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Abstract

Virtually all methods of learning dynamic
systems from data start from the same ba-
sic assumption: the learning algorithm will
be given a sequence of data generated from
the dynamic system. We consider the case
where the training data comes from the sys-
tem’s operation but with no temporal order-
ing. The data are simply drawn as individual
disconnected points. While making this as-
sumption may seem absurd at first glance,
many scientific modeling tasks have exactly
this property.

Previous work proposed methods for learning
linear, discrete time models under these as-
sumptions by optimizing approximate likeli-
hood functions. We extend those methods to
nonlinear models using kernel methods. We
go on to propose a new approach that fo-
cuses on achieving temporal smoothness in
the learned dynamics. The result is a convex
criterion that can be easily optimized and of-
ten outperforms the earlier methods. We test
these methods on several synthetic data sets
including one generated from the Lorenz at-
tractor.

1 Introduction

Learning dynamic systems from data is the traditional
topic of system identification in control theory and
many algorithms have been proposed. In the machine
learning literature, the learning of graphical models,
such as dynamic Bayesian networks, and the learning
of various types of Markov models have been studied
for the same problem, often with discrete state spaces.
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Virtually all of these methods start from the same ba-
sic assumption: that the learning algorithm will be
provided with a sequence of data generated from the
dynamic system. Here we consider the case where the
data is not sequenced. The learning algorithm is pre-
sented a set of data points from the system’s operation
but with no temporal ordering. The data are sim-
ply drawn as individual disconnected points, and may
come from many separate executions of the dynamic
system.

Many scientific modeling tasks have this property.
Consider the task of learning dynamic models of
galaxy or star evolution. These processes are far too
slow for us to collect successive data points showing
any meaningful changes. However, we do have billions
of single data points showing these objects at various
stages of their evolution. At more modest time scales,
the same problem arises in the understanding of slow-
moving human diseases such as Alzheimer’s or Parkin-
son’s, which may progress over a decade or more. At
the other end of the spectrum, cellular or molecular
biological processes may be too small or too fast to
permit collection of trajectories from the system. Of-
ten, the measurement techniques are destructive and
thus only one data point can be collected from each
sample.

In these applications, scientists would like to construct
a dynamic model using only unsequenced, individual
data points collected from the system of interest. In
previous work, two algorithms were proposed to solve
this problem for linear, continuous-state, discrete-time
systems. These methods were based on optimizing an
approximate likelihood function. In this paper, we ex-
tend those methods to the non-linear case using kernel
methods. We go on to propose a new method based
on achieving temporal smoothness in the learned dy-
namics.
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2 Learning linear dynamical systems

from non-sequenced data

(Huang & Schneider, 2009) first proposed and stud-
ied the problem of learning linear dynamical systems
from a set of unordered observations. They consider a
simple discrete-time linear system:

xt+1 = Axt + ǫ, ǫ ∼ N (0, σ2I), (1)

and assume their data consists of N observations X =
{x1,x2, . . . ,xN}, each of which is drawn from an dif-
ferent execution of (1) at an unknown, random point
in time. Since each data point comes from exactly one
trajectory, (Huang & Schneider, 2009) write down the
likelihood by integrating out the true predecessor for
every observation:

N
∏

i=1





∫

x∈χ

exp(−‖xi−Ax‖2

2σ2 )

(2πσ2)
n
2

f(x)dx



 , (2)

where f(x) denotes the distribution of x. They then
approximate the true distribution f(x) by the data
itself, and propose estimating the system matrix A by
maximizing the following approximate log likelihood:

max
A,σ2

N
∑

i=1

log





∑

j 6=i

exp(−‖xi−Axj‖
2

2σ2 )

(N − 1)(2πσ2)
n
2



 , (3)

for which a simple and efficient Expectation Maximiza-
tion procedure is derived. They refer to this model as
the Unordered Model (UM), as the estimation proce-
dure does not take into account the underlying tem-
poral relation of the data points.

