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Abstract

In this paper we propose a new classification
algorithm designed for application on com-
plex networks motivated by algorithmic sim-
ilarities between boosting learning and mes-
sage passing. We consider a network classifier
as a logistic regression where the variables de-
fine the nodes and the interaction effects de-
fine the edges. From this definition we rep-
resent the problem as a factor graph of local
exponential loss functions. Using the factor
graph representation it is possible to inter-
pret the network classifier as an ensemble of
individual node classifiers. We then combine
ideas from boosted learning with network op-
timization algorithms to define two novel al-
gorithms, Boosted Expectation Propagation
(BEP) and Boosted Message Passing (BMP).
These algorithms optimize the global net-
work classifier performance by locally weight-
ing each node classifier by the error of the
surrounding network structure. We compare
the performance of BEP and BMP to logistic
regression as well state of the art penalized
logistic regression models on simulated grid
structured networks. The results show that
using local boosting to optimize the perfor-
mance of a network classifier increases clas-
sification performance and is especially pow-
erful in cases when the whole network struc-
ture must be considered for accurate classifi-
cation.
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1 Introduction

In this paper we propose a novel way of optimizing
the parameters of a network classifier with a known
structure by guiding boosted ensemble learning with
explicit knowledge of a network structure. This is
achieved by considering a network classifier as a lo-
gistic regression where the variables define the nodes
and the interaction effects define the edges. Our pro-
posed models seek to accurately classify the response
variable from the set of predictor variables with speci-
fied iterations that form our known network structure.
Furthermore, we do not assume a set network type but
we exploit the flexiblity of loopy message algorithms to
allow our proposed methods to optimize classification
performance for an arbitrary network structure.

Real world networks often contain large complex struc-
tures which provide in themselves a complex optimiza-
tion task. Message passing algorithms are particularly
well suited to optimization on large complex network
structures as they exploit the factorized nature of net-
work distributions to convert the problem to many
local optimization tasks (Bickson et al., 2008). The
global network structure is incorporated into each lo-
cal optimization task through messages sent along the
edges of the graph (Kschischang et al., 2001). These
messages contain distribution information about the
current state of the network and are used to guide
each local optimization towards the global network op-
timum. Message passing algorithms are flexible meth-
ods as they do not specify the form of the node po-
tentials and also loopy variants allow for approxima-
tion over an arbitrary network structure (Kschischang
et al., 2001).

Boosting performs a forward stage-wise addition of
new classifiers into an ensemble to build a weighted
linear classifier for the response (Freund and Schapire,
1997, Friedman et al., 2000). The construction of each
new classifier is explicitly weighted to correct the errors
of the previous ensemble. If we consider the boosted
weights as messages passed between models within an
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already known boosted ensemble, then the process of
optimizing each new ensemble member is analogous to
optimizing a local potential function within a message
passing regime.

In the paper we investigate the algorithmic similarity
between message passing and boosted ensemble learn-
ing and propose two novel network classifier models,
Boosted Expectation Propagation (BEP) and Boosted
Message Passing (BMP). These models treat each
node within a network classifier as a member of a
boosted classifier for a common global response. The
information used to estimate each ensemble member is
constrained by the messages sent through the known
network structure. In the next section we describe
the structure of our network classifier by rephrasing
a global network logistic regression as a factor graph
with exponential loss functions as the local potential
functions. We then describe the details of BEP and
BMP and show that employing both methods will
minimize the Conditional Kullback Leilber divergence
about the known network structure. The performance
of BEP and BMP is then evaluated on grid structured
networks with simulated data and compared to state
of the art LASSO (Tibshirani, 1996, Zou and Hastie,
2005) and ridge (Park and Hastie, 2007a) penalized
logistic regression models.

2 Preliminaries

Consider a classification problem with a binary re-
sponse variable y € [—1,1] which assigns a label to
each observation ¢ = 1...N. There are K predictor
variables X = [z1,...,2k] which are organized into a
network structure where ne(xy) defines the set of vari-
ables that are connected neighbors of x; within the
network. We define the set of network parameters to
be [ where (3 models each node effect and B, models
each edge effect. We additionally define an arbitrary
function F'(X) which defines the classification function
over all X, and fr = fr(xp, ne(zy)) the classification
contribution given the local network structure defined
by [z, ne(zy)]. Further we define the marginal dis-
tribution of a node xj to be ¢x and denote message
passed along edges within a network by pu.

