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Abstract

For many applications, a probability model
can be more easily expressed as a cumula-
tive distribution functions (CDF) as com-
pared to the use of probability density or
mass functions (PDF/PMFs). One advan-
tage of CDF models is the simplicity of rep-
resenting multivariate heavy-tailed distribu-
tions. Examples of fields that can benefit
from the use of graphical models for CDFs
include climatology and epidemiology, where
data follow heavy-tailed distributions and ex-
hibit spatial correlations so that dependen-
cies between model variables must be ac-
counted for. However, in most cases the
problem of learning from data consists of
optimizing the log-likelihood function with
respect to model parameters where we are
required to optimize a log-PDF/PMF and
not a log-CDF. Given a CDF defined on a
graph, we present a message-passing algo-
rithm called the gradient-derivative-product
(GDP) algorithm that allows us to learn the
model in terms of the log-likelihood function
whereby messages correspond to local gradi-
ents of the likelihood with respect to model
parameters. We demonstrate the GDP algo-
rithm on real-world rainfall and H1N1 mor-
tality data and we show that the heavy-tailed
multivariate distributions that arise in these
problems can both be naturally parameter-
ized and tractably estimated from data using
our algorithm.

1 Introduction
Probabilistic graphical models are widely used for
compactly representing joint PDFs/PMFs. While in
many applications the PDF/PMF is a natural prob-
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abilistic representation, in many other situations the
probability model of interest may be difficult to specify
in this form. For example, in domains such as climate
and infectious disease modeling (Coles, 2001), we may
wish to model multivariate heavy-tailed distributions,
many of which are more naturally described as cumu-
lative distribution functions (CDFs) as compared to
parameterizations using PDF/PMFs (Huang, 2009).
Such distributions are often highly non-Gaussian (see
Figure 1 for an example) and include, but are not
limited to, extreme-value distributions, or max-stable
processes (Coles, 2001). The problem of construct-
ing multivariate heavy-tailed distributions and that of
learning from data often leads to computational diffi-
culties. This difficulty is compounded by the need to
account for dependencies among several variables in
the model, where many of these dependencies may re-
sult from the shared influence of latent variables with
unknown distributions and structure. Recently, cumu-
lative distribution networks (CDNs) were proposed as
a class of graphical models for representing joint CDFs
(Huang and Frey, 2008; Huang, 2009). These models
were used to construct CDFs defined over many ran-
dom variables as a product of functions defined over
subsets of variables. Inference in CDNs corresponds
to computing mixed derivatives of the joint CDF with
respect to subsets of variables in the CDN. An effi-
cient message-passing algorithm called derivative-sum-
product (DSP) was developed by (Huang and Frey,
2008) for efficiently computing such mixed deriva-
tives. The ability to efficiently perform inference in
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Figure 1: Example of an extreme-value distribution (red)
and a Gaussian distribution (cyan) fit to rainfall measure-
ments.
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CDNs, coupled with the graphical notation afforded
by CDNs, make these models well-suited for modeling
high-dimensional CDFs.
The problem of estimating the parameters of CDNs
from data is, however, less straightforward. A CDN
represents a joint CDF: as a result, in order to learn
a model from data according to maximum-likelihood
(with some exceptions in which the likelihood itself is
a CDF: see (Huang and Frey, 2009, see)), we require a
likelihood function in the form of a PDF/PMF. In this
paper, we take advantage of the graphical modelling
framework of CDNs to propose a message-passing al-
gorithm called gradient-derivative-product (GDP) for
computing gradients of the model likelihood with re-
spect to model parameters. We derive the algorithm
starting from the DSP algorithm, which provides us
with mixed derivatives of the joint CDF. We apply
the GDP algorithm to the problem of learning mod-
els for A) rainfall, where we are given spatial rain-
fall measurements and B) influenza epidemics where
we are given spatial mortality indices. We show that
the resulting max-stable processes can be naturally de-
scribed by CDNs and that the GDP algorithm provides
a means to efficiently perform maximum-likelihood es-
timation of model parameters.

