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Abstract

Working within the decision-theoretic frame-
work for causal inference, we study the
properties of “sufficient covariates”, which
support causal inference from observational
data, and possibilities for their reduction. In
particular we illustrate the rôle of a propen-
sity variable by means of a simple model, and
explain why such a reduction typically does
not increase (and may reduce) estimation ef-
ficiency.

Keywords: Average causal effect; Propensity variable;
Linear discriminant; Quadratic discriminant; Suffi-
cient covariate.

1 Introduction: Decision-theoretic
causality

Our concern is to understand the causal effect of a bi-
nary treatment variable T on a real-valued outcome
variable Y , and to consider when and how it might be
estimated from observational data. In particular, we
shall be concerned with defining, and making appro-
priate adjustment for, confounding variables.

In contrast to the prevalent “potential outcomes” in-
terpretation of statistical causality (Rubin 1974; Rubin
1978), we shall operate within the decision-theoretic
framework for causal inference (Dawid 2002). This
aims to identify appropriate assumptions allowing
transfer of distributional information between various
regimes, comprising an observational regime, whose
properties can be identified from data, and interven-
tional regimes, that arise when the treatment is as-
signed by external manipulation. We introduce a non-
stochastic regime indicator variable FT , with values
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∅, 0, 1: FT = ∅ labels the observational regime, while,
for t = 0, 1, FT = t labels the interventional regime in
which T is set to t. There will be a joint distribution
Pf of all relevant variables associated with each regime
f . Notations such as Pf (A) and P(A |FT = f) will be
used interchangeably.

Causal assumptions, relating the different regimes, can
be conveniently expressed using the notation and cal-
culus of conditional independence, extended to allow
some of the variables (here, the regime indicator FT )
to be non-random (Dawid 1979a; Dawid 1980; Dawid
2002). For example, the “ignorable treatment assign-
ment” assumption, which states that the distribution
of Y given T = t in the observational regime is the
same as in the regime that intervenes to set T = t, can
be expressed as

Y ⊥⊥FT |T . (1)

This is however a strong condition that will rarely be
appropriate in the absence of randomisation.

2 Sufficient covariate

For simplicity we confine attention to the average
causal effect ACE of T on Y , defined by:

ACE := E1(Y )− E0(Y ). (2)

Because it is defined in terms of interventional regimes,
ACE has a direct causal interpretation. Our prime
task is to try and identify ACE from data collected
under the observational regime, FT = ∅. The nat-
ural observational counterpart of ACE is the “face-
value average causal effect”, FACE := E∅(Y |T =
1)−E∅(Y |T = 0). We typically will not have FACE =
ACE unless we can assume ignorable treatment assign-
ment, which will often be unreasonable. However, ex-
ternal considerations may make it relatively easy to
argue that a certain variable X is a sufficient covari-
ate, defined as follows.

Definition 1 A (possibly multivariate) variable X is
a covariate (with respect to treatment T ) if:

Property 1: X ⊥⊥FT . 2
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Property 1 requires that the distribution of X be the
same in all regimes, whether observational or interven-
tional. This will typically be appropriate when X is an
attribute of the unit to which treatment is applied, or
of its environment, determined prior to the treatment
decision.

Definition 2 X is a sufficient covariate (for the ef-
fect of treatment T on outcome Y ) if, in addition to
Property 1, we have

Property 2: Y ⊥⊥FT | (X,T ). 2

Property 2 states, informally, that the conditional dis-
tribution of Y , given X and T , is the same in all
regimes. Property 2 can also be described as “ignor-
able treatment assignment, given X” (Rosenbaum and
Rubin 1983). In any given problem there may be sev-
eral distinct sufficient covariates, or none at all. In
contrast to the case for statistical (Fisher) sufficiency,
there need not exist a minimal sufficient covariate.

A rigorous statement (Dawid 1979a; Dawid 1979b) of
Property 2 is as follows. Let Z be a function of Y —
which we henceforth notate as Z � Y — whose expec-
tation exists in each regime — which we henceforth
denote by “Z is integrable”. Then there exists a ran-
dom variable W � (X,T ) such that, for each regime
f = 0, 1, ∅, W serves as a version of the conditional
expectation Ef (Z |X,T ) under the distribution Pf as-
sociated with regime f . (Because we focus on ACE,
we will only need this property for the case Z ≡ Y —
assumed integrable.)