3 Network Classifiers

We construct our network classifier in the form of a
standard logistic regression where each variable xj is
a network node and each edge is an interaction effect
TETm,

eF(X)

P(y=1|X)=m (1)

and,

k méene(xy)

where 8 in (2) are the parameters to be estimated to
maximize correct classification (1).

The task is to optimize the performance of our net-
work classifier by accurately estimating the parame-
ters B. This problem is made difficult by the increasing
network size and complexity required for modern ap-
plications. Commonly this curse of dimensionality is
overcome by using a feature selection approach such as
the LASSO (Tibshirani, 1996, Zou and Hastie, 2005).
However we argue that when the network structure is
known a priori then a feature selection approach will
break the structure of the network and lead to an in-
valid result. In this work we propose to directly use
the network structure to overcome dimensionality and
build an accurate classifier for realistic sized networks.

3.1 Network Classifiers and Exponential Loss

We reorganize (1) to see that maximizing the probabil-
ity of correct classification is equivalent to maximizing
an exponential potential function of the global network
classifier,
Py =1]X)
1= P(y=1]X)

To achieve optimal performance from the network the
magnitude of F'(X) must be increased in the direction
of correct classification of y € [—1,1].

= F(X) (3)

An analogous procedure to maximizing the exponen-
tial potential of a network classifier can be found in
minimizing its exponential loss. To convert (2) into
an exponential loss requires flipping of the sign of the
exponent, F(X). Then assuming y € [—1,1] the gen-
eral form of the exponential loss for a binary classifier
can be stated (4),

VFX) _ VT [t Tnneiop Bemoran] (g

Maximizing yF(X) in the direction of correct classi-
fication will reduce e ¥¥(X). This link between op-
timizing the performance of a logistic regression and
minimizing an exponential loss has been previously ob-
served with boosted learning (Friedman et al., 2000).
Boosted models have a major advantages over stan-
dard logistic regression; specifically increased accuracy
and resistance to over-fitting. Boosting’s resistance to
overfitting is a highly desirable property when consid-
ering constructing a classifier from a realistic sized net-
work where the number of terms within the model can
easily exceed the limits of standard logistic regression.
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3.2 Network Classifiers as an Ensemble of
Factors

From equation (4) we can observe that our problem
can be expressed as separate exponential loss functions
for each network node:

| oV (BEmt e o) Brm i ) 5)
k

The factorized form of (5) is equivalent to a factor
graph view of the network classifier. Factor graphs
provide a flexible framework for modeling an arbitrary
network structure. A factor graph is a bipartite graph
where the first set of nodes are the original network
nodes, X, and the second set of nodes are the factor
nodes, fx, which are functional nodes that specify the
dependency relationships between the network vari-
ables (Kschischang et al., 2001). In equation (5) each
factor is defined to be the exponential loss of a local
logistic regression involving node x; and the interac-
tion terms with its neighbors ne(zy). The entire net-
work loss function (5) is then simply the combination
of these local logistic regressions, similar to bagging
(Breiman, 1996). We therefore can view a network
classifier as an ensemble model of local node classi-
fiers.

However, simply bagging the network factors is only
making limited use of the known interaction structure
within the classifier. A major advantage of the factor
graph representation of a network is that it provides
an easy entry point into message passing optimiza-
tion algorithms (Kschischang et al., 2001) which are
optimization algorithms designed for efficient param-
eter estimation of large complex network structures.
Message passing algorithms are efficient as they as-
sume that all information required to estimate the
parameters of any node can be summarized as mes-
sages sent to that node from its neighbors. In this
work we propose two algorithms for optimizing the
parameters of large or complex network classifiers by
combining ideas from boosting with two variants of
message passing algorithms, Expectation Propagation
(EP) (Minka, 2001) and loopy message passing (Mur-
phy et al.,; 1999). We define the messages propagated
through the network to be the combined exponential
loss function of all neighboring nodes. These messages
are then used as weights within the optimization at
each local node classifier. Therefore in an analogous
step to a boosted update the classifiers at each node
are optimized to correctly classify errors made by the
neighboring node classifiers. For completeness, in the
following section we briefly describe boosting and then
progress onto defining our proposed network classifier
algorithms, Boosted Expectation Propagation (BEP)
and Boosted Message Passing (BMP).

