradient on continuous manifold (Chung,
1997). The loss can be written in terms of the graph
Laplacian, analogous to the Laplacian-Bertrami oper-
ator on smooth manifolds,

D
Lo =) Y,LY, " =trace(LY"Y) (4)

m=1

The graph Laplacian L = I — D~'W is defined in
terms of the weight matrix W for the graph and the
diagonal matrix D with the diagonal element of D;; =
Zj Wiy .

The loss function L attains its minimum at a con-
stant Y, which would result in a large loss for the
alignment L£4. To tradeoff, we adopt the same reg-
ularization framework proposed in (Hein and Maier,
2007) and compute the optimal solution to the follow-
ing loss

L) =|YS — Q% + Arace(LYTY)  (5)

as the denoising result: Y* = argminy £()\). Em-
piricall, the coefficient A > 0 is chosen with valida-
tion sets. Note that the optimal denoising result has
a closed-form solution given by

Y*(\) =QS"(SST+AL)! (6)

The matrix product A = SST is a diagonal matrix.
Specifically, its diagonal element A;; is the number of
nearest neighborhoods that x; belongs to.

The algorithm listing in Fig. 1 reviews the key steps
of our algorithm. Note that our algorithm depends on
the nearest neighbor graph which is estimated from the
(noisy) data samples X . After computing the denoised
output Y*(\) in eq. (6), the graph can be re-estimated
with denoised outputs. The denoising can then be
iteratively refined on the new graph. While a formal
proof of convergence of this iterative process is left
for future work, we observe convergence after a few
iterations to a stable solution in our experiments.
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Input X: noisy data, K: number of nearest neigh-
bors, \: regularization coefficient for graph Lapla-
cian
S1 construct K weighted nearest neighbor graph
S2 denoise locally with eq. (1) to compute Q
S3 align globally with eq. (6)
S4 (optionally) iterate from S1, use the results
in S3 in place of X
Output Y*: denoising results

Figure 1: Locally linear denoising (LLD) algorithm

3.2 ANALYSIS

In the following, we analyze the LLD algorithm briefly
and contrast to a closely related approach (Hein and
Maier, 2007). To gain intuition, we first consider the
case when A = 0. Note that, when A approaches oo,
as mentioned before, the solution Y*(\) of eq. (6)
becomes trivially constant so that the solution is in-
finitely smooth.

On the other extreme, however, when \ is zero, there
is no enforcement on the smoothness of the denoised
output. Instead, the solution takes the simple form of
Y*(0) = QSTA"!. A short calculation reveals that
Y *(0) is the average of all local estimates. It is inter-
esting to note that this simple procedure works well in
some denoising tasks, as evidenced by empirical study
in later sections. Also, even for A = 0, due to the iter-
ative nature of the LLD algorithm, averaging changes
from one iteration to the other as the nearest neigh-
bors are recomputed every iteration. Furthermore, if
Q is computed with nonlinear methods from X (as
opposed to linear projections with PCA), the overall
averaging effect is highly nonlinear and compounded.

When )\ < 1, we can approximate the matrix inverse
in eq. (6) with (SST+AL)"! ~ A~Y(I — ALA™1) (by
applying Taylor expansion). The solution is then ap-
proximated with

Y*A) = Y*(0)(I - A" +AY*(0)D'WA ™! (7)

The first term approximately takes the form of dis-
counted simple averages of local estimates. The sec-
ond term reveals more insight. Specifically, the local
estimate g; also contributes to the global assignment
y; if ¢; and x; are connected in the weighted nearest
neighbor graph. Moreover, for the Gaussian kernel we
have taken to compute the weights, the contribution is
positively proportional to the weight w;;. Intuitively,
if ©; and x; are close to each other, their local esti-
mates should be similar to each other. Hence, infor-
mation from the local estimate g; could be used for
estimating y;.

Hein et al has recently proposed a diffusion map based
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Figure 2: Examples of clean USPS digit images

denoising algorithm (Hein and Maier, 2007). Similar
to ours, their algorithm computes directly the high di-
mensional denoising outputs and incorporates graph
Lapalacian as a regularization to favor smooth solu-
tions. Their iterative procedures take the form (in the
notation of this paper)

Y« Y +AL)™! (8)

While the two updates in eq. (6) and eq. (8) appear
similar, key differences exist. In eq. (8), the updated
denoising result Y (on the left side) is used directly
in the right side to be refined. In eq. (6), the updated
denoising result affects the refined output at the next
time step indirectly through the computation of local
estimates @ on the right side. Note that the compu-
tation of @ requires recomputing the nearest neighbor
graph as well as recomputing projection matrix (cf.
eq. (1)). Therefore, the two denoising algorithms are
unlikely to converge to the same stationary point.