2 Cumulative distribution networks

In this section we briefly review previous work on
CDNs and the DSP algorithm for inference and dif-
ferentiation in CDNs. A CDN is an undirected bipar-
tite graph G = (V, S,E) consisting of a set of variable
nodes � ∈ V , function nodes s ∈ S defined over neigh-
boring variable nodes N (s), a set of undirected edges
linking variables to functions and a specification for
each function �s in the model. The joint CDF F (x)
represented by G is given by

F (x) =
∏

s∈S

�s(xs), (1)

where each of the functions �s : ℝ∣N (s)∣ 7→ [0, 1] sat-
isfies the properties of a CDF. Without loss of gener-
ality we will assume that each function in the CDN
is connected to two variable nodes �, � so �s(xs) =
�s(x�, x�). An example of a CDN is given in Fig-
ure 2(a), where diamonds represent CDN functions
and circles represent variables. The properties satis-

fied by the functions �s include ∂xA

[

�s(xs)
]

≥ 0 ∀s ∈

S,A ⊆ N (s), where xA is the set of variables cor-

responding to node set A and ∂xA

[

⋅
]

is the mixed

derivative operator with respect to variables xA. For
a CDF, the PDF/PMF is defined in terms of the CDF

as P (x) = ∂x

[

F (x)
]

.

(a)

(b)

(c)
Figure 2: a) A CDN; b) A BDG, in which the absence
of a bi-directed edges between two variable nodes indicates
marginal independence between the corresponding random
variables. In a CDN, variables whose nodes do not have
any neighboring functions in common are marginally inde-
pendent. Both graphs in a) and b) represent the same set
of marginal independence constraints amongst variables; c)
The canonical DAG associated with the BDG of b). The
dependencies among variables in the BDG result from the
shared influence of latent variables in the canonical DAG
(shown in red).

2.1 Connection to bi-directed graphical
models

For CDNs defined over continuous random variables, it
can be shown (Huang, 2009) that the resulting condi-
tional independence relationships between subsets of
variables in the model are the same as those for bi-
directed graphs (BDGs) (Drton and Richardson, 2004;
Richardson, 2003). In both cases, the absence of a di-
rect link between two variables indicates marginal in-
dependence of those two variables in the model. In
a CDN, two variables that share a function node in
the graph are considered to be directly linked, so that
variables that share no functions nodes in common are
marginally independent. An example of a BDG and
a CDN that model the same set of marginal indepen-
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dence constraints is shown in Figures 2(a), 2(b). BDGs
can be also viewed as modeling the set of marginal
independence constraints among variables that would
be obtained from a canonical directed acyclic graphi-
cal (DAG) model in which dependencies between vari-
ables in the model result from the shared influence of
latent variables (Figure 2(c)). Both CDNs and BDGs
are well-suited to settings in which dependencies in
the model can be explained by the influence of ad-
ditional latent variables, but no detailed knowledge
about these latent variables is available (Drton and
Richardson, 2004). For example, in modeling rainfall,
latent variables might correspond to shared weather
systems that span multiple sites.

2.2 The derivative-sum-product algorithm

In a CDN, the problem of inference, or computing
conditional CDFs, is equivalent to computing higher-
order derivatives of the joint CDF with respect to sub-
sets of variables (Huang, 2009). Computing deriva-

tives of the form ∂xA

[

F (x)
]

for some subset of nodes

A ⊆ V can be solved efficiently by the derivative-
sum-product (DSP) algorithm in which messages cor-
respond to mixed derivatives with respect to subsets
of variables in the CDN. The intuition behind the al-
gorithm is that we reduce a global differentiation op-
eration to a series of local derivative computations,
each of which takes the form of a message. For tree-
structured CDNs, the messages computed by the DSP
algorithm are guaranteed to correspond to the correct
mixed derivatives (Huang, 2009). In the case of CDNs
containing functions of two arguments, the updates for
the DSP algorithm are given for each variable node
� ∈ V and neighboring function node s ∈ S as

