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Abstract

We propose Dirichlet Process mixtures of
Generalized Linear Models (DP-GLMs), a
new method of nonparametric regression that
accommodates continuous and categorical in-
puts, models a response variable locally by a
generalized linear model. We give conditions
for the existence and asymptotic unbiased-
ness of the DP-GLM regression mean func-
tion estimate; we then give a practical ex-
ample for when those conditions hold. We
evaluate DP-GLM on several data sets, com-
paring it to modern methods of nonparamet-
ric regression including regression trees and
Gaussian processes.

1 Introduction

In this paper, we examine a Bayesian nonparametric
solution to the general regression problem. The gen-
eral regression problem models a response variable Y
as dependent on a set of d-dimensional covariates X,

Y |X ∼ f(m(X)).

Here, m(·) is a deterministic mean function, which
specifies the conditional mean of the response, and f
is a distribution, which characterizes the deviation of
the response from the conditional mean. In a regres-
sion problem, we estimate the mean function and devi-
ation parameters from a data set of covariate-response
pairs {(xi, yi)}Ni=1. Given a new set of covariates xnew,
we predict the response via its conditional expecta-
tion, E[Y |xnew]. In Bayesian regression, we compute
the posterior expectation of these computations, con-
ditioned on the data.
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Regression models are a central focus of statistics and
machine learning. Our goal is to develop a model
that can be used in many settings. Generalized lin-
ear models (GLMs) serve this purpose in a paramet-
ric setting. They pass a linear transformation of co-
variates through a possibly non-linear link function to
generate a response. Inherent to GLMs, however, is
an assumption that the response varies according to a
linear transformation of the covariates. The method
that we develop relieves this assumption.

We develop Dirichlet process mixtures of generalized
linear models (DP-GLMs), a Bayesian nonparametric
regression model that combines the advantages of gen-
eralized linear models with the flexibility of nonpara-
metric regression. A DP-GLM produces a regression
model by modeling the joint distribution of the covari-
ates and the response. This is done using a Dirichlet
process (DP) mixture model: for each observation a
hidden parameter θ is drawn, covariates are generated
from a parametric distribution conditioned on θ, and
then the response is drawn from a GLM conditioned
on the covariates and θ. The clustering effect of the
DP mixture leads to an “infinite mixture” of GLMs,
a model which effectively identifies local regions of co-
variate space in which the covariates exhibit a con-
sistent relationship to the response. In combination,
these local GLMs represent a complex global response
function. Note that the DP-GLM is flexible in that
the number of segments, i.e., the number of mixture
components, is determined by the observed data.

Like the Dirichlet process regression models of Muller
et al. (1996) and Rodriguez et al. (2009), we model
the joint distribution of the covariates and response to
generate an implicit conditional response distribution.
This method is conceptually similar to the double-
kernel method of Fan et al. (1996), except that the
kernel generated by the Dirichlet process is determined
by the imparted distribution over partition structures
rather than a traditional distance metric. The DP-
GLM is a generalization of several existing DP-based
regression models (Muller et al., 1996; Shahbaba and
Neal, 2009) to a variety of covariate types and response
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distributions. Bayesian nonparametric models have
previously been proposed, but they lacked generality
and/or theoretical guarantees, such as the existence of
a mean function estimator or its asymptotic unbiased-
ness.

In this paper, we present the DP-GLM and give con-
ditions under which a mean function estimate ex-
ists and is asymptotically unbiased. We review the
Bayesian nonparametric regression literature in Sec-
tion 2, review Dirichlet processes and GLMs in Section
3, present the DP-GLM in Section 4, and give theoret-
ical properties in Section 5. In Section 6, we report on
a study of the DP-GLM to several data sets, illustrat-
ing its flexibility to multiple types of covariates and
response variables.

2 Bayesian Regression Literature

Nonparametric regression is a field that has received
considerable study, but less so in a Bayesian context.
Gaussian process (GP) and Dirichlet process mixtures
are the most common prior choices for Bayesian non-
parametric regression. GP priors assume that the ob-
servations arise from a Gaussian process model with
known covariance function form (see Rasmussen and
Williams (2006) for a review). Without heavy modi-
fication, however, the GP model is only applicable to
problems with continuous covariates.