We gain further insight by inspecting again the spe-
cial case when A = 0. Note that eq. (8) immediately
reaches a fixed point for any Y. For the LLD algo-
rithm eq. (6), this is not necessarily true. In the next
section, we compare the LLD algorithm to their algo-
rithm empirically and discover significant differences
in applications.

4 EXPERIMENTS

4.1 EVALUATION METHODOLOGY

We evaluate the performance of the locally linear de-
noising (LLD) algorithm on two data sets: a subset
of the USPS handwritten digit images, which contains
200 images per digit class, and the ORL face images
with resolution reduced from 112 x 92 to 28 x 23.
We chose them for their different characteristics in
number of samples, dimensionality, and intrinsic struc-
tures. We compare the performance of our approach
to that of four denoising algorithms: PCA, the dif-
fusion map based manifold denoising (DM-MD) al-
gorithm (Hein and Maier, 2007), Non-Local Means
(NLM) and BLS-GSM (Buades et al., 2005; Portilla
et al., 2003; Guerrero-Colon et al., 2008). The later
two methods are designed to denoise one image at a
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Figure 3: Denoising by PCA and manifold based algorithms on USPS data. Top row to bottom: different noise
types (Gaussian, occlusion, motion blur and salt-and-pepper). Left column to right: no denoising, PCA, DM-
MD (Hein and Maier, 2007) and LLD (cf. section 3) with A = 0. Denoised images are visually more appealing.
DM-MD tends to overly smooth while LLD does not perform well with occlusion noise. For DM-MD, the number
of nearest neighbors are K = 80, 80, 30, 100 for each noise type respectively. For LLD, K = 30 for all noise types.

time, therefore, do not rely on intrinsic latent struc-
tures in image collections.

We also tried a two-step denoising strategy where we
project to a low dimensional space first and then use
a learned statistical model to map back to the original
input space (Teh and Roweis, 2003). Preliminary re-
sults did not support this strategy as a viable option
for robust denoising. One possible reason is that both
steps introduce errors and there is no “global” crite-
ria controlling the quality of the final denoised images.
We omit those results. Note that, the LLD algorithm
computes denoised images without identifying low di-
mensional embeddings.

We investigate the robustness of denoising algorithms
to different types of noise. We treat the original im-
ages as “clean” images and synthesize noisy images
by adding noise to them: Gaussian noise imposed on
the pixel intensities, random occlusion patches, mo-
tion blurring as caused by camera movements, and
salt-and-pepper noise where each pixel’s intensity is
randomly flipped at a probability of 20% to its com-
plement alue. Denoising algorithms that are resilient
to different noise types are highly desirable in practice
as inferring noise types is often challenging.

We examine the quality of denoising with visual in-
spection. We also apply two quantitative metrics: re-
construction errors between denoised outputs and the
clean images; as well as classification errors on the de-
noised outputs with classifiers trained on clean data.
Note that the denoising algorithms are not told which

images are noisy ones. Therefore, all images are de-
noised. As a consequence, the original clean images
will be contaminated while noisy images are cleaned.
We report results separately on them. Fig. 2 and 6
show examples of clean images from these two data
sets. We report findings on the USPS data first, fol-
lowed by those on the ORL face images.

The LLD algorithm depends on the regularizer coeffi-
cient A and the number of nearest neighbors K. We
chose them based on cross-validation using either of
the two quantitative metrics. Parameters for other al-
gorithms are tuned similarly.

4.2 USPS DIGIT IMAGES

Denoising results Fig. 3 displays the denoising re-
sults on noisy images by 3 algorithms under the four
types of noise. We added noise to 100 images (10 per
class) and show 50 of them (results for the other 50 are
similar). Overall, manifold based denoising algorithms
yield more visually appealing reconstructions. PCA
introduces suppositions of images from all classes as it
adds to the reconstructed images with a mean image
computed over the whole data set. The diffusion map
based algorithm tends to overly smooth, also noted
n (Hein and Maier, 2007). This is not necessarily
a disadvantage: under the occlusion noise, this algo-
rithm is the only one that can connect broken strokes
caused by occlusion, thus more visually appealing.