��→s(x) =
∏

s′∈N (�)∖s

�s′→�(x),

��→s(x) = ��→s(x)
∑

s′∈N (�)∖s

�s′→�(x)

�s′→�(x)
, (2)

where we have defined the message ��→s(x) ≡

∂x�

[

��→s(x)
]

1. Similarly, then for each function node

s ∈ S and neighboring variable node � ∈ V we have

�s→�(x) = ∂x�

[

�s(x�, x�)
]

��→s(x)

+ �s(x�, x�)��→s(x),

�s→�(x) = ∂x�,x�

[

�s(x�, x�)
]

��→s(x)

+ ∂x�

[

�s(x�, x�)
]

��→s(x), (3)

1We denote all DSP messages as functions of all vari-
ables x in order to simplify notation, although each mes-
sage is in fact only a function of variables in the subtree
rooted at the current node for a tree-structured CDN.

∇θµs′→α(x; θ)
∇θλs′→α(x; θ) ∇θµα→s(x; θ)

∇θλα→s(x; θ)

∇θµs→β(x; θ)
∇θλs→β(x; θ)

α

β

s′

s

Figure 3: The gradient-derivative-product (GDP) algo-
rithm for computing gradients and derivatives in a tree-
structured CDN. Gradient messages in the GDP algorithm,
which consist of the gradients of messages in the derivative-
sum-product (DSP) algorithm of (Huang and Frey, 2008;
Huang, 2009). At the root node �, we can compute the
gradient of the negative log-likelihood by computing the
gradient of the product of all incoming messages for node
�.

where �s→�(x) = ∂x�

[

�s→�(x)
]

. A complete deriva-

tion of the above algorithm for an arbitrary tree-
structured CDN can be found in (Huang, 2009), where
the derivation is analogous to that for the sum-product
algorithm in factor graphs (Kschischang, Frey and
Loeliger, 2001) but with the marginalization operator
replaced by a differentiation/finite difference operator.

Now suppose the CDN is a tree-structured graph
rooted at � ∈ V . By applying the above algorithm
starting from leaf nodes and passing messages until
we reach the root node �, we can compute the mixed

derivative ∂x

[

F (x)
]

by multiplying together messages

at � and computing its derivative as

∂x

[

F (x)
]

= ∂x�

[

∏

s∈N (�)

�s→�(x)

]

. (4)

For a tree-structured CDN, the above procedure ex-
actly yields the joint PDF/PMF P (x). In the context
of learning parametric models, this can be expressed
as the likelihood function P (x∣�) where � denotes a
vector of model parameters. In the next section, we
show how the messages from the DSP algorithm can be
used to derive a novel message-passing algorithm that
allows us to efficiently compute gradients of the likeli-
hood function for maximum-likelihood estimation.

3 The gradient-derivative-product

algorithm for computing gradients

in cumulative distribution networks

In the context of maximum-likelihood estimation with
independent observations D = {x1, ⋅ ⋅ ⋅ ,xN}, we mini-
mize a loss function ℒ(D; �) corresponding to the neg-

ative log-likelihood ℒ(D; �) = −
∑N

n=1 logP (xn∣�) as
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a function of the parameter vector �. For a CDN,
the probability model represented by the CDN cor-
responds to a joint CDF F (x∣�) so that computing
the log-likelihood corresponds to computing P (x∣�) =

∂x

[

F (x∣�)
]

and evaluating it for each observation xn

in D. The above DSP algorithm can be used precisely
for this purpose in tree-structured graphs: in this sec-
tion we modify the messages from the DSP algorithm
to compute the gradient of the negative log-likelihood
∇�ℒ(x; �) via the introduction of additional messages.
The intuition here is that much like computing deriva-
tives of F (x∣�) with respect to model variables using
DSP, we can also efficiently compute gradients with
respect to model parameters using message-passing.