Dirichlet process priors have been used previously for
regression. West et al. (1994); Escobar and West
(1995) and Muller et al. (1996) used joint Gaussian
mixtures for the covariates and response; Rodriguez
et al. (2009) generalized this method using dependent
DPs for multiple response functionals. This method
can be slow if a fully populated covariance matrix
is used and is potentially inaccurate if only a diag-
onal matrix is used. To avoid these over-fitting the
covariate distribution and under-fitting the response,
local weights on the covariates have been used to pro-
duce local response DPs, with kernels and basis func-
tions (Griffin and Steel, 2007; Dunson et al., 2007),
GPs (Gelfand et al., 2005) or general spatial-based
weights (Griffin and Steel, 2006, 2007; Duan et al.,
2007). Other methods, such as dependent DPs, have
been introduced to capture similarities between clus-
ters, covariates or groups of outcomes (De Iorio et al.,
2004; Rodriguez et al., 2009). The DP-GLM tries to
balance fitting the covariate and response distributions
by introducing local GLMs–the clustering structure is
heavily based on the covariates, but within each clus-
ter response fit is better because it is represented by a
GLM rather than a constant. This method is simple
and flexible.

Dirichlet process priors have also been used in conjunc-

tion with GLMs. Mukhopadhyay and Gelfand (1997)
and Ibrahim and Kleinman (1998) used a DP prior
for the random effects portion of the the GLM. Like-
wise, Amewou-Atisso et al. (2003) used a DP prior
to model arbitrary symmetric error distributions in
a semi-parametric linear regression model. Shahbaba
and Neal (2009) proposed a model that mixes over
both the covariates and response, which are linked by
a multinomial logistic model. The DP-GLM studied
here is a generalization of this idea.

The asymptotic properties of Dirichlet process regres-
sion models have not been well studied. Most cur-
rent literature centers around consistency of the pos-
terior density for DP Gaussian mixture models (Bar-
ron et al., 1999; Ghosal et al., 1999; Ghosh and Ra-
mamoorthi, 2003; Walker, 2004; Tokdar, 2006) and
semi-parametric linear regression models (Amewou-
Atisso et al., 2003; Tokdar, 2006).Only recently have
the posterior properties of DP regression estimators
been studied. Rodriguez et al. (2009) showed point-
wise asymptotic unbiasedness for their model, which
uses a dependent Dirichlet process prior, assuming
continuous covariates under different treatments with
a continuous responses and a conjugate base measure
(normal-inverse Wishart).

3 Mathematical Background

Dirichlet Process Mixture Models. In a
Bayesian mixture model, we assume that the true
density of the covariates X and response Y can be
written as a mixture of parametric densities, such as
Gaussians or multinomials, conditioned on a hidden
parameter θ. For example, in a Gaussian mixture,
θ includes the mean µ and variance σ2. Due to our
model formulation, θ is split into two parts: θx,
which is associated only with the covariates X, and
θy, which is associated only with the response, Y .
Set θ = (θx, θy). The marginal probability of an
observation is given by a continuous mixture,

f0(x, y) =
∫
T
f(x, y|θ)P (dθ).

In this equation, T is the set of all possible parameters
and the prior P is a measure on that space.

The Dirichlet process models uncertainty about the
prior density P (Ferguson, 1973; Antoniak, 1974). If
P is drawn from a Dirichlet process then it can be ana-
lytically integrated out of the conditional distribution
of θn given θ1:(n−1). Specifically, the random variable
Θn has a Polya urn distribution (Blackwell and Mac-
Queen, 1973),

Θn|θ1:(n−1) ∼
1

α+ n− 1

n−1∑
i=1

δθi
+

α

α+ n− 1
G0. (1)
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(Lower case values refer to observed or fixed values,
while upper case refer to random variables.)

Equation (1) reveals the clustering property of the joint
distribution of θ1:n: There is a positive probability
that each θi will take on the value of another θj , lead-
ing some of the parameters to share values. This equa-
tion also makes clear the roles of α and G0. The unique
values of θ1:n are drawn independently from G0; the
parameter α determines how likely Θn+1 is to be a
newly drawn value from G0 rather than take on one of
the values from θ1:n. G0 controls the distribution of a
new component.

In a DP mixture, θ is a latent parameter to an observed
data point x (Antoniak, 1974),

P ∼ DP(αG0), Θi ∼ P, xi|θi ∼ f(· | θi).

Examining the posterior distribution of θ1:n given x1:n

brings out its interpretation as an “infinite clustering”
model. Because of the clustering property, observa-
tions are grouped by their shared parameters. Un-
like finite clustering models, however, the number of
groups is random and unknown. Moreover, a new data
point can be assigned to a new cluster that was not
previously seen in the data.