Properties 1 and 2 can be represented graphically by
means of the DAG (influence diagram) of Figure 1.1

Y

X

TFT

Figure 1: Sufficient covariate

For many purposes we will also require the follow-
ing reasonable positivity condition, requiring that, for
each possible level of X, both treatments are used in
the observational regime:

Definition 3 A variable X is a strongly sufficient co-
variate if it is a sufficient covariate and, in addition:

Property 3: For t = 0 or 1, P∅(T = t |X) > 0 with
probabilility 1. 2

1The dotted arrow indicates a link that disappears un-
der an interventional regime: when FT = t, T will have the
1-point distribution at t, independently of X.

Lemma 1 Suppose X is a strongly sufficient covari-
ate. Then, as distributions for (Y,X, T ), Pt �
P∅ (t = 0, 1).

Proof. Let A be an event for (Y,X, T ). Property 2,
expressed equivalently as (Y,X, T )⊥⊥FT | (X,T ), as-
serts that there exists a function w(X,T ) such that
Pf (A |X,T ) = w(X,T ), a.s. for f = 0, 1, ∅. If
now P∅(A) = 0, then, a.s. [P∅],

∑1
t=0 P∅(T =

t |X)w(X, t) =
∑1

t=0 P∅(T = t |X) P∅(A |X,T =
t) = P∅(A |X) = 0. By Property 3, for t = 0, 1,
w(X, t) = 0 a.s. [P∅] and hence, by Property 1,
a.s. [Pt]. So Pt(A) = Et{w(X, t)} = 0. 2

Theorem 1 Let X be a strongly sufficient covariate.
Then for any integrable Z � (Y,X, T ), and any ver-
sions of the conditional expectations,

Et(Z |X) = E∅(Z |X,T = t) (t = 0, 1) (3)

almost surely in any regime. We can take E∅(Z |X,T )
or ET (Z |X) as a version of E(Z |X,T ) in all regimes.

Proof. By Property 2 there exists a function
w(X,T ) which is a version of Ef (Z |X,T ) for f =
0, 1, ∅. In particular, E∅(Z |X,T ) = w(X,T ) a.s. [P∅]
and thus, by Lemma 1, a.s. [Pt] (t = 0, 1) — thus
we can take E∅(Z |X,T ) as the common version of
Ef (Z |X,T ) for f = 0, 1, ∅. In particular, a.s. [Pt],
Et(Z |X) = Et(Z |X,T = t) = E∅(Z |X,T = t). So
(3) holds a.s. [Pt] and thus, by Property 1, a.s. in each
regime. 2

Theorem 1 expresses rigorously what we mean by say-
ing that the observational conditional distribution of
Y , given a strongly sufficient covariate X, for those
happening to receive treatment t, is the same as the
interventional conditional distribution of Y given X,
for those given treatment t.

2.1 Back-door formula

Let X be a covariate.

Definition 4 The specific causal effect (of T on Y ,
relative to X) is the random variable

SCE := E1(Y |X)− E0(Y |X). 2

Then SCE is a function of X, defined almost surely
(under any regime). Where we need to indicate its con-
struction from the specific covariate X, we annotate
SCE as SCEX ; we also write SCE(X) or SCEX(X) to
express SCE as a function of X. Because it is defined
in terms of interventional regimes, SCE has a direct
causal interpretation: SCE(x) is the average causal ef-
fect in the subpopulation having X = x.
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Theorem 2 For any covariate X, ACE = E(SCEX)
(where the expectation may be taken under any
regime).

Proof. By Property 1, E∅{Et(Y |X)} =
Et{Et(Y |X)} = Et(Y ). By subtraction, ACE =
Ef (SCEX) for f = ∅ and thus, again by Property 1,
also for f = 0, 1. 2

SCEX is typically not identifiable from purely obser-
vational data. However, if X is strongly sufficient,
by (3) we can also express SCEX as E∅(Y |X,T =
1) − E∅(Y |X,T = 0), which means that it is then
estimable from data collected in the observational
regime. Since we have

ACE = E∅ (SCEX) , (4)

it follows that ACE is then expressible purely in terms
of properties of the observational joint distribution of
(T,X, Y ), where X is any strongly sufficient covari-
ate. Formula (4) is Pearl’s “back-door formula” (Pearl
1993).