Let the gradient of function �s(xs; �) with respect to
parameter vector � be denoted as ∇��s(xs; �). For
any function �s(xs) in the CDN, we define an ele-
ment t of the gradient vector with respect to � to
be zero if the function �s(xs; �) does not depend on
parameter �t. Let the DSP messages be denoted as
�s→�(x; �), �s→�(x; �), ��→s(x; �), ��→s(x; �), where
the notation emphasizes the dependence of the mes-
sages on the model parameters �. Suppose now that �
is the root node for the tree-structured CDN. To com-
pute the gradient of the negative log-likelihood ℒ(x; �)
for a given observation x, we use Equation (4), which
yields the gradient

∇�ℒ(x; �) = −∇� log ∂x�

[

∏

s∈N (�)

�s→�(x; �)

]

= −
1

P (x∣�)
∂x�

[

∇�

∏

s∈N (�)

�s→�(x; �)

]

.

(5)

Here we have applied the product rule of differen-
tial calculus to the product of messages to obtain
the above expression. Given ∇��s→�(x; �), we can
then recursively apply the product rule to compute
∇���→s(x; �),∇��s→�(x; �) as functions of the DSP
messages. For a tree-structured CDN in which each
function has two argument variables, this yields

∇���→s(x; �) = ∇�

[

∏

s′∈N (�)∖s

�s→�(x; �)

]

= ��→s(x; �)
∑

s′∈N (�)∖s

∇��s′→�(x; �)

�s′→�(x; �)
,

∇��s→�(x; �) = ∇�∂x�

[

�s(x�, x� ; �)
]

��→s(x; �)

+ ∂x�

[

�s(x�, x� ; �)
]

∇���→s(x; �)

+∇��s(x�, x� ; �)��→s(x; �)

+ �s(x�, x� ; �)∇���→s(x; �).

The above expression suggests that by expanding
the derivatives of the CDF in terms of DSP mes-
sages ��→s(x; �), �s→�(x; �) and their derivatives
��→s(x; �), �s→�(x; �), we can compute the gradient
of the negative log-likelihood in terms of DSP messages
and their gradients. By passing the gradient messages
as specified above, we can compute the gradient ac-
cording to Equation (5). We refer to the algorithm
that computes the gradient messages in terms of DSP
messages as the gradient-derivative-product (GDP) al-
gorithm. The updates for the case of a CDN with
functions of two arguments are given in Table 1. By
computing the DSP messages and their gradients ac-
cording to the GDP updates, we can obtain the gra-
dient of the negative log-likelihood from all incoming
messages at the root node �. Once computed, the
gradient can be used in any gradient-based descent al-
gorithm for maximum-likelihood. Although the above
derivation assumes that one has already run the DSP
algorithm to obtain the messages required for the GDP
algorithm. It it worth emphasizing that the two al-
gorithms can be run simultaneously, so that for each
update one can compute DSP and GDP messages in
parallel.

4 Experiments

We can now apply the GDP algorithm to problems in
which a probability model is significantly easier to ex-
press as a joint CDF but we wish to estimate the model
from data using a maximum-likelihood approach. In
the case of heavy-tailed distributions, a multivariate
probability model can be tractably specified using a
CDN and estimated from data using GDP. Such dis-
tributions arise in applications such as that of mod-
eling climate variables (Coles, 2001) and in modeling
the spread of infectious disease, where we must ac-
count for dependencies between variables and for the
heavy-tailed statistics of the data. A particular class of
these distributions that are naturally parameterized as
CDFs are max-stable processes (Coles, 2001), in which
variables are modeled as the maxima over many ran-
dom variables. As we demonstrate in the Appendix,
CDNs allow us to tractably construct graphical models
that have the properties of these max-stable processes
by taking a product of local max-stable processes de-
fined over subsets of nodes in the CDN. An example of
such a distribution is the bivariate logistic distribution
with Gumbel margins (Coles, 2001), given by

�s(x, y) = exp
(

−
(

e−x/�s + e−y/�s
)�s

)

, 0 < �s < 1.