Generalized Linear Models. Generalized linear
models (GLMs) build on linear regression to provide a
flexible suite of predictive models. GLMs relate a lin-
ear model to a response via a link function; examples
include familiar models like logistic regression, Poisson
regression, and multinomial regression. (See McCul-
lagh and Nelder (1989) for a full discussion.)

GLMs have three components: the conditional proba-
bility model for response Y , the linear predictor and
the link function. The probability model for Y , de-
pendent on covariates X, is

f(y|η) = exp
(
yη − b(η)
a(φ)

+ c(y, φ)
)
.

Here the canonical form of the exponential family is
given, where a, b, and c are known functions specific
to the exponential family, φ is an arbitrary scale (dis-
persion) parameter, and η is the canonical parameter.
A linear predictor, Xβ, is used to determine the canon-
ical parameter through a set of transformations. It can
be shown that b′(η) = µ = E[Y |X]. However, we can
choose a link function g such that µ = g−1(Xβ), which
defines η in terms of Xβ. The canonical form is useful
for discussion of GLM properties, but we use the mean
form in the rest of this paper. The flexible nature of
GLMs allows us to use them as a local approximation
for a global response function.
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Figure 1: The top figure shows the smoothed regres-
sion estimate for the Gaussian model of equation (2).
The center figure shows the training data (blue) fitted
into clusters, with the prediction given a single sam-
ple from the posterior, θ(i) (red). The bottom figure
shows the underlying clusters (blue) with the fitted re-
sponse (red) for each point in the cluster. Data plot
multipole moments against power spectrum C` for cos-
mic microwave background radiation (Bennett et al.,
2003).

4 Dirichlet Process Mixtures of
Generalized Linear Models

We now develop Dirichlet process mixtures of gener-
alized linear models (DP-GLMs), a flexible Bayesian
predictive model that places prior mass on a large class
of response densities. Given a data set of covariate-
response pairs, we describe Gibbs sampling algorithms
for approximate posterior inference and prediction.
We present theoretical properties of the DP-GLM in
Section 5.

4.1 DP-GLM Formulation

In a DP-GLM, we assume that the covariates X are
modeled by a mixture of exponential-family distri-
butions, the response Y is modeled by a GLM con-
ditioned on the inputs, and that these models are
connected by associating a set of GLM coefficients
with each exponential family mixture component. Let
θ = (θx, θy) denote the bundle of parameters over X
and Y |X, and let G0 denote a base measure on the
space of both. For example, θx might be a set of d-
dimensional multivariate Gaussian location and scale
parameters for a vector of continuous covariates; θy
might be a d+2-vector of reals for their corresponding
GLM linear prediction coefficients, along with a GLM
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dispersion parameter. The full model is

P ∼ DP (αG0), (θx,i, θy,i)|P ∼ P,
Xi|θx,i ∼ fx(·|θx,i), Yi|xi, θy,i ∼ GLM(·|xi, θy,i).

The density fx describes the covariate distribution; the
GLM for y depends on the form of the response (con-
tinuous, count, category, or others) and how the re-
sponse relates to the covariates (i.e., the link function).

The Dirichlet process clusters the covariate-response
pairs (x, y). When both are observed, i.e., in “train-
ing,” the posterior distribution of this model will clus-
ter data points according to near-by covariates that
exhibit the same kind of relationship to their response.
When the response is not observed, its predictive ex-
pectation can be understood by clustering the covari-
ates based on the training data, and then predicting
the response according to the GLM associated with
the covariates’ cluster. The DP prior acts as a kernel
for the covariates; instead of being a Euclidean metric,
the DP measures the distance between two points by
the probability that the hidden parameter is shared.
See Figure 1 for a demonstration of the DP-GLM. We
now give an example of the DP-GLM for continuous
covariates/response that will be used throughout the
rest of the paper.

Example: Gaussian Model. For continuous co-
variates/response in R, we model locally with a Gaus-
sian distribution for the covariates and a linear re-
gression model for the response. The covariates have
mean µi,j and variance σ2

i,j for the jth dimension of
the ith observation; covariance matrix is diagonal for
simplicity. The GLM parameters are the linear predic-
tor βi,0, . . . , βi,d and the response variance σ2

i,y. Here,
θx,i = (µi,1:d, σi,1:d) and θy,i = (βi,0:d, σi,y). This pro-
duces a mixture of multivariate Gaussians. The full
model is,

P ∼ DP (αG0), (2)
Θi|P ∼ P,

Xij |µij , σij ∼ N(µij , σ2
ij), j = 1, . . . , d,

Yi|xi, βi, σiy ∼ N(βi0 +
d∑
j=1

βijxij , σ
2
iy).