We can similarly define “the effect of treatment on the
treated”, as ETT = E∅ (SCEX |T = 1) — again the
same for all choices of X (Geneletti and Dawid 2010).

3 Reduction of strongly sufficient
covariate

Suppose X is a strongly sufficient covariate. It might
simplify the application of formula (4) if we could re-
place X by a variable V � X which is itself a strongly
sufficient covariate. When can we do this? Since, when
V � X, Properties 1 and 3 for V are automatically in-
herited from the same properties for X, we need only
establish Property 2 for V , viz.:

Y ⊥⊥FT | (V, T ). (5)

The following theorem gives two alternative sufficient
conditions for this to hold.2

Theorem 3 Suppose X is a strongly sufficient covari-
ate and V � X. Then V will be a strongly sufficient
covariate if either of the following conditions is satis-
fied:

(a). Response-sufficient reduction:3 For t = 0, 1,

Y ⊥⊥X | (V, FT = t). (6)
2However, (5) can hold even when neither of these con-

ditions does.
3The prognostic score (Hansen 2008) corresponds to (6)

confined to t = 0.

That is, for each applied treatment, once V is
known, any further information about X is of no
value for predicting Y .

(b). Treatment-sufficient reduction:

T ⊥⊥X | (V, FT = ∅). (7)

That is, in the observational regime, the choice of
treatment depends on X only through V .

Proof. Assume first Condition (a). By (6), for
any integrable Z � Y there exists a version, w(X, t)
say, of Et(Z |X) that is a function of V (t = 0, 1).
By Theorem 1, W := w(X,T ) is a common version of
Ef (Z |X,T ) in every regime f ; moreover W � (V, T ).
So the common conditional distribution for Y given
(X,T ) depends on X through V alone:

Y ⊥⊥ (X,FT ) | (V, T ) (8)

and (5) follows.

As for Condition (b), since we trivially have
X ⊥⊥T | (V, FT = t), (7) is equivalent to

X ⊥⊥T | (V, FT ). (9)

Now Property 1, with V � X, implies X ⊥⊥FT |V ,
which together with (9) gives X ⊥⊥ (T, FT ) |V ,
whence X ⊥⊥FT | (V, T ). This now combines with
Property 2 (equivalently expressed, since V � X, as
Y ⊥⊥FT | (X,V, T )), to yield (Y,X)⊥⊥FT | (V, T ), and
we once again deduce (5). 2

We note that the proof of (b) does not require Prop-
erty 3 and, once we have established (9), uses only
the basic calculus of conditional independence (Dawid
1979a; Dawid 1980). In particular, it continues to
hold when the qualifier “strongly” in the statement
of Theorem 3 is omitted.

As an alternative proof of (b), we can first represent
the recursive collection of conditional independence
properties (i) Property 1: X ⊥⊥FT (ii) V ⊥⊥FT |X (a
trivial consequence of (i) and V � X), (iii) eqn. (9):
T ⊥⊥X | (V, FT )4 and (iv) Y ⊥⊥ (V, FT ) | (X,T ) (which
follows from Property 2 and V � X), by means of the
DAG of Figure 2. We can then use the semantics of
d-separation (Pearl 1986; Verma and Pearl 1990) or its
moralisation equivalent (Lauritzen et al. 1990) to read
the desired conclusion (5) directly off the graph.

A parallel graphical approach to (a) does not work
since, without Property 3, (8) need not follow. How-
ever, while not supplying a proof, Figure 3 does conve-
niently embody the collection of conditional indepen-
dencies Property 1, Property 2 and (8), as well as the

4Note that the dotted arrow in Figure 2 implies the
equivalence of (7) and (9).
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Y
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TFT

V

Figure 2: Treatment-sufficient reduction

trivial property V ⊥⊥T | (X,FT ); and also the conclu-
sion (5).