(6)
Models constructed by computing products of func-
tions of the above type have the properties of both
being heavy-tailed multivariate distributions and satis-
fying marginal independence constraints between vari-
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∙ For each leaf function �s(x�′ ; �), send the messages

∇��s→�′(x; �) = ∇��s(x�′ ; �), ∇��s→�′(x; �) = ∇�∂x�′

[

�s(x�′ ; �)
]

.

∙ For each non-leaf variable � and neighboring functions s ∈ N (�),

∇���→s(x; �) = ��→s(x; �)
∑

s′∈N (�)∖s

∇��s′→�(x; �)

�s′→�(x; �)

∇���→s(x; �) = ∇���→s(x; �)
∑

s′∈N (�)∖s

�s′→�(x; �)

�s′→�(x; �)

+ ��→s(x; �)
∑

s′∈N (�)∖s

∇��s′→�(x; �)�s′→�(x; �)− �s′→�(x; �)∇��s′→�(x; �)

�2
s′→�(x; �)

∙ For each non-leaf function s and neighboring variables � ∈ N (s),

∇��s→�(x; �) = ∇�∂x�

[

�s(x�, x� ; �)
]

��→s(x; �) + ∂x�

[

�s(x�, x� ; �)
]

∇���→s(x; �)

+∇��s(x�, x� ; �)��→s(x; �) + �s(x�, x� ; �)∇���→s(x; �)

∇��s→�(x; �) = ∇�∂x�,x�

[

�s(x�, x� ; �)
]

��→s(x; �) + ∂x�,x�

[

�s(x�, x� ; �)
]

∇���→s(x; �)

+∇�∂x�

[

�s(x�, x� ; �)
]

��→s(x; �) + ∂x�

[

�s(x�, x� ; �)
]

∇���→s(x; �)

∙ At the root node �, compute

U(x; �) =
∏

s∈N (�)

�s→�(x; �), ∇�U(x; �) = U(x; �)
∑

s∈N (�)

∇��s→�(x; �)

�s→�(x; �)
,

Z(x; �) =
∑

s∈N (�)

�s→�(x; �)

�s→�(x; �)
, ∇�Z(x; �) =

∑

s∈N (�)

∇��s→�(x; �)�s→�(x; �)− �s→�(x; �)∇��s→�(x; �)

�2
s→�(x; �)

P (x∣�) = U(x; �)Z(x; �), ∇�P (x∣�) = U(x; �)∇�Z(x; �) +∇�U(x; �)Z(x; �)

Table 1: The gradient-derivative-product (GDP) algorithm for computing the gradient ∇�ℒ(x;�) in a tree-structured
CDN in which each function is defined over two argument variables. Each message in the GDP algorithm consists of the
gradient of corresponding messages in the DSP algorithm of (Huang and Frey, 2008).

ables in the model. This makes CDNs a natural choice
of models for applications in which data follow heavy-
tailed distributions and in which dependencies among
variables can modeled as resulting from the shared in-
fluence of latent variables. In the next sections, we will
construct CDN models for rainfall and H1N1 mortal-
ity and we will use the GDP algorithm to learn such
models from data.

4.1 Modeling rainfall data

For this application, the data consisted of rain-
fall measurements during the summer of 1998
in China (http://www.ncdc.noaa.gov/oa/gsod.html).
The dataset consisted of a total of 61 daily measure-
ments at 23 sites in China for the months of June and
July 1998, during the course of which severe flooding
occurred as a result of extreme deviations in rainfall.
The geographic locations of the 23 sites are shown in
Figure 4(a). We then constructed a CDN by choosing
the approximate nearest neighboring sites for each site
by geographic proximity and by then ensuring that the

graph is both tree-structured and connected (Figure
4(b)). The functions in the CDN were set according
to Equation (6). The CDN models both the depen-
dencies that arise due to shared latent variables in ad-
dition to the underlying heavy-tailed statistics of the
measurements. We did not perform graphical model
selection here, although this would be a vital topic for
future research.