4.2 DP-GLM Regression

The DP-GLM is used in prediction problems. Given
a collection of covariate-response pairs (xi, yi)ni=1, our
goal is to compute the expected response for a new set
of covariates x. Conditional on the latent parameters
that generated the observed data, θ1:n, the expectation

Algorithm 1: DP-GLM Regression
Data: Observations (Xi, Yi)1:n, functions fx, fy,

number of posterior samples M , query x
Result: Mean function estimate at x, m̄(x)
initialization;
for m = 1 to M do

Obtain posterior sample θ(m)
1:n |(Xj , Yj)1:n;

Compute E[Y |x, θ(m)
1:n ];

end

Set m̄(x) = 1
M

∑M
m=1 E[Y |x, θ(m)

1:n ];

of the response is

E[Y |x, θ1:n] =
α

b

∫
T

E [Y |x, θ] fx(x|θ)G0(dθ) (3)

+
1
b

n∑
i=1

E [Y |x, θi] fx(x|θi),

b = α

∫
T
fx(x|θ)G0(dθ) +

n∑
i=1

fx(x|θi).

Since Y is assumed to be a GLM, the quantity
E [Y |x, θ] is analytically available as a function of x
and θ.

As θ1:n is not actually known, the unobserved random
variables Θ1:n are integrated out of equation (3) us-
ing the posterior distribution given the observed data.
Let ΠP denote the DP prior on the set of hidden
parameter measures, P . Let MT be the space of
all distributions over the hidden parameters. Since∫
T fy(y|x, θ)fx(x|θ)P (dθ) is a density for (x, y), ΠP in-

duces a prior on F , the set of all densities f on (x, y).
Denote this prior by Πf and define the posterior dis-
tribution,

Πf
n (A) =

∫
A

∏n
i=1 f(Xi, Yi)Πf (df)∫

F
∏n
i=1 f(Xi, Yi)Πf (df)

,

where A ⊆ F . Define ΠP
n similarly. The regression is

E[Y |x, (Xi, Yi)1:n]

=
1
b

n∑
i=1

∫
MT

∫
T

E[Y |x, θi]fx(x|θi)P (dθi)ΠP
n (dP )

+
α

b

∫
T

E [Y |x, θ] fx(x|θ)G0(dθ), (4)

where b normalizes the probability of Y being associ-
ated with the parameter θi.

Equation (4) is difficult to compute because it requires
integration over a hidden random measure. To avoid
this problem, we approximate equation (4) by an av-
erage of M Monte Carlo samples of the expectation
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conditioned on θ
(m)
1:n ,

E[Y |x, (Xi, Yi)1:n] ≈ 1
M

M∑
m=1

E
[
Y |x, θ(m)

1:n

]
. (5)

The regression procedure is given in Algorithm 1. We
describe how to generate posterior samples {θ(m)

1:n }Mm=1

in Section 4.3.

Example: Gaussian Model. Continuing our ex-
ample of the Gaussian model, equation (3) becomes

E[Y |x, θ1:n] =
α

b

∫
T
βT0:dx

d∏
j=1

φσj
(xj − µj)G0(dθ)

+
1
b

n∑
i=1

βTi,0:dx
d∏
j=1

φσij
(xj − µij),

b = α

∫
T

d∏
j=1

φσj (xj−µj)G0(dθ)+
n∑
i=1

d∏
j=1

φσij (xj−µij),

and φσ(x) is the Gaussian density at x with variance
σ2. An example of regression for a single covariate
Gaussian model is shown in Figure 1.

4.3 Posterior Sampling Methods

The above algorithm relies on samples of
θ1:n|(Xi, Yi)1:n. We use Markov chain Monte Carlo
(MCMC), specifically Gibbs sampling, to obtain{
θ

(m)
1:n |(Xi, Yi)1:n

}M
m=1

. Gibbs sampling has a long
history of being used for DP mixture posterior infer-
ence (see Neal (2000) for state of the art algorithms).
We use Algorithm 8 of Neal (2000), but conjugate
base measures allow the use of the more efficient
collapsed sampler, Algorithm 3.