Y

X

TFT

V

Figure 3: Response-sufficient reduction

3.1 Propensity variable

We observe that the defining property (7) for a
treatment-sufficient reduction, expressed as

X ⊥⊥T | (V, FT = ∅), (10)

states that the observational conditional distribution
of X given V is the same for both treatments (i.e.,
further conditioned on either T = 0 or T = 1): that is
to say, V is a balancing score for X (Rosenbaum and
Rubin 1983).5

The property (10) can also be fruitfully interpreted
as follows. Consider the family Q = {Q0, Q1} consist-
ing of the pair of observational conditional distibutions
for X, given respectively T = 0 and T = 1: these are
well-defined since, by Property 3, each of these condi-
tioning events has positive probability. Then (10) as-
serts that V is a sufficient statistic (in the usual Fish-
erian sense) for this family. In particular, a minimal
treatment-sufficient reduction6 is obtained as a mini-
mal sufficient statistic for Q: viz., any variable almost
surely equal to a (1, 1)-function of the likelihood ratio
statistic Λ := q1(X)/q0(X) (where qi(·) is a version
of the density of Qi with respect to some dominat-
ing measure). We term such a minimal treatment-
sufficient covariate a propensity variable, since one
form for it is

Π := P∅(T = 1 |X) = πΛ/(1− π + πΛ) (11)

5Caution: This balancing property need not imply that
V is a sufficient covariate if the variable X we start from
is not itself sufficient.

6Caution: Although any non-trivial reduction of such a
variable can not be treatment-sufficient, that does not im-
ply that such a reduction can not be a sufficient covariate.
For example, if Y ⊥⊥X | (T, FT ) then the trivial reduction
of X to a constant will be a sufficient covariate.

(where π := P∅(T = 1) ∈ (0, 1), by Property 3), which
is known as the propensity score (Rosenbaum and Ru-
bin 1983).

Note that it is entirely possible that we will obtain
distinct propensity variables if we start from distinct
strongly sufficient covariates.

4 Normal linear model

We illustrate and develop the above theory in the con-
text of a simple but instructive example.

We have a univariate response Y , and a (p × 1) vec-
tor sufficient covariate X. The common conditional
distribution for Y given (X,T ) is specified as:

Y | (X,T, FT ) ∼ N (d+ δT + b′X,φ), (12)

with parameters d and δ (scalar), b (p × 1), and φ
(scalar). It is readily seen that the specific causal ef-
fect is constant: SCEX ≡ δ. In particular, from (4),
our main quantity of interest, the average causal effect
ACE, is just δ.

From (12) we see that the linear predictor LP :=
b′X satisfies Condition (a) of Theorem 3, and thus
LP is a response-sufficient reduction of X. Trivially
E(Y |LP, T ) = d + δT + LP, with the desired coeffi-
cient δ of T .

Our model for the observational joint distribution of
(T,X) is most easily described in terms of its marginal
for T , and conditional for X given T , as follows:

P∅(T = 1) = π (13)

X | (T, FT = ∅) ∼ N (µT ,Σ) (14)

with parameters π ∈ (0, 1), µ0, µ1 (p×1), and Σ (p×p
positive definite).

The observational marginal distribution of X will thus
be a multivariate normal mixture:

X |FT = ∅ ∼ (1− π)N (µ0,Σ) + πN (µ1,Σ). (15)

Because we are requiring Property 1 to hold, the mar-
ginal distribution for X in each interventional regime,
FT = 0 or 1, is also given by (15).

The observational conditional distribution of T given
X is given by (11), with

log Λ = c+ LD (16)

where −2c = µ′1Σ−1µ1 − µ′0Σ−1µ0, and

LD := γ′X, (17)

with
γ := Σ−1(µ1 − µ0), (18)
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is Fisher’s linear discriminant , best separating the pair
of multivariate normal observational distributions for
X, given T = 0 and T = 1. It is clear that Property 3
holds, so that X is strongly sufficient.

Lemma 2 Suppose V is a linear sufficient covariate
( i.e., a linear function of X that is itself a sufficient
covariate). Then the coefficient of T in the observa-
tional linear regression of Y on T and V is δ.

Proof. Under the distributional assumptions made,
linearity of V implies

Et(Y |V ) = d̃+ δ̃t+ b̃′V (19)

for suitable parameter values. Thus SCEV ≡ δ̃, so
that δ̃ = E(SCEV ) = ACE = δ. If now V is suf-
ficient (hence strongly sufficient, since X is), then
(19) is also the observational conditional expectation
E∅(Y |V, T = t). 2

From (16) we see that LD is a propensity variable. As
it is thus a linear sufficient covariate, from Lemma 2
we deduce:

Lemma 3 Under the given distributional assump-
tions, the coefficient of T in the observational regres-
sion of Y on T and LD is δ.