To impose directionality consistency into the model,
they require that each pair of points can only appear
in one direction, and that the overall structure must
be a tree:

max
A,σ2,ω,

r∈{1,...,N}

N
∑

i=1,
i6=r

log

N
∑

j=1

(

exp(−‖xi−Axj‖
2

2σ2 )

(2πσ2)
n
2

ωij

)

(4)

s.t. ωij = {0, 1},

N
∑

j=1

ωij = 1, i 6= r,

N
∑

j=1

ωrj = 0,

ω forms a tree with root xr.

where r denotes the data index of the starting point.
They call the modified model as the Partial-ordered
model, and derive an alternating maximization proce-
dure to estimate the model parameters and the tree
structure.

The above two models work quite well in the exper-
iments in (Huang & Schneider, 2009). However, a
major drawback of them is the non-convex estimation
procedure. In this paper, we first generalize these two
models for nonlinear dynamical systems through ker-

nel regression, and then propose a new formulation of
modeling nonlinear dynamics as smooth trajectories
in time. One main advantage of the new approach is
that the estimation procedure is a convex optimization
problem. Moreover, it does not assume a parametric
transition model. Instead of data generated from mul-
tiple trajectories, the new approach aims at the case
where the data consists of points along a single trajec-

tory of a nonlinear system, but the temporal order of
the points is unknown.

3 A nonlinear auto-regressive model

via kernel regression

To generalize the models proposed in (Huang &
Schneider, 2009) for nonlinear dynamics, we use kernel
regression. The system equation takes the following
form:

xt+1 = Wφ(xt) + ǫ, (5)

where φ(·) maps a point in R
n into a Reproducing Ker-

nel Hilbert Space (RKHS) endowed with a kernel func-
tion K(x,y) = φ(x)⊤φ(y), and W is a linear mapping
from the RKHS to R

n. We assume that the process
noise follows a Gaussian distribution ǫ ∼ N(0, σ2I).
To avoid over-fitting, we impose a zero-mean, unit-
variance Gaussian prior on W and obtain the following
approximate posterior:

P̂ (X|W,σ2) (6)

∝
N
∏

i=1





∑

j 6=i

exp(−‖xi−Wφ(xj)‖
2

2σ2 )

(N − 1)(2πσ2)
n
2



 exp

(

−
λ‖W‖2Fro

2

)

as a nonlinear version of the Unordered Model (3).
To estimate W and σ2, we derive an EM algorithm
similar to Algorithm 1 in (Huang & Schneider, 2009),
which can be viewed as an instance of the Iterative
Re-weighted Least Squares method, alternating be-
tween estimating model parameters and re-weighting
each pair of observations. Let Z ∈ {0, 1}N×N be a
latent variable matrix indicating which observation is
generated by which:

Zij =

{

1 if xi is generated from xj

0 otherwise
, j 6= i,

Zii = 0,

N
∑

j=1

Zij = 1.
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Algorithm 1 Expectation Maximization for (6)

Input: Data points x1, . . . ,xN

Compute the kernel matrix K with Kij = K(xi,xj).

Compute a low-rank factorization K ≈ φ̃(X)⊤φ̃(X).
Initialize W 1 and (σ2)

1, set t = 0
repeat

Update Z̃t+1 by (8) with W t and (σ2)t

Update W t+1 by (9) with φ̃(X) and Z̃t+1

Update (σ2)t+1 by (11) with W t+1 and Z̃t+1

t← t + 1
until ‖Z̃t − Z̃t−1‖2Fro < ǫ

Then we can write the complete log posterior as

log P̂ (X,Z|W,σ2) (7)

= log

N
∏

i=1

N
∏

j=1

(

exp(−‖xi−Wφ(xj)‖
2

2σ2 )

(N − 1)(2πσ2)
n
2

)Zij

−
λ‖W‖2Fro

2

∝−
∑

i,j

Zij

(

‖xi −Wφ(xj)‖2

2σ2
+

n log(σ2)

2

)

−
λ‖W‖2Fro

2
.

In the E-step, we compute the posterior mean Z̃ij :

Z̃ij = P (Zij = 1|X,W, σ2)

=











exp(−
‖xi−W φ(xj)‖2

2σ2 )
P

s 6=i
exp

“

−
‖xi−W φ(xs)‖2

2σ2

” , i 6= j,

0, i = j.