5 Theoretical Properties

Two pitfalls might arise when using the DP-GLM:
an inability to compute the mean function and mean
function bias that does not tend toward 0. A desir-
able property of any estimator is that it should be
unbiased. If it holds in the limit, this property is
called asymptotic unbiasedness. Diaconis and Freed-
man (1986) give an example of a location model with
a Dirichlet process prior where the estimated location
can be bounded away from the true location, even
when the number of observations approaches infinity.
We want to assure that DP-GLM avoids these prob-
lems; we sketch the ideas needed to show asymptotic
unbiasedness and mean function existence and then
give theorems for asymptotic unbiasedness and mean
function existence.

5.1 Consistency and Theoretical Properties

Consistency, the notion that as the number of obser-
vations goes to infinity the posterior distribution ac-
cumulates in neighborhoods arbitrarily “close” to the
true distribution, is tightly related to both asymptotic
unbiasedness and mean function estimate existence.
Weak consistency assures that the posterior distribu-
tion accumulates in regions of densities where “prop-
erly behaved” functions (i.e., bounded and continuous)
integrated with respect to the densities in the region
are arbitrarily close to the integral with respect to the
true density. Note that an expectation is not bounded;
in addition to weak consistency, uniform integrability
is needed to guarantee that the posterior expectation
converges to the true expectation, giving asymptotic
unbiasedness. Uniform integrability also ensures that
the posterior expectation almost surely exists with ev-
ery additional observation. Therefore we need to show
weak consistency and uniform integrability.

With the inclusion of covariates, the observations
of covariate response pairs are not identically dis-
tributed, so we use a modified variant of the Schwartz
(1965) theorem for weak posterior consistency, given
in Amewou-Atisso et al. (2003). We assume that co-
variates are observed from the entire distribution; we
give conditions for consistency for a predictor x in a
compact subset C of the covariate domain. In practice,
this is not particularly restrictive as C can be made ar-
bitrarily large.

5.2 Asymptotic Unbiasedness

We are now ready to state the main theorem.
Theorem 5.1. Let x be in a compact set C and Πf be
a prior on F . If,

(i) for every δ > 0, Πf puts positive measure on{
f :
∫
f0(x, y) log

f0(x, y)
f(x, y)

dxdy < δ,∫
f0(x, y)

(
log

f0(x, y)
f(x, y)

)2

dxdy < δ

}
,

(ii)
∫
|y|2f0(y|x)dy <∞ for every x ∈ C, and

(iii) there exists an ε > 0 such that for every x ∈ C,∫ ∫
|y|1+εfy(y|x, θ)G0(dθ) <∞,

then for every n ≥ 0, EΠ[Y |x, (Xi, Yi)1:n] exists and
has the limit Ef0 [Y |x], almost surely PF∞0 .

The conditions of Theorem 5.1 must be checked for the
problem (f0) and prior (Πf ) pair, and can be difficult
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to show. Condition (i) assures weak consistency of
the posterior, condition (ii) guarantees a mean func-
tion exists in the limit and condition (iii) guarantees
that positive probability is only placed on densities
that yield a finite mean function estimate. See Han-
nah et al. (2009) for a discussion and proof.

5.3 Example: Gaussian Model with a
Conjugate Base Measure

The next theorem gives an example of when Theorem
5.1 holds for the Gaussian model. Discussion, proof
and extensions are given in Hannah et al. (2009).
Theorem 5.2. Let (X,Y ) have the joint Gaussian
model. If, for a compact covariate set C,

(i)
∫
f0(x, y)(log f0(x, y))2dxdy <∞,

(ii)
∫
|y|2f0(y|x)dy <∞ for every x ∈ C, and

(iii) G0 is conjugate to the Gaussian model, that is,

β0:d, σy ∼ N − Inv −Gamma(νy,Ξy, ry, λy),
µi, σi ∼ N − Inv −Gamma(νi, ξi, ri, λi),

and ry, r1:d ∈ (1/2, 1), then the conditions of Theorem
5.1 are satisfied.

6 Empirical Study

We compare the performance of DP-GLM regression
to other regression methods. We chose data sets to il-
lustrate the strengths of the DP-GLM, including abil-
ity to model different response/covariate types, and
robustness with respect to heteroscedasticity and mod-
erate dimensionality.

We compare to the following algorithms:

Naive Ordinary Least Squares (OLS). A para-
metric method that often provides a reasonable fit
when there are few observations.