4 Boosting

The boosting algorithm used in this paper is discrete
Adaboost (Freund and Schapire, 1997) which con-
structs a linear combination of models Fis(X) of indi-
vidual classifiers f,,,(X) (6),

M

Far(X) =) emfm(X) (6)

m=1

where ¢, are the estimated coefficients for each model
fm(X) and each model produces a discrete classifica-
tion for y € [—1,1]. Boosting iteratively performs a
stage-wise addition of a new classifier f,,,(X) to the
current ensemble F,,_1(X) to minimize the exponen-
tial loss function:

Loss = argmin w,,_e~ ¥ /mX) (7)

Cm

At each iteration the minimization of (7) is achieved
by a weighted parameter estimation of f,,(X), where
the weights wy,—1 = e ¥Fm-1(X) are the errors of the
previous ensemble. Then for each new model ¢, is
estimated to weight the importance of f,,,(X) to the
overall ensemble. For each new model ¢, is estimated

by (8),

1—en

(8)

1
€m = Ewm—l [ly#fm(X)] and Cm = 5 IOg

€m

where fm are the predictions of f,,, and e,, is the error
of the ensemble with f,,(X) added.

5 Network Optimization

Outside network

Marginal Distribution

ac() = [[ f«

ic€ne(xy)

Figure 1: Example node marginal g in a factor graph.

Message passing and EP work by marginal estima-
tion with respect to each variable within the network
(Figure 1). Both EP and message passing define the
marginal distribution, g of a variable zj, as the prod-
uct of marginal contributions from all factors con-
nected to zy (9).

a(zi) = ] fu (9)

iene(xy)
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The marginal distribution (9) contains contributions
fir from each factor that specifies how zy, is connected
to the rest of the network.

The final network posterior distribution is then simply
the product of these marginal distributions,

pX) =[[ae) =] TI fo. (0
k

k iene(xy)

Both EP and message passing seek to maximize the
overall network posterior (10) by locally optimizing
each marginal contribution f;;. For simplicity we rep-
resent the marginal contribution of each node as a pair-
wise contribution to x; from each interaction term,

fire = firlwp, v;) = e vOrmethuars) (11)

6 Boosted Expectation Propagation
(BEP)

Expectation propagation is a way to efficiently
and accurately model complex posterior distributions
(Minka, 2001). Expectation Propagation (EP) consis-
tently refines the estimates of each marginal contribu-
tion by a three step process:

1. Remove the effect of the marginal contribution f;k
from the current posterior.

PX) T = p(X)/ far

2. Re-estimate f;; with knowledge of the surround-
ing network.

fix = min {ﬁ(X)/f““fik}
3. Re-insert back into the network.
PX) = Z(xp)p(X)/ T fu,

where Z(x}) is a normalizing constant for the marginal
distribution of zy.

Considering the exponential form of our network clas-
sifier (2) and each marginal contribution (11) it is
more efficient to work in the log space where steps (1)
and (3) become simple linear operations. Addition-
ally, p(X )/fix can now be interpreted as the current
estimate of the exponential loss of the network classi-
fier minus the marginal contribution from the interac-
tion between nodes i and k. The addition of the f;x
weighted by the current exponential loss of the network
classifier is clearly a boosted update (7). Performing
a boosted update at step (2) defines our Boosted Ex-
pectation Propagation (BEP) algorithm as iteration

of these three steps until the classifer’s performance
converges - Algorithm 1.

Additionally, by performing the boosted update for
step (2) in Algorithm 1 we add an extra parameter
for every edge within the network, ¢;r. The param-
eter c¢; is assigned to each edge and equates to 1/2
the log odds of classification with f;; . Therefore the
boosted update assigns a probabilistic weight to each
edge within the network based on its importance to
the overall network classification.

Algorithm 1 Boosted Expectation Propagation
(BEP)

1: for iter € [1...max;sc,| do
2: for x; € X do
3: for i € ne(x) do
4: Step 1:
ﬁ(X)/fik x e_y(F(X)_Cikfik)
5: Step 2:

fik = min {wike*yciqu‘,k}
Cik

where w;, = ﬁ(X)/f'ik.