(8)

In the M-step, we replace Zij by Z̃ij and maximize (7)
on W and σ2. This is equivalent to fitting a weighted

least squares regression with Z̃ij ’s as the weights, and
the solution has a simple form:

W = XZ̃φ(X)⊤
(

φ(X)ΛZ̃φ(X)⊤ + λσ2I
)−1

(9)

= XZ̃
(

KΛZ̃ + λσ2I
)−1

φ(X)⊤, (10)

σ2 =

∑N
i=1

∑N
j=1 Z̃ij‖xi −Wφ(xj)‖

2

n
∑N

i=1

∑N
j=1 Z̃ij

, (11)

where φ(X) ≡ [φ(x1) φ(x2) · · · φ(xN )] is the mapping
of the entire set of observations in the RKHS, ΛZ̃ is

a diagonal matrix with (ΛZ̃)ii =
∑N

j=1 Z̃ji, and K ≡

φ(X)⊤φ(X) is the kernel matrix. We obtain (10) from
(9) by using the Matrix Inversion lemma.

One issue with the above procedure is that we can-
not compute W when the mapping φ(·) is of infinite
dimension. However, we observe that the EM proce-
dure only requires the computation of Wφ(X), and
according to (10)

Wφ(X) = XZ̃
(

KΛZ̃ + λσ2
)−1

φ(X)⊤φ(X)

= XZ̃
(

KΛZ̃ + λσ2
)−1

K.

Therefore, instead of W we maintain and update an

n-by-N matrix B ≡ XZ̃
(

KΛZ̃ + λσ2
)−1

in the EM
iterations. To predict the next state for a new obser-
vation x, we compute Bφ(X)⊤φ(x), which also only
requires kernel evaluations. Alternatively, we may
compute a finite-dimensional approximation to φ(X)
by doing a low-rank factorization of the kernel ma-
trix K ≈ φ̃(X)⊤φ̃(X), and replace φ(X) in the EM
procedure with φ̃(X) ∈ R

m×N ,m < N . Then we
can maintain and update W ∈ R

n×m explicitly. We
outline such a procedure in Algorithm 1. To do pre-
diction on a set of new data points, we project them
onto the basis found by factorizing the training kernel
matrix, thereby computing their finite-dimensional ap-
proximation φ̃, and then apply the estimated W to the
mapped points.

A similar nonlinear extension to the Partial-ordered
Model (4) is straightforward. By using the same kind
of kernel operations as above, we obtain an estima-
tion procedure similar to Algorithm 1 with the E-step
replaced by a maximum spanning tree search as in Al-
gorithm 2 in (Huang & Schneider, 2009) and the same
M-step.

4 Learning nonlinear dynamics by

temporal smoothing

We begin by observing a drawback in the objective
function (6). The dynamics learned by these methods
are ensured of being spatially smooth. In other words,
if you have two nearby states, the temporal gradients
from those two states will be similar. However, tem-
poral smoothness is not enforced. In other words, on
one time step, the system may make a large jump to
another area of state space from which the temporal
gradient for the next time step would be drastically dif-
ferent. In fact, some runs of Algorithm 1 suffer from
exactly this. The resulting dynamics jump back and
forth between two distant regions of state space. The
dynamics are spatially smooth, but temporally erratic.
Therefore, we base our new proposed method on con-
straints that ensure temporal smoothness of the result.

The new method has two additional benefits. The EM
algorithm proposed earlier suffers from another draw-
back. The objective being optimized is not convex and
thus the optimization procedure is subject to getting
trapped in local maxima. The new method will yield
a convex penalty function to optimize. As a second
benefit the new method is also able to tolerate a time-
varying W .

Our new method is based on the following idea: the
smoothness of a system trajectory can be quantified
by the second order difference of adjacent points on
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the trajectory. More specifically, this smoothness can
be written as:

S =

T−1
∑

t=2

((xt+1 − xt)− (xt − xt−1))2, (12)

where T is the maximum time. Such a smoothness
measure has been used as the regularization term in
the Hodrick-Prescott filter (Hodrick & Prescott, 1997;
Lesser, 1961), a common tool in macroeconomics for
obtaining a smooth and nonlinear representation of a
time series.