4.1 Further implications

A significant observation is the following. Since
Lemma 3 refers solely to properties of the observa-
tional regime, it must still hold when the causal
assumptions, relating that regime to interventional
regimes, are dropped. Furthermore, because this re-
sult involves only first and second order moments,
it must apply in still greater generality. Thus sup-
pose (Y, T,X), with T binary, have an arbitrary joint
distribution with finite second moments and T non-
degenerate. Let µt := E(X |T = t), let Σ be the
dispersion matrix of X −µT , and let LD := γ′X, with
γ := Σ−1(µ1 − µ0), be the linear discriminant func-
tion, based on X, for distinguishing between T = 0
and T = 1. Then we have

Theorem 4 The coefficient of T in the linear regres-
sion of Y on (T,LD) is the same as that in the linear
regression of Y on (T,X).

Corollary 1 Suppose we have data on (Y, T,X) for
a sample of individuals. Let LD∗ be the sample linear
discriminant for T based on X. Then the coefficient of
T in the sample linear regression of Y on T and LD∗

is the same as that in the sample linear regression of
Y on T and X.

Proof. Apply Theorem 4 to the empirical distribu-
tion of (Y, T,X) formed from the sample. 2

Rosenbaum and Rubin (1983) (§ 3.4) give this result
with a brief non-causal argument.

The result of Corollary 1 is paradoxical: when we
think our estimation procedure is adjusting for the
treatment assignment process, by regressing on the
estimated propensity variable LD∗, what we actually
end up with is an adjustment for the full sufficient
covariate X—which renders the treatment assignment
process entirely irrelevant.

4.2 Propensity analysis does not increase
precision

It might näıvely be thought that it would increase the
precision of our estimator of ACE if we were to ad-
just for just one covariate, the sample-based propen-
sity variable LD∗, rather than for all p variables X.
This could be regarded as supported by the fact that, if
we adjustX for some univariate linear function Z ofX,
the (sample-based) choice Z = LD∗ will tend to max-
imise sample balance across the two treatment groups.
However, Corollary 1 shows that there can be no in-
crease in efficiency: indeed, adjusting for LD∗ rather
than for all p predictors makes absolutely no difference
to our estimate — and, consequently, to its precision.
Similar theoretical conclusions hold in other scenarios
(Hahn 1998; Senn et al. 2007), and there is substantial
empirical evidence that this is a general effect (Winkel-
mayer and Kurth 2004). Intuitively, the overfitting er-
ror introduced by selecting that variable best separat-
ing the two treatment groups in the data compensates
for any increased accuracy that could be obtained by
regressing on just one variable, rather than on p. The
excellent sample balance achieved is likewise a feature
of overfitting, and merely reflects the equivalence of
(7) and (10), applied, with V = LD∗, to the empirical
distribution of the data.

There is a close analogy with the case of response-
sufficiency: the sample analogue of the response-
sufficient covariate LP is the estimated best linear pre-
dictor for the observed data, LP∗. But it would clearly
not change the estimated coefficient of T if we were
first to compute LP∗ by regressing on all p variables,
and finally regress Y on T and the single variable LP∗.

There is much theoretical and empirical evidence
(Robins et al. 1992; Hirano et al. 2003) to support the
claim that estimating ACE by adjusting for the true
propensity variable (when this is known) yields worse
precision than adjusting for an estimated propensity
variable. In our setting the two approaches corre-
spond to running regressions of Y on (T,LD) and on
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(T,LD∗), respectively — each of which will yield an
unbiased estimator of δ, the ACE. The above claim
clearly can not be universally valid, since in the spe-
cial case that LD happens to be the same as LP, by
Corollary 1 the regression on LD∗ is equivalent to ad-
justing for the estimated linear predictor LP∗, which
by the Gauss-Markov theorem will be less accurate
than adjusting for the true LP = LD (though the dis-
crepancy will be small in large samples). The claim is
however likely to apply in the typical case that LD is
not highly correlated with LP, for then regressing on
LD is adjusting for a variable which is a less precise
predictor of outcome than the true linear predictor LP;
whereas, by Corollary 1, adjusting for LD∗ will yield
the same estimate as adjusting for LP∗ which (in large
enough samples) will approximate adjustment for LP,
which is optimal.