Given the CDN shown in Figure 4(b), we then ap-
plied the GDP algorithm for learning the model. We
used the gradients obtained from the GDP algorithm
in tandem with a projected stochastic gradients op-
timization routine to perform learning where for each
day in the training set, we compute the required gradi-
ent using GDP and perform a stochastic update. Up-
dates which violated the constraints 0 < �s < 1, s ∈ S

were projected back into the feasible set by a simple
thresholding.

To compare the fit of the proposed CDN model for the
given data, we also fit a disconnected CDN in which
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(a) (b)

Figure 4: a) The 23 sites in China from which rainfall measurements were made during the months of June, July in 1998;
b) The corresponding CDN for representing the joint distribution F (x) of recorded rainfall at each of the 23 sites.
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Figure 5: Negative log-likelihood for the rainfall data
achieved by the CDN, disconnected CDN (CDN-disc),
Gaussian bi-directed model (GBDG), Gaussian Markov
random field (GMRF) and mixture of Gaussians (MoG)
models as a function of number of iterations for each pa-
rameter learning algorithm.

the variables in the model are pairwise independent.
We also fit Gaussian BDG and MRF models with the
same graph topology as the CDN, where for the BDG
model we used the iterated conditional fitting algo-
rithm of (Drton and Richardson, 2004) and for the
MRF model we used the iterative proportional scaling
method of (Speed and Kiiveri, 1986). In the case of a
Gaussian BDG, one learns a covariance matrix Σ sub-
ject to constraint that (Σ)�,� = 0 only if there is no
edge connecting variable nodes �, � in the correspond-
ing BDG. For the Gaussian MRF, we have instead con-
straints of the form (Σ)−1

�,� = 0. In addition to these
models, we fit a mixture of Gaussians model with 2
mixture components, as we found the same model fit
for mixtures with 3 or more components. Finally, we
tried to apply the method of (Silva and Ghahramani,

2009), which consists of a factorial mixture of Gaus-
sians in which each the covariance matrix Σk for mix-
ture component k of the model is constrained to obey
the same marginal independence constraints as those
represented by the CDN and Gaussian BDG models.
We found that the costs for this model, in terms of
computation and memory, become intractable for bidi-
rected graphs with more than ten variables. As a re-
sult, we were not able to obtain comparative results
for this method.

The resulting training likelihoods for each of the above
models as a function of the number of iterations are
shown in Figure 5. We find that the parameter es-
timation algorithms for each of the models converge
quickly, with the CDN model of Figure 4(b) achieving
the best fit on the data. To appropriately gauge the
predictive power of the CDN model relative to each
of the models, we then performed leave-one-out cross-
validation where each of the 61 days in the months
of June and July was successively left out of training
and we evaluate the negative log-likelihood for each
model on the held-out test data. The total negative
log-likelihoods for all models on test data are shown
in Table 2a). We see here that the CDN is the most
predictive model among those studied and that by ig-
noring dependencies between neighboring sites in the
CDN through disconnecting the CDN, we incur poorer
predictive likelihood. Furthermore, by ignoring the
heavy-tailed statistics of the data, we also incur poorer
predictive likelihood, as evidenced by the test perfor-
mance of the models based on Gaussian distributions.
Interestingly, the Gaussian BDG achieved a better test
score than the Gaussian MRF, suggesting that the in-
dependence property of BDGs lead to more predictive
models than the Markov property of MRFs for the
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(a)

Model ℒtest

CDN 1.47× 103

CDN-disc 1.52× 103

GBDG 6.84× 103

GMRF 1.06× 104

MoG 1.31× 104

(b)

Model ℒtest

CDN 428.19
CDN-disc 466.99
GBDG 520.99
GMRF 485.25
MoG 684.46

Table 2: Negative test log-likelihood values ℒtest ob-
tained from leave-one-out cross-validation for the a) rain-
fall data and b) the H1N1 mortality data with CDNs
from Figures 4(b),6(a). For comparison, we also computed
ℒtest for a disconnected CDN (CDN-disc), a Gaussian bi-
directed graph (GBDG) and a Gaussian Markov random
field (GMRF) with the same graphical topologies as the
CDNs from Figures 4(b),6(a), and a mixture of Gaussians
(MoG) model.

same graph topology.