The quantity (12) cannot be computed on our data
since there is no time information. Nevertheless, it
can be succinctly expressed using the Laplacian L of
the graph formed by connecting neighboring points in
the manifold. More specifically, let X := [x1 x2 · · ·xN ]
be the data matrix where each column is an observa-
tion vector, and Z be the directed adjacency matrix
where Zij = 1 if node j sends an edge to node i, and
0 otherwise (Our use of Z as the directed adjacency
matrix is on purpose here; as we explain later, the per-
mutation matrix Z can be interpreted as the directed
adjacency matrix). Then the undirected, symmetric
adjacency matrix Z of the graph can be computed
as Z = Z + Z⊤, and hence the graph Laplacian is
L = diag(Ze) − Z, where e is a vector of ones and
diag(Ze) is the diagonal matrix with the vector Ze as
the main diagonal. The smoothness S of the manifold
can then be written as:

S = ‖XL‖2Fro

= tr((diag(Ze)− Z)⊤X⊤X(diag(Ze)− Z)), (13)

which is quadratic and convex in Z and hence Z.

The ordering of the points from the dynamical system
can be specified by a matching matrix Z with zero di-
agonal, where entry Zij indicates whether the prede-
cessor of node i is j. This coincides with the definition
of the directed adjacency matrix of a graph. Therefore
we can minimize the smoothness quantity in (13) with
respect to the matching matrix Z:

Z∗ = argminZ S(Z)

s.t. Ze = e, Z⊤e = e, Zij ∈ {0, 1}, Zii = 0,

Z = Z + Z⊤. (14)

Note that a legitimate matching matrix is supposed to
have exactly one zero row and one zero column cor-
responding to the starting and the end points in the
sequence. However, searching over all possible choices
of end points may be computationally infeasible, so we
simply require all rows and all columns to sum to one,
making Z a permutation matrix. The set of permu-
tation matrices is still hard to search, and we further

relax the integer constraints on the entries of Z to
have the following optimization problem over doubly
stochastic matrices:

Z∗ = argminZ S(Z)

s.t. Ze = e, Z⊤e = e, Zij ∈ R
+, Zii = 0,

Z = Z + Z⊤. (15)

where R
+ denotes the set of non-negative real num-

bers. Such a relaxation is justified by the Birkhoff-

von Neumann theorem (van Lint & Wilson, 2001): the
space of doubly stochastic matrices is a convex poly-
tope in R

N2

whose extreme points are permutation
matrices.

The optimization problem (15) is essentially convex
quadratic programming under linear and bound con-
straints. However, the number of variables is quadratic

in the number of data points, and as the data size
increases, directly applying a general-purpose QP or
nonlinear programming solver may become inefficient
or even infeasible. We thus devise a simple and ef-
ficient projected gradient method that iteratively up-
dates the rows and the columns of Z.

The key idea of a projected gradient method is to move
the parameter vector along the negative gradient di-
rection, and project the updated vector back into the
feasible region Ω whenever it goes out. The cost of
a projected gradient procedure is mainly determined
by the projection operation, so we need to compute
efficiently the projection step:

Zt+1 ← ΠΩ(Zt − η∇t), (16)

Ω = {Zi·e = 1, Z⊤
·,je = 1, Zij ∈ R

+, Zii = 0}, (17)

where Zi· and Z·j denote a row and a column of Z
respectively, and ΠΩ(a) := argminb{‖a − b‖ | b ∈ Ω}
is the Euclidean projection of a vector a onto a region
Ω. The formula for computing the gradient is given in
Appendix A. We observe that the feasible region (17)
is the intersection of two closed convex sets Ω1 and Ω2:

Ω1 = {Zi·e = 1, Zij ∈ R
+, Zii = 0, 1 ≤ i, j ≤ N},

Ω2 = {Z⊤
·,je = 1, Zij ∈ R

+, Zii = 0, 1 ≤ i, j ≤ N},

which correspond to the normalization constraints for
rows and columns, respectively. Using Dykstra’s cyclic
projection algorithm (Boyle & Dykstra, 1986), we per-
form the projection operation (16) by alternately pro-
jecting onto Ω1 and Ω2. A very nice property of this
procedure is that projecting onto Ω1 or Ω2 alone can
be further decomposed as doing row-wise (or column-
wise) projections, and a single-row or single-column
projection can be computed very efficiently by the ℓ1
projection technique proposed in (Duchi et al., 2008),
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Algorithm 2 w = ℓ1-Projection(v), v ∈ R
N