6: Step 3: )
P(X) x wipe Y

7 end for

8: end for

9: end for

7 Boosted Message Passing (BMP)

Message passing algorithms are used to compute the
marginal distribution of each node within a net-
work (Kschischang et al., 2001). The most com-
monly employed message passing algorithm is the
sum-product algorithm (Kschischang et al., 2001).
The sum-product algorithm can estimate the node
marginal distributions exactly for tree structured net-
works and through loopy variants allows for approxi-
mate marginal estimation for more complex network
structures (Murphy et al., 1999). Simple variations of
the sum-product algorithm such as the max-product
algorithm, redefine the messages propagated such that
they maximize the node marginal distributions. In
this paper our goal is to optimize classification perfor-
mance for arbitrary network structures. Therefore we
employ a loopy max-product algorithm with a parallel
message schedule. The parallel message schedule iter-
ates the algorithm and requires every message within
the network to be sent at each iteration.

There are two types of message propagated in the max-
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product algorithm:

1. From an original node xj to factor node f;x:

H Hfjk—ar, (12)
jEne(zy)
J#i

Pxp— fi =

2. From a factor node f;; to original node xy:

H Ha;— fig

jene(fir)
J#k

Kfip—z, = Max fzk(xlml'z)

(13)

The action of the first message iz, -, (12) is to re-
move the effect of f;p from the marginal distribution
at z, and the action of the second message fif,,—a,,
(13) is to re-estimate fi, with the knowledge of local
network structure of f;x.

We note here that the nodes and the factors are iden-
tical to those used in EP (Section 6). It is also known
that for node marginalization with the sum-product
algorithm the messages sent in loopy message passing
are identifical to the EP updates (Minka, 2001). How-
ever we point out here that when considering marginal
maximization the information contained within the
weights used to optimize each factor at each iteration
of EP and loopy message passing are different. We
show this by expanding the BEP weights ﬁ(X)/fik to
show the contribution made from each node within the
network,

pX) = T]  fix [ Fm - (14)

jene(fir) — m#k
i#k

The BEP weights (14) have two terms: the first being
the marginal contributions to node x; excluding the
component currently being re-estimated f;x; and the
second being the combined marginal distributions of
all network nodes except x. The first term in (14)
is exactly the messages passed to a factor node fx
in BMP (13). This allows the BEP optimization step
(Step 2 in Algorithm 1) to be expressed in terms of
the BMP messages (15):

PO fiw =min § fie [ paymp [T Fn
jene(fir) m#k
J#k
(15)
If we were to consider node marginalization with re-
spect to xj and use the sum-product algorithm rather
than BMP’s max-product algorithm, the minimization

operation in (15) would be replaced with a summa-
tion. Therefore as the term [[,,; fm in (15) does
not involve zj it would be constant and could be re-
moved from the summation. The EP and message
passing updates would now be the same (Minka, 2001,
Bishop, 2006). However we are considering a mini-
mization problem where the second term in the BEP
update corresponds to the exponential loss of the net-
work classifier excluding node x; and cannot be re-
moved from the minimization operation. Therefore to
optimize classification performance the weights prop-
agated through the network by BEP and BMP are
different.

The effect of the additional network terms within the
BEP weights is that the boosted update in BEP is
adding fik to the full network ensemble involving all
terms except f;r. Message passing however only pro-
vides local network messages at each optimization step
(13). Therefore, using a boosted update as the opti-
mization step in (13) is adding the new estimate of f;
only to the current ensemble of local messages. This
means that using BMP to propagate messages through
the network is essentially building one boosted ensem-
ble along every edge of the network in both directions.
This leads to our boosted message passing algorithm -
Algorithm 2.

The implications of using a boosted update as the op-
timization step in a loopy message passing algorithm
is that each message now becomes a boosted ensem-
ble with a size equal to the number of iterations per-
formed. Therefore we have additional space require-
ments as we are required to maintain a history of each
message propagated.

Algorithm 2 Boosted Message Passing (BMP)

1: for iter € [1...max;se,| do
2:  For all messages from xy to fi,:

prer o= 11
jene(zk)
i

[e_ycik fm] iter—1

3:  For all messages from f,, to zx:

iter _ : iter—1 —ycik fik
M e, = min { (wi ) @ }
where w;Zer—l iter—1

= HjGne(fik,) Mmj*’fik
i#k

4: end for

8 Convergence and Complexity

We assess the convergence of BEP and BMP using the
conditional Kullback Leiblier divergence (CKL). Given
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a two conditional distributions P(X|y) and Q(X|y)
the conditional Kullback Lieblier divergence is:

CKL(P||Q) = ZP X|y) g'g; (16)

We motivate the choice of the CKL by observing that
both boosting and logistic regression in the standard
setting have been shown to be optimizers for the CKL
(Kivinen and Warmuth, 1999, Lebanon and Lafferty,
2002). Furthermore, the CKL allows us to explicitly
state the probabilistic form of our network classifier.