For illustration, suppose we have the following true
values for the parameters in (12), (13) and (14): p = 2,
d = 0, δ = 0.5, b = (1, 0)′, φ = 1, π = 0.5, µ1 =
(0, 1)′, µ0 = (0, 0)′, Σ = I2. Then the population
linear predictor is LP = X1, with Y |X,T ∼ N ( 1

2T +
X1, 1), while the population linear discriminant is X2

— which is however not even weakly predictive of Y ,
since Y |X2, T ∼ N ( 1

2T, 2).

The full regression model (model M0 say) is as in (12),
with all parameters taken as unknown. Fitting the
true linear predictor LP = X1 is equivalent to set-
ting b2 = 0 (yielding model M1), while fitting the true
linear discriminant LD = X2 is equivalent to setting
b1 = 0 (model M2). Note that all these models are
“true”; for M2 the true value of b2 is 0, and the true
residual variance φ is 2, as against φ = 1 for M0 and
M1. Finally, for any data-set we can construct the
estimated propensity variable LD∗, and then fit the
model Y ∼ N (d+ δT + b∗ LD∗, φ) (model M3).

For each model Mk the associated least-squares esti-
mator δ̂k of δ is unbiased, having expectation δ = 0.5.
By the Gauss-Markov theorem, conditionally on all
regressors and hence also unconditionally, var(δ̂0) (=
var(δ̂3) by Corollary 1) ≥ var(δ̂1). In fact var(δ̂0) ∼
5/n, var(δ̂1) ∼ 4/n. However, var(δ̂2) ∼ 10/n, so in
this case it is indeed asymptotically less precise to ad-
just for the true propensity variable than for its esti-
mate.

To investigate finite-sample behaviour, we generated
25 simulated datasets, each of size n = 20, from the
above model. Figure 4 shows the empirical distribu-
tion of δ̂k for each of the models. As expected, we see
that adjusting for the true linear predictor LP is most
precise; next is adjusting for the estimated propensity
variable LD∗ or — entirely equivalently — for all co-
variates (X1, X2); and last comes adjustment for the

M0:  Y on (T, X)

−3 −2 −1 0 1 2

0

5

10

15 mean =  0.387
sd =  0.6759
mse =  0.4696

M3:  Y on (T, LD*)

Estimated coef(T)

−3 −2 −1 0 1 2

0

5

10

15 mean =  0.387
sd =  0.6759
mse =  0.4696

M1:  Y on (T, LP=X1)

−3 −2 −1 0 1 2

0

5
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15 mean =  0.4251
sd =  0.5789
mse =  0.3407

M2:  Y on (T, LD=X2)

Estimated coef(T)

−3 −2 −1 0 1 2
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15 mean =  0.3533
sd =  1.0087
mse =  1.039

Linear regression (homoscedasticity) [25 datasets]

Figure 4: (Clockwise from top left.) Estimates of
ACE = 0.5 from regressing Y on T and: (X1, X2);
population linear predictor LP = X1; population lin-
ear discriminant (propensity variable) LD = X2; esti-
mated linear discriminant (propensity variable) LD∗.

true propensity variable LD = X2.

5 Heteroscedasticity

Suppose now that, keeping all other distributional as-
sumptions of § 4 unchanged, we change (14) to:

X | (T, FT = ∅) ∼ N (µT ,ΣT ) (20)

with different within-group dispersion matrices Σ0,Σ1.
The marginal distribution of X (in all regimes) is thus

X ∼ (1− π)N (µ0,Σ0) + πN (µ1,Σ1), (21)

while expression (16) is replaced by:

log Λ = c+ QD (22)

where −2c = log det Σ1 − log det Σ0 + µ′1Σ−1
1 µ1 −

µ′oΣ−1
0 µ0, and

QD :=
(
Σ−1

1 µ1 − Σ−1
0 µ0

)′
X − 1

2
X ′
(
Σ−1

1 − Σ−1
0

)
X

(23)
is the quadratic discriminant for distinguishing the ob-
servational distributions of X given T = 0 and T = 1.
In particular, QD is a propensity variable — though
not, now, a linear covariate.