In Table 1, we quantify the denoising quality in terms
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Table 1: Reconstruction errors and misclassification rates (in percentage) by multiclass SVM classifiers on the
USPS data. The error rates are shown inside the parentheses. Without denoising, corresponding to the column
heads of “none”, no reconstruction error is reported. In both measures, LLD outperforms other 2 methods in
most cases. Parameters are set as the same as those in Fig. 3.

Noise Noisy images Original clean images
type none PCA DM-MD LLD none PCA DM-MD LLD
Gaussian -(20) | 640 (19) | 920 (11) | 719 (13) || - (16) | 518 (16) | 918 (19) | 665 (15)
Occlusion - (18) | 615 (18) | 949(15) 524 (17) || - (16) | 390 (16) | 918 (20) | 333 (15 )
Blurring - (20) | 964 (20) | 1228 (52) | 1043 (22) || - (16) | 420 (16) | 906 (18) | 274 (16)
Salt&Pepper || -(22) | 785 (14) | 977 (15) | 860 (14) || - (16) | 518(16) | 938 (22) | 666 (15)

of reconstruction errors, which is the sum of the
squared differences in pixel intensities. As a reference,
the amount of noise added to the images are 805, 520,
968 and 1137, respectively for each type of noise. On
noisy images, PCA incurs the smallest amount of re-
construction errors and LLD has smaller errors than
DM-MD. On the original clean images, PCA contami-
nates less in the cases of Gaussian and salt-and-pepper
noise, while LLD contaminates less for occlusion and
blur noise. DM-MD has the highest errors.

Classification An important use of denoising is to
preprocess data for supervised learning tasks. In Ta-
ble 1, we compare the misclassification rates using
different denoising algorithms. The misclassification
rates are numbers displayed inside parentheses. SVM
classifiers were trained on 200 clean images (20 images
per class) and we tested the classifiers with 100 noisy
images and 1700 originally clean images. Almost all al-
gorithms improve over the baseline without denoising.
The DM-MD algorithm performs the best on noisy
images with Gaussian and occlusion noise. However,
it does so at the expense of increasing error rates on
original clean images. The LLD algorithm attains the
smallest error rates in most categories. In particular,
it is able to achieve so by reducing error rates more
than other algorithms on both noisy images and orig-
inal clean images. The exception being on the motion
bluring images, the error rate was increased slightly
from 20% to 22%.

Ffdld il EEld BN
e fEkal MRl fEEl
ElEE EEE EEE EEEE

Figure 4: Denoising by LLD with different amount
of regularization. X is increased from left to right.
Larger A leads to oversmoothing, similar to the DM-
MD algorithm.

Effects of graph regularization In the results we
have reported so far, we have set the parameter A to
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Figure 5: Misclassification rates (in percentage) of
LLD with different regularization and other methods
on USPS data with salt-and-pepper noise. Small regu-
larization improves error rates on both noisy and orig-
inal clean images (note that they are “denoised” too,
effectively being introduced with noise). See text for
details.

0 in the LLD algorithm. A nonzero A trades off the
errors of alignment (see eq. (3) ) and the smoothness
of the denoised images. We experimented with dif-
ferent settings of A under the salt-and-pepper noise.
The optimal value for A combined parameters K and
d is chosen with the smallest classification error rates
on validation data sets. Fig. 4 shows that a smaller
A retains the “grain” in the image while a larger one
often oversmooths. The A we used in this experiment
are 0, 0.25, 1.5 and 9 respectively. Fig. 5 reports the
classification performance of the LLD algorithm with
two settings A = 0 and A = 0.01, as well as other algo-
rithms. Note that while LLD(\ = 0) achieves a better
overall error rate than competitive methods, its error
rates on noisy images were worse than that of DM-MD.
With a small amount of regularization, the error rates
of LLD(A = 0.01) on noisy images were significantly
lower than both DM-MD and without regularization.
Furthermore, the error rates on the original clean im-
ages were improved too, though not significantly. For
this experiments, we have used 10 clean images per
class to build a SVM classifier. On the clean images,
the error rate is 30.4%. Therefore, an interesting ob-
servation is that both DM-MD and the two LLDs are
able to improve the error rates from this baseline. We
believe this is the benefits of semi-supervised learning,
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Figure 6: Visualization of denoised ORL images. From
left column to right and top row to bottom: clean im-
ages, images with Gaussian noise, denoised with MD-
DM and LLD algorithms respectively.
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Figure 7: Misclassification rates (in percentage) for
ORL data with various denoising algorithms (note
that, “denoising” clean images introduces noises in ef-
fect). See text for details.

as discussed in (Hein and Maier, 2007).