4.2 Modeling H1N1 mortality rates

We can also apply the GDP algo-
rithm to learning models for H1N1 data
(http://finder.geocommons.com/overlays/12295)
consisting of flu mortality indices for 11 cities in
the Northeastern US for 29 weeks during the H1N1
epidemic of 2008-2009. We constructed a CDN based
on geographic proximity of the cities (Figure 6(a))
and with CDN functions set according to Equation
(6). As in the previous application, the marginal
dependencies in the model were assumed to arise from
the shared influence of latent variables (e.g.: degree
of inter-city traffic, existence of a “patient zero”). We
repeated the experiments as in the previous section
for this H1N1 dataset, with resulting training and
test likelihoods shown in Figure 6(b) and Table 2b).
Similar to our results for the rainfall data, the CDN
achieves better model fit relative to the other models,
as we can account for dependencies between variables
in the model and for the heavy-tailed statistics for
this dataset.

5 Discussion

We have proposed a novel message-passing algorithm
for maximum-likelihood learning of CDFs defined on
graphs. We have applied the proposed framework to
the problems of modeling rainfall and H1N1 mortal-
ity. Our results suggest additional directions for re-
search. In particular, here we did not address the is-
sue of graphical model selection, which would be of
significant interest for the application of constructing
CDNs for modelling max-stable processes. Further-
more, in practice the graphs for CDNs may contain
cycles, whereas here we have designed a graph without
cycles. Thus another important direction for future re-

8

7
9

11

6

5

1

4

3

2

10
1 Wilmington, DE

2 Reading, PA

3 Allentown, PA

4 Philadelphia, PA

5 Camden, NJ

6 Trenton, NJ

7 Elizabeth, NJ

8 Jersey City, NJ

9 Newark, NJ

10 Yonkers, NY

11 Paterson, NJ

2

11 Paterson, NJ

(a)

0 20 40 60 80 100
400

450

500

550

600

650

700

750

Iterations

N
eg

at
iv

e 
lo

g−
lik

el
ih

oo
d

 

 

CDN
CDN−disc
GBDG
GMRF
MoG

(b)

Figure 6: a) The CDN used to model H1N1 mortal-
ity for 11 cities in the Northeastern US; b) Negative log-
likelihood on H1N1 data for the CDN, disconnected CDN
(CDN-disc), Gaussian bi-directed model (GBDG), Gaus-
sian Markov random field (GMRF) and mixture of Gaus-
sians (MoG) models as a function of number of iterations
for each parameter learning algorithm.

search would be to analyze the behavior of both the
DSP and GDP algorithms for graphs with cycles and
determine necessary/sufficient conditions for these al-
gorithms to converge. Finally, there are likely to to
be several applications in which multivariate heavy-
tailed distributions arise, such as computer vision and
finance, so that CDNs and the GDP algorithm may be
applicable to problems in these fields as well.

Appendix

Formally, a stochastic process X = {X�, � ∈ V }
with joint CDF FX(x) is said to be max-stable if for
M > 0 independent copies of the stochastic process
X(1), ⋅ ⋅ ⋅ ,X(M), the process Y = {Y�, � ∈ V } ob-

tained by computing Y� =

max
m=1,⋅⋅⋅ ,M

X(m)
� − c(M)

�

d(M)
�

for

constants c
(M)
� , d

(M)
� > 0 has CDF FY(x)

FY(x) = FX(x) = FM
X

(DMx+ cM )



         349

Maximum-likelihood learning of cumulative distribution functions on graphs

where DM ∈ ℝ
∣V ∣×∣V ∣, cM ∈ ℝ

∣V ∣ are a diago-
nal matrix and vector whose elements correspond to
{c(M)

� , c(M)
� }�∈V . Intuitively, max-stable processes

correspond to stochastic processes which are closed un-
der computing the maxima of random variables in the
process. The following shows that CDNs with max-
stable properties can be constructed from products of
max-stable processes.