It now follows that ACE = E(SCEQD), with SCEQD =
E∅(Y |T = 1,QD) − E∅(Y |T = 0,QD). However,
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since QD is quadratic in X, computation of the condi-
tional and the unconditional expectations in this for-
mula is difficult. As an approximation, we might re-
place the exact non-linear form of E∅(Y |T,QD) by
the observational linear regression of Y on (T,QD),
and extract the coefficient of T — although this will
not be exactly ACE. A version of this using sample-
based estimates of the required population parame-
ters would then (it might be hoped) provide a reason-
able estimate of ACE. Alternatively, SCEQD might be
estimated nonparametrically, e.g. by subclassification
(Rosenbaum and Rubin 1984) on QD, and averaged to
estimate ACE.

A different approach can be based on the theory of
§ 4.1. The linear discriminant is

LD = (µ1 − µ0)′Σ−1X, (24)

with Σ = π0Σ0 + π1Σ1. Even though LD is not now a
sufficient covariate, Theorem 4 applies, so allowing us
to identify ACE as the coefficient δ of T in the popu-
lation linear regression of Y on (T,LD) in the obser-
vational regime. Its sample analogue δ∗, obtained by
running a linear regression of Y on T and the sample
linear discriminant LD∗, will then be an unbiased es-
timator of ACE — indeed, will be identical with the
straightforward estimator obtained by regressing Y on
(T,X).

5.1 Simulations

We simulated 25 datasets of size 400 from the above
model with the following parameter values: p = 20;
d = 0, δ = 0.5, b = (1, 0, . . . , 0)′; µ0 = (0, . . . , 0)′,
µ1 = (0, 0.5, 0, . . . , 0)′, Σ0 diagonal with 0.8 for the
first ten entries and 1.3 for the rest, Σ1 the identity
matrix; π = 0.5.

Figure 5 gives estimates of ACE obtained by adjust-
ing for known population quantities. The first three
plots arise from linear regression of Y on, respec-
tively (T,LP), (T,LD), and (T,QD), where LP = X1,
and (from (24) and (23)) LD = (5/9)X2, QD =
(1/2)X2 +(1/8)

∑10
i=1X

2
i −(3/26)

∑20
j=11X

2
j . The last

plot is computed by subclassification on the popula-
tion propensity variable QD (with classes formed by
dividing its empirical distribution into 5 equal parts).

Figure 6 gives the corresponding results when these
population variables are replaced by their sample esti-
mates. (The first plot is from the regression on all the
predictors).

Again regression adjustment for the true linear predic-
tor is, unsurprisingly, the best procedure. Next comes
the sample regression on all predictors or, equivalently,
on the sample linear discriminant. Then, roughly
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Figure 5: (Clockwise from top left.) Estimates of
ACE = 0.5 from regressing Y on T and: linear predic-
tor LP = X1; population linear discriminant LD ∝ X2;
population quadratic discriminant (propensity vari-
able) QD. Fourth plot: by subclassification on QD.
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Figure 6: (Clockwise from top left.) Estimates of
ACE = 0.5 from regressing Y on T and: all covariates
X; sample linear discriminant LD∗; sample quadratic
discriminant (propensity variable) QD∗. Fourth plot:
by subclassification on QD∗.
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equal, are regression on the population linear discrim-
inant, on the sample quadratic discriminant, and on
the population quadratic discriminant. Last comes
subclassification on the quadratic propensity variable,
the performance being particularly dismal when this
is estimated.

6 Discussion

We have identified a propensity variable as a minimal
treatment-sufficient reduction of a sufficient covariate
X. For a simple normal linear model, this can be taken
as the linear discriminant LD between the two obser-
vational distributions of X given treatment. We have
shown that linear adjustment for the sample estimate
LD∗ of LD yields exactly the same estimate of ACE
as adjustment for all of X, and so can neither increase
nor decrease precision. Typically, though not univer-
sally, adjustment for the true LD will deliver worse
accuracy. Even when, in the heteroscedastic case, LD
is not a genuine propensity variable, adjusting for the
estimated LD∗ will still be equivalent to running a full
regression on all predictors, and hence still yield an
unbiased (but not more—nor less—accurate) estima-
tor of ACE. In contrast, adjustment (be it parametric
or nonparametric, population-based or sample-based)
for a genuine propensity variable (the quadratic dis-
criminant) performs poorly.

Our investigations, limited though they are to a very
simple model, add weight to the accruing evidence
(Hahn 1998; Robins et al. 1992; Hirano et al. 2003;
Winkelmayer and Kurth 2004; Senn et al. 2007) that
propensity analysis has little to contribute to improv-
ing the estimation of causal effects.
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