1: Sort v into µ : µ1 ≥ µ2 ≥ . . . ≥ µN .
2: Find ρ = max{j ∈ [N ] : µj −

1
j
(
∑j

r=1 µr − 1) > 0}

3: Define θ = 1
ρ
(
∑ρ

i=1 µi − 1)

4: Output w s.t. wi = max{vi − θ, 0}

Algorithm 3 Projected Gradient Method for (15)

Input: Data matrix X = [x1 · · · xN ]
Output: Z∗

1: Set α = 0.1, ǫ = 10−6, σ = 10−2

2: Initialize Z1, set t = 1
3: repeat

4: Compute the gradient ∇t := ∇S(Zt), η ← 1.0
5: repeat

6: Z = Zt − η∇t, Drow = Dcol = [0]N×N

7: repeat

8: Z̃ ← Z
9: Z ′

i· ← ℓ1-Projection((Z −Drow)i·), ∀i
10: Drow ← Z ′ − (Z −Drow)
11: Z ′′

·j ← ℓ1-Projection((Z ′ −Dcol)·j), ∀j

12: Dcol ← Z ′′ − (Z ′ −Dcol)
13: Z ← Z ′′

14: until ‖Z − Z̃‖Fro ≤ ǫ
15: η ← αη
16: until S(Z)− S(Zt) ≤ σ∇(t)(Z − Zt)
17: t← t + 1, Zt ← Z
18: until ‖Zt − Zt−1‖Fro ≤ ǫ
19: Z∗ ← Zt

which we outline in Algorithm 2. The required opera-
tions are simply sorting and thresholding1.

Algorithm 3 gives a summary of the projected gradi-
ent method for the optimization problem (15). As in
all gradient-based methods, we conduct back-tracking
line search for the step size η to ensure convergence.

5 Experiments

The proposed methods are evaluated on several syn-
thetic data sets. We describe the data generation pro-
cess in Section 5.1, give parameter settings of methods
compared and evaluation criterion in Section 5.2, and
report results and findings in Section 5.3.

5.1 Data

We generate data from three dynamical systems:
The 3D-1 linear system used in (Huang & Schnei-
der, 2009). The transition matrix and the initial point

1For the ease of presentation, in Algorithm 2 we ignore
the constraint Zii = 0, which can be easily enforced by
setting Zii = 0 and updating only the other N − 1 entries.

are:

A =





1.1882 0.3732 0.1660
−0.1971 0.8113 −0.0107
−0.1295 −0.1886 0.9628



, x0 =





10
10
10



.

The maximum time Tmax is set to 100.
3D-conv: a convergent three-dimensional nonlinear
system (Girard & Pappas, 2005) governed by the fol-
lowing differential equations:

dx(t)/dt = −(1 + 0.1y(t)2)x(t),

dy(t)/dt = −(1− 0.1x(t)2)y(t)/2 + 2z(t),

dz(t)/dt = −(1− 0.1x(t))2y(t)− z(t)/2,

where x(t), y(t), and z(t) are the three states at time
t. The initial point is set to [5 1 5]⊤ and 200 points
are evenly sampled in the time interval [0, 10].
The Lorenz attractor (Lorenz, 1963):

dx(t)/dt = 10(y(t)− x(t)),

dy(t)/dt = x(t)(28− z(t))− y(t),

dz(t)/dt = x(t)y(t)− 8z(t)/3.

The initial point is set to [0 1 1.05] and 800 points are
evenly sampled in the time interval [0, 20].

We consider two different settings:
Single trajectory with observational noise: In-
dependent zero-mean Gaussian noise is added to the
ideal trajectories, with three levels of noise standard
deviation: σnoise = {0, 0.01δ, 0.05δ}, where δ is the
median of all the pairwise distances of points on an
ideal trajectory. With positive noise levels, we gener-
ate 20 data sets for 3D-1, 3D-conv, and the last 400
points of the Lorenz trajectory2 generated as above.
Examples of the data for the three systems are in Fig-
ures 1(a), 1(c), and 2.
Multiple trajectories with process noise: Algo-
rithm 3 of (Huang & Schneider, 2009) is applied to
3D-1 and 3D-conv to generate samples from multiple
independent executions of a system. For 3D-conv we
use its discrete-time counterpart, treating the deriva-
tives as constant in a small duration ∆t = 0.1. The
process noise follows a zero-mean Gaussian, whose
standard deviations are {0.01δ, 0.05δ} for 3D-1 and
{0.1∆t, 0.5∆t} for 3D-conv. We generate 20 data sets
of 400 points for each system and each noise level. We
did not include the Lorenz attractor here because it is
a chaotic system.