Proposition 5.1. A product of max-stable processes
defined over subsets of random variables is also max-
stable.

Proof. For each variable X�, � ∈ V , let N� ≡

∣N (�)∣ and define random variables {X
(m,t)
� } for m =

1, ⋅ ⋅ ⋅ ,M and s ∈ N (�) so that

∙ For any given s ∈ S and t ∈ N (�), the stochastic
processes {X(1,t)

� }�∈N (s), ⋅ ⋅ ⋅ , {X
(M,t)
� }�∈N (s) are

independent copies of the stochastic process with

joint CDF �s(xs) = ℙ

[

∩

�∈N (s)

{

X(m,s)
� ≤ x�

}

]

.

∙ For any given m = 1, ⋅ ⋅ ⋅ ,M ,
s ∈ S and N (�) = {t1, ⋅ ⋅ ⋅ , tN�},

{X(m,t1)
� }�∈N (s), ⋅ ⋅ ⋅ , {X

(m,tN�)
� }�∈N (s) are

independent copies of the stochastic process with

joint CDF �s(xs) = ℙ

[

∩

�∈N (s)

{

X(m,s)
� ≤ x�

}

]

.

Given the definitions for variables X
(m,s)
� , let random

variable Y� be given by

Y� =

max
t∈N (�)

max
m=1,⋅⋅⋅ ,M

X(m,t)
� − c(M,N�)

�

d(M,N�)
�

for some c
(M,N�)
� , d

(M,N�)
� > 0. Then the joint CDF

of variables Y = {Y�}�∈V is given by FY(x) =

ℙ
[

∩

�∈V

{Y� ≤ x�}
]

, or

ℙ

[

∩

�∈V

{ max
m=1,⋅⋅⋅ ,M

max
t∈N (�)

X
(m,t)
� − c

(M,N�)
�

d
(M,N�)
�

≤ x�

}]

= ℙ

[

∩

�∈V

∩

t∈N (�)

M
∩

m=1

{

X
(m,t)
� ≤ d

(M,N�)
� x� + c

(M,N�)
�

}]

= ℙ

[

∩

s∈S

∩

�∈N (s)

M
∩

m=1

{

X
(m,s)
� ≤ d

(M,N�)
� x� + c

(M,N�)
�

}]

=

M
∏

m=1

∏

s∈S

ℙ

[

∩

�∈N (s)

{

X
(m,s)
� ≤ d

(M,N�)
� x� + c

(M,N�)
�

}]

=
∏

s∈S

�
M
s (Dsxs + cs)

Now, if the functions �s(xs) correspond to max-stable
distributions so that �s(xs) = �M

s (Dsxs + cs), then
the above yields FY(x) = FX(x).

Conversely, suppose at least one of the distributions
�s(xs) is not max-stable. Let the set of such distri-
butions be S̃ ⊆ S. Then for any c,D we can write

FM
X

(Dx+ c) =
∏

s∈S

�M
s (Dsxs + cs)

=
∏

s∈S̃

�M
s (Dsxs + cs)

∏

s∈S∖S̃

�s(xs)

The above must hold for all M and in particular
it must hold for M → ∞. For s ∈ S̃, no choice
of c,D can allow �s(xs) = �M

s (Dsxs + cs). Since
�s(xs) satisfies the properties of a CDF, we must have
lim

M→∞
�M
s (Dsxs + cs) = 0, which violates FX(x) > 0

and so FM
X

(Dx+ c) ∕= FX(x).
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