Regression Trees (Tree). A nonparametric
method generated by the Matlab function classregtree.
It accommodates both continuous and categorical
inputs and any type of response.

Gaussian Processes (GP). GPs were generated in
Matlab by the program gpr of Rasmussen and Williams
(2006). It is suitable only for continuous responses and
covariates.

Basic DP Regression (DP Base). Similar to DP-
GLM, except the response is a function only of µy,
rather than β0 +

∑
βixi. That is,

Yi|xi, θi ∼ µiy.
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Figure 2: The average mean absolute error (top) and
mean squared error (bottom) +/− one standard devia-
tion for ordinary least squares (OLS), tree regression,
Gaussian processes and DP-GLM on the CMB data
set. The data were normalized.

Without the GLM response, the model cannot inter-
polate well in higher dimensions, leading to poor pre-
dictive performance.

Poisson GLM (GLM). A Poisson generalized lin-
ear model (count responses), used on the Solar Flare
data set.

With these methods, we examined three data sets:

Cosmic Microwave Background (CMB) Re-
sults. The CMB dataset Bennett et al. (2003) con-
sists of 899 observations which map positive integers
` = 1, 2, . . . , 899, called ‘multipole moments,’ to the
power spectrum C`. Both the covariate and response
are considered continuous. The data are highly non-
linear and heteroscedastic. Competitors were OLS, re-
gression trees and Gaussian processes. Mean absolute
(L1) error and mean squared (L2) error for 5, 10, 30,
50, 100, 250, and 500 training data were computed
using 10 random subset selections for each amount of
data. A conjugate base measure was used. Results are
given in Figure 2.

Concrete Compressive Strength (CCS) Re-
sults. The CCS Yeh (1998) dataset has 8 continuous
covariates. The response is the compressive strength
of the resulting concrete, also continuous. There are
1,030 observations. The data have relatively little
noise. Competitors were OLS, GPs and regression
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Figure 3: The average mean absolute error (top) and
mean squared error (bottom) +/− one standard de-
viation for ordinary least squares (OLS), tree regres-
sion, Gaussian processes, location/scale DP and the
DP-GLM Poisson model on the CCS data set. The
data were normalized.

trees. We also included a basic DP regression tech-
nique (location/scale DP) on this data set. Mean ab-
solute (L1) error and mean squared (L2) error for 20,
30, 50, 100, 250, and 500 training data were computed
using 10 random subset selections for each amount
of data. Gaussian mean and log-Gaussian scale base
measures were used. Results are given in Figure 3.

Solar Flare Results. The Solar Bradshaw (1989)
dataset was chosen to demonstrate the flexibility of
DP-GLM. The response is the number of solar flares in
a 24 hour period in a given area. There 1,389 observa-
tions and 11 categorical covariates. Competitors were
tree regression and a Poisson GLM. GPs and other
methods cannot be used for count/categorical data.
Mean absolute (L1) error and mean squared (L2) er-
ror for 50, 100, 200, 500, and 800 training data were
computed using 10 random subset selections for each
amount of data. A Dirichlet covariate and Gaussian
slope base measure was used with a Poisson response
distribution. Results are given in Figure 4.

Discussion

DP-GLM has flexibility that is not offered by most
regression methods. It does well on data sets with
heteroscedastic errors because it fundamentally incor-
porates them; error parameters (σiy) are included in
the DP mixture. DP-GLM is comparatively robust
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Figure 4: The average mean absolute error (top) and
mean squared error (bottom) +/− one standard devi-
ation for tree regression, a Poisson GLM (GLM) and
DP-GLM on the Solar data set.

with small amounts of data because in that case it
tends to put all (or most) of the observations into one
cluster; this effectively produces a linear regression,
but eliminates outliers by placing them into their own
(low-weighted) clusters.

The comparison between DP-GLM regression and ba-
sic DP regression is illustrative. We compared basic
DP regression only on the CCS data set because it has
a large number of covariates. Like kernel smoothing,
basic DP regression struggles in high dimensions be-
cause it cannot efficiently interpolate values between
observations. The GLM component effectively elimi-
nates this problem.

The diversity of the data sets demonstrates the adapt-
ability of the DP-GLM. Only tree regression was able
to work on all of the data sets, and the DP-GLM
has many desirable properties that tree regression does
not, such as a smooth mean function estimate and less
sensitivity to bandwidth/pruning level.
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