5.2 Evaluation criterion and parameter

settings

The evaluation criterion we used is essentially the
cosine score in (Huang & Schneider, 2009). Let

2This partial trajectory preserves the butterfly shape.
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(a) 3D-1: σnoise = 0.05δ
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(b) 3D-1: predictions
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(c) 3D-conv: σnoise = 0.05δ
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(d) 3D-conv: predictions

Figure 1: Examples of training data (single trajectory) and predicted dynamics on the ideal trajectory by TSM.
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Figure 2: Left: Lorenz attractor ideal trajectory. Right: estimated dynamics by KUM.

{x1,x2, . . . ,xTmax} be the points sampled from an
ideal system trajectory. After we learn a dynamic
model from a training data set, we predict for each
xt, t = 1, . . . , Tmax − 1 the next state x̂t+1, and com-
pute the similarity score between the predicted differ-
ence vectors and the true ones:

1

Tmax − 1

∣

∣

∣

∣

∣

Tmax−1
∑

t=1

(xt+1 − xt)⊤(x̂t+1 − xt)

‖xt+1 − xt‖‖x̂t+1 − xt‖

∣

∣

∣

∣

∣

. (18)

A higher score means a better prediction. By using
such a normalized score of similarity, we focus on mea-
suring the consistency of the predicted dynamics with
the truth, but do not take into account the lengths of
the difference vectors and the overall direction in time.

We compare the three proposed methods: the nonlin-
ear Unordered model via kernel regression (KUM), the
nonlinear Partial-ordered model via kernel regression
(KPM), and the temporal smoothing method (TSM)
against a baseline approach that exploits manifold
learning techniques. The baseline approach maps the
data points to the real line through some manifold
learning method, sorts the points according to their
one-dimensional projections, and then learns a dy-
namic model of the form (5) from the ordered data.
In our experiments, we find Maximum Variance Un-
folding (MVU) by (Weinberger et al., 2004) to be the

best manifold learning choice. For KUM and KPM we
also include results by their linear versions UM and
PM.

As mentioned in Section 4, we relax the constraints on
having end points and hence the matching matrix Z
obtained by the temporal smoothing method is usu-
ally a mixture of dynamics in both directions. In Fig-
ure 3 we show the heat map of a Z matrix for one of
the single-trajectory data set generated from 3D-conv,
where the rows and the columns are sorted according
to the true temporal order. The energy is concen-
trated around the two leading off-diagonals, showing
that the temporal smoothing method nicely recovers
the sequential structure in time, but does not choose
one direction over the other3. To resolve this ambigu-
ity, we apply the following heuristics to obtain an ad-
justed matching matrix. For single-trajectory data, we
take the lower-triangular part of Z+Z⊤ and normalize
it to be doubly-stochastic, thereby specifying the cor-
rect starting and the end points in time. For multiple-
trajectory data, we treat Z as a weighted adjacency
matrix, find the maximum spanning tree rooted at
each data point, and choose the tree that exhibits the

3In fact, for some dynamic systems the true direction
in time is not identifiable (Peters et al., 2009).
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Figure 3: Heat map of the matching matrix Z by TSM

“smoothest” dynamics, i.e., the maximum total cosine
score between the difference vectors corresponding to
adjacent tree edges. After this post-processing, we fit
a re-weighted regression as in (10) using the adjusted
matching matrix as the weights.