4.3 ORL FACE IMAGES

The ORL face image data set has a total of 400 images
from 40 subjects. We add noise to randomly chosen
200 images and retain the other 200 images as clean
samples. We use 4 clean images per subject to train
a 40-way classifier to distinguish subjects. Our test
set for classification tasks contains 1 clean image and
5 noisy images per subject. The performance of two
manifold based denoising algorithms under Gaussian
noise are displayed in Fig. 6. We drew similar con-
clusions about these two algorithms as in our previous
experiments on USPS data. In particular, we note that
the DM-MD algorithm oversmooths, which would lead
to inferior classification results. This is confirmed in
Fig. 7. Note that using clean images only the clas-
sifier has a classification error of 5.8%. Furthermore,
note that the results are obtained at choosing the num-
ber of nearest neighbors be 60 for LLD and 20 for
DM-MD. Both numbers are greater than the number
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Figure 8: Comparison among various denoising algo-
rithms. From top row to bottom and from left column
to right: images of digits contaminated with narrow
black bands at the bottom, denoising by the LLD al-
gorithm, denoising by Non-Local Means, denoising by
BLS-GSM. The LLD algorithm is able to recover par-
tially occluded areas by the bands.

of images per subject in the data set. This indicates
that the LLD algorithm is capable of using information
from similar images, though not necessarily clustered
in terms of subjects, to get rid of noise.

4.4 COMPARISON TO SINGLE-IMAGE
DENOISING

The LLD algorithm collectively denoises all images.
This is different from many existing approaches, which
denoises one image at a time. A drawback of those
approaches is that they cannot benefit from intrinsic
structure, such as image manifolds.

To exemplify this, we compared the LLD algorithm
to Non-Local Means (NLM) and BLS-GSM (Buades
et al., 2005; Portilla et al., 2003; Guerrero-Colon et al.,
2008), both regarded as state-of-the-art denoising al-
gorithms. Specifically, we added a narrow black band
to the bottom of 100 USPS digit images, as shown in
Fig. 8. The LLD algorithm denoises these noisy im-
ages by using the rest clean images in the data set and
is able to recover partially from the occlusion. On the
other hand, both NLM and BLS-GSM cannot recog-
nize the bands as noises.

If the intrinsic structure is contaminated by strong
noise, the LLD algorithm is prone to extract infor-
mation from wrong images to denoise. For instance,
images of digit 2 with bottom bandnoises can be easily
confused as images of digit 7. Therefore, LLD denoises
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by mixing both types of images. NLM and BLS-GSM
are immune to this problem as these images are pro-
cessed independently. Thus, it is interesting to explore
whether and how we can combine the advantages of
both types of techniques.

5 CONCLUSION

In this paper, we study the problem of image denois-
ing when images lie on intrinsic low dimensional struc-
tures such as submanifolds. We propose locally linear
denoising (LLD) to exploit such structures. The al-
gorithm integrates local denoising results through a
global alignment process that minimizes discrepancies
in reconstruction with different local neighborhoods,
balanced by graph Laplacian regularization to prefer
smooth solutions on the manifolds. The algorithm is
evaluated and compared to other state-of-the-art de-
noisubg methods. The results are encouraging: on
both handwritten digit and face images, the proposed
algorithm yields visually appealing denoising results,
incurs small reconstruction errors and results in low
error rates when the denoised data are used in super-
vised learning tasks.

We view the algorithm proposed in this paper as a
general strategy. For example, the local denoising step
can be easily adapted to other approaches that are
more robust, for instance, robust PCA (Huber, 1981).

Field of Experts also learns a prior model of image
patches from collection of images (Roth and Black,
2005). The prior does not depend on the contents of
the data, while LLD does. It would be interesting to
have a synergy between the two methods. We leave
these opportunities to improve to future work.
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