Proposition 1 If we assume the true distribution of
our network classifier is Q(X|y) which we want accu-
rately approximate with P(X|y). We further assume
P(X|y) has the same factorization as Q(X|y) and each
factor of P(X|y) is modeled with an exponential loss
potential,

P(Xly) =

He yfk X|y qu

where Z(X) is a normalizing constant for P(X|y). We
propose that approximating each true factor qi with a
boosted update to get fi will optimize the conditional
Kullback-Leilber divergence.

To address Proposition 1 we express the CKL (16) in
terms of our assumed distributions (17) to get:

CKL =Y P(X[y)> [-yfr —log Z(X)q] (18)

y, X k

We now state that the true distribution should per-
fectly classify the response y which results in ¢, =
1 V y. Therefore we only need to consider the terms
from P(X|y):

CKL=—-Nlog Z(X

)= 2 uF)

Given that Z(X) is simply the exponential loss
Z(X) = vazl e ¥iF(Xi) and P(X|y) is the normalized
exponential loss, we see that the magnitude of Z(X)
and P(X|y) will decrease exponentially as yF(X) in-
creases. Furthermore as the boosting can only increase
yF(X) linearly, the second term in (19) will be dom-
inated by P(Xly). Therefore increasing yF(X) with
a boosted update will reduce the magnitude of both
terms in (19) and the CKL will approach 0. This find-
ing confirms Proposition 1 and agrees with previous re-
search by (Kivinen and Warmuth, 1999, Lebanon and
Lafferty, 2002).

Both BEP and BMP update the same number of
marginal contributions at each iteration by comput-
ing 2F logistic regressions, where E is the number of

P(Xly)  (19)

edges in the network. As we are using the standard It-
eratively Reweighted Least Squares (IRLS) optimizer
for each logistic regression this takes O(EK N?) where
K is the number of variables in each logistic regres-
sion and N is the number of observations. The high
computation cost of both methods means that we re-
quire a good indicator for convergence. We see that
optimizing the CKL is proportional to optimizing the
exponential loss of the entire network classifier. How-
ever the exponential loss does not contain the linear
term yF(X) that dampens the CKL it will converge
faster. Therefore considering time and space limita-
tions in practice the relative change in exponential loss
as a good approximate measure to assess convergence.

9 Experiments

We assess the performance of BEP and BMP we embed
a simulated exponentially distributed network within
a noise distribution. Our simulated network model has
the form,

X) = Heeiwi+2j€ne(1’i> eumeJ (20)

where 6 are the parameters of the network, X €
{—1,1} and the network neighbors ne(z;) are defined
over a 2D grid.

To simulate our model N observations for each pre-
dictor variable x; are generated as random draws from
a uniform distribution such that each z; € {—1,1}.
Then parameters 6 are also drawn from a random
uniform 6 € [—1,1]. All observations from our net-
work model distribution are then assigned the response
label y = 1. Then our noise distribution is gener-
ated as N observations for each predictor variable x;
taken from a random continuous uniform distribution
Unif{min(X[y = 1]),max(X[y = 1])} and are as-
signed the response label y = —1. These two datasets
are augmented to create our base classifier distribution
where the task is to correctly classify the observations
of the network from the noise distribution.

However we wish to assess the performance of BEP
and BMP given the same underlying data distribution
but under varying network interaction strengths. To
do this we hold the data distribution X and 6 constant
and apply a scaling parameter a across all theta 6;; =
ab;;. We then generate different network distributions
by increasing « from 0.5 to 3 in increments of 0.25.
By maintaining the same underlying data distribution
and network structure, as we increase « the network
interactions become stronger and classification should
become easier.