For 3D-1, we use a linear model for MVU and TSM
in their final regression. For all the nonlinear sys-
tems we use kernel regression with the Gaussian ker-
nel exp(−(‖x − y‖2)/(2h)). When applying KUM
and KPM, we set the kernel bandwidth h to 10δ̃
and 50δ̃ respectively for 3D-1 and the two nonlinear
systems, where δ̃ is the median of all pairwise dis-
tances in a training data set. For TSM and MVU
we set h = δ̃. Regarding the regularization param-
eter λ in (6), on noiseless data we set it to 10−3.
On 3D-1 single(multiple)-trajectory data we set it to
10−7(10−6) and 10−6(10−5) for small and large noise
levels, and on all the other data we set it to 10−4 and
10−3 for the two noise levels. When applying KUM
and KPM, we use a low-rank approximation to the
kernel matrix as described in Section 3, with the re-
duced rank m = 5. For each data set we run KUM
and KPM with 50 random initializations of W and σ2

to avoid local minima. Each entry of W is drawn inde-
pendently from a zero-mean Gaussian with the stan-
dard deviation set to 100, and σ2 is drawn uniformly
random between 0 and 100 times of the median of pair-
wise distances.

5.3 Results and findings

Our experiment results are in Table 1 and Figures 4
to 6. Table 1 reports cosine scores on noiseless tra-
jectories and bold-faces the best method for each dy-
namical system. It is interesting that KUM performs
better than its linear version UM on the linear system
3D-1, and that UM performs very well on the nonlin-
ear system 3D-conv; the latter suggests 3D-conv may
be well approximated by a linear system in terms of
one-step predictions. For Lorenz attractor, however,

MVU UM PM KUM KPM TSM
3D-1 0.0152 0.9120 0.9898 0.9972 0.3239 0.8757
3D-conv 0.9954 0.9903 0.5570 0.9909 0.9225 0.9545
Lorenz 0.1383 0.5644 0.2155 0.9884 0.334 0.324

Table 1: Cosine scores on noiseless data
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(b) σnoise = 0.05δ

Figure 4: Box plots of cosine scores for Lorenz attrac-
tor (partial trajectory), outliers marked as red crosses.

only KUM performs well and other methods are signif-
icantly worse. Figure 2 shows the estimated dynamics
by KUM, which is very close to the true dynamics.

Figures 4, 5(a), and 6(a) report results on single-
trajectory noisy data. TSM is the best for all three sys-
tems while MVU is the worst except for 3D-conv with
small noise. Figure 1 shows examples of noisy training
data and predicted dynamics by TSM. On Lorenz at-
tractor, a highly nonlinear system, KUM and KPM are
better than UM and PM. It is interesting that TSM
performs better here than in the noiseless case; the
reason may be that the partial trajectory used here
does not contain the highly-dense spirals in the core
of the left wing shown in Figure 2, which cause diffi-
culties for TSM as the smoothness measure (13) may
be sensitive to different spacings of the data. For 3D-
1, it is as expected that UM and PM are better than
KUM and KPM, but for 3D-conv UM sometimes out-
performs them by a small margin. This is aligned with
our finding from noiseless data and the known fact
that linear models may still be useful for nonlinear sys-
tems. Figures 5(b) and 6(b) show results on multiple-
trajectories data, which are roughly consistent with
single-trajectory results except that TSM performs a
lot worse. This is not surprising since TSM’s assump-
tion of a single ordering of data points is invalid here.

As shown in the box plots, KUM and KPM may suffer
seriously from local optima. While TSM uses convex
optimization, it is sensitive to irregular data distri-
butions and requires an effective post-processing step
that chooses an overall direction. These observations
suggest that some proper combination of the two ap-
proaches would lead to a more effective method.
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(a) Single: σnoise = 0.01δ (left) and 0.05δ (right)
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(b) Multiple: σnoise = 0.01δ (left) and 0.05δ (right)

Figure 5: Box plots of cosine scores for 3D-1.

6 Conclusions

We study the problem of learning nonlinear dynamic
models from non-sequenced data. The proposed meth-
ods include generalizations of previous work for learn-
ing linear dynamic systems, and a new formulation
that recovers the order of data points by temporal
smoothing. We evaluate the proposed methods on sev-
eral synthetic dynamic systems, including a famous
chaotic system, the Lorenz attractor, and obtain rea-
sonably good results. We believe such a development
represents a further step towards the goal of making
new discoveries from real world data.

A The gradient of (13)

The gradient of the smoothness measure (13) at some
Z can be computed by the following steps:

Z ← Z + Z⊤.

Q← X⊤X(diag(Ze)− Z).

Compute Q̃ ∈ R
N×N such that Q̃ij = Qjj −Qij .

Return 2(Q̃ + Q̃⊤) as the gradient.
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