The performance of BEP and BMP is evaluated using
the Area Under the Curve (AUC) of Receiver Oper-
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Figure 2: Mean AUC for all models for three grid sizes. The x-axis is the network scaling factor a. Larger AUC

means better performance.

ating Curve (ROC). We compare the mean AUC of
BEP and BMP from 5 separate runs of 5 fold cross-
validation with the following logistic regression mod-
els:

e LNC: The complete network classifier model
stated in (2) and solved with the standard IRLS
algorithm.

e FINC: A bagged logistic network classifier model
which factorizes the NC model (4) and optimizes
each node classifier independently.

¢ RIDGE.NC: The LNC model with a ridge
penalty (Park and Hastie, 2007a).

¢ LASSO.NC: The LNC model with a lasso
penalty (Tibshirani, 1996).

¢ ELASTIC.NC: The LNC model with an elastic
net penalty which is a combination of the ridge
and lasso penalties (Zou and Hastie, 2005).

All non-penalized logistic regressions were performed
with the glm package in R (Thaka and Gentleman,
1996). The RIDGE.NC implementation used was
found in the stepPlr R package (Park and Hastie,
2007b) and the LASSO.NC and ELASTIC.NC imple-
mentations were found in the glmnet R package (Fried-
man et al., 2009).

We note here that the connection between network
classifiers and logistic regression has been well estab-
lished for Bayesian networks (Greiner et al., 2005,
Roos et al., 2005). Further the link between boost-
ing through logistic regression to Bayesian networks

has already been exploited by ensemble methods that
use Bayesian network classifiers as a base learner (Jing
et al., 2008). However the main thrust of this previ-
ous work is network structure learning which limits
the complexity of the networks considered. Due to
their assumption of simple network structures we can-
not compare either BEP or BMP to these methods.

10 Results and Discussion

The performances of all models are compared on 3
grid sizes 8, 10 and 12 and the results are presented in
Figure 2. Observation of Figure 2 quickly shows BMP
to be the superior model over all grid sizes and for
increasing network strengths. The fact that BMP is
outperforming all other models is not surprising given
the model’s increased complexity which requires the
construction of a boosted ensemble classifier for each
message sent. BEP has a similar performance profile
to BMP however only shows increased performance
compared to the benchmark methods in the middle
network strength range between 1 and 2.5.

The performance drop between BEP relative to BMP
can be explained by the amount of classification in-
formation contained within the boosted weights sup-
plied at each optimization step (14, 15). The weights
supplied to BEP at each iteration contain terms from
the entire network posterior. Therefore, if the current
BEP model is performing well the boosted weights
used to update each marginal contribution classifier
will be sparse. This sparse weight distribution will re-
duce the size of the new marginal contribution to be
added to the ensemble. This reduction of the marginal
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contribution reflects in the convergence history of BEP
which is shown to converge consistently in under 10
iterations whereas BMP usually requires significantly
more. The dampening of the marginal contributions
combined with rapid convergence has the result of re-
ducing the overall performance of the BEP classifier.
Perhaps BEP’s performance could be increased by pe-
nalizing the step size taken by each boosted update in
a similar approach to (Friedman, 2001) however this
is not explored in this paper.

Of the benchmark classifiers the performance of FNC
yields the most insights into the performance of BEP
and BMP. For small and large network strengths,
FNC’s performance is equivalent to and sometimes su-
perior to that of BEP and BMP. This is because when
the network interactions are small or large the classifi-
cation task at each node becomes simple and does not
require input from the surrounding network structure.
Therefore, each node classifier can be treated inde-
pendently. As bagging ensembles perform well when
each model is essentially independent (Breiman, 2001)
it is not surprising that at small and large network
strengths the performance of FNC increases and the
improvement offered by a boosted ensemble decreases.

The penalized models are shown not to perform par-
ticularly well. We stated earlier that they are not
well suited to this learning task. Penalized models are
powerful feature selection methods. However the net-
worked data structure simulated in these experiments
has no reduced subset of variables that offer an im-
proved classification solution. In this case, as no best
subset can be found, the performance improvements
offered by penalized approaches are not realized.

11 Conclusions

In this paper we have proposed two methods, BEP
and BMP, that use boosted learning within a message
passing framework to optimize the performance of a
network classifier. We use simulation experiments to
show that BEP and BMP generate superior classifica-
tion models in the case where noise disguises the true
network structure. Both methods show much promise
for future development as they offer improved classifi-
cation performance. Furthermore they are flexible as
they do not assume a constant data type across the
network or a specific type of network structure.
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