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Abstract

We propose to solve the combinatorial prob-
lem of finding the highest scoring Bayesian
network structure from data. This structure
learning problem can be viewed as an infer-
ence problem where the variables specify the
choice of parents for each node in the graph.
The key combinatorial difficulty arises from
the global constraint that the graph struc-
ture has to be acyclic. We cast the structure
learning problem as a linear program over
the polytope defined by valid acyclic struc-
tures. In relaxing this problem, we maintain
an outer bound approximation to the poly-
tope and iteratively tighten it by searching
over a new class of valid constraints. If an
integral solution is found, it is guaranteed
to be the optimal Bayesian network. When
the relaxation is not tight, the fast dual al-
gorithms we develop remain useful in com-
bination with a branch and bound method.
Empirical results suggest that the method is
competitive or faster than alternative exact
methods based on dynamic programming.

1 Introduction

Bayesian networks and their many extensions (e.g.,
relational models) are common tools in multi-variate
data analysis across disciplines. Their success follows
in large part from the insights about the problem being
modeled that can be derived directly from the associ-
ated directed acyclic graph (DAG) structure. Since
this DAG is not often known apriori, one often needs
to learn it from data. A common approach to this
structure learning problem is to rank graph structures
via a scoring metric that measures how well each model
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structure fits the data. When the available data may
be drawn from an arbitrary distribution, the resulting
combinatorial search problem is known to be NP-hard
[Chickering, 1996; Chickering et al. , 2004]. The search
problem remains intractable even if we limit the num-
ber of parents of each node in the graph to be at most
2 (the case of one parent per node – directed trees –
is easy to solve). The hardness result extends even to
poly-trees with at most two parents [Dasgupta, 1999].

The core difficulty of the learning problem arises
from the fact that a valid graph has to be acyclic.
The acyclic constraint is global and ties together the
choices of parents for each node in the graph. A wealth
of structure learning methods have been developed
to address this difficulty. These methods are gen-
erally divided into exact methods based on dynamic
programming ideas and extensions (e.g., Koivisto &
Sood [2004]; Silander & Myllymäki [2006]; Parviainen
& Koivisto [2009]) or approximate methods based on
local or stochastic search. Without additional con-
straints, exact methods are limited to relatively small
problems (around 30 nodes) as both computation and
memory requirements scale exponentially with the
number of nodes in the graph. Local search meth-
ods, on the other hand, remain applicable to a broader
class of structure learning problems but, in contrast,
fail to guarantee optimality. Significant improvements
to these methods were obtained by either searching
over equivalence classes of network structures [Chick-
ering, 2002] or casting the search over different order-
ings of the variables [Friedman & Koller, 2003; Teyssier
& Koller, 2005]. More recently, branch-and-bound has
been applied to exact learning of Bayesian network
structure [de Campos et al. , 2009]. Besides guaran-
teeing optimality at the termination of the search, the
approach maintains an estimate of how far the current
solution is from the optimal structure.

Independence tests provide an alternative paradigm to
the above score based structure learning approaches
[Spirtes et al. , 2001]. If the data is truly drawn from
a distribution that has exactly the same conditional in-
dependencies as some Bayesian network, independence
tests can be used to provably recover the true distribu-
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tion. If the Bayesian network has bounded in-degree,
this approach uses both polynomial time and requires
only a polynomial amount of data. However, apply-
ing this method to real-world data is difficult, both
because the outcomes of the independence tests may
be inconsistent as well as because the data generating
distributions typically do not satisfy the underlying
distributional assumptions.

We propose to solve the combinatorial problem of find-
ing the highest scoring Bayesian network structure by
first formulating the problem as a Linear Program
(LP) over the polytope defined by valid acyclic graphs,
and subsequently using an outer bound approximation
to the polytope. In contrast to stochastic or greedy lo-
cal search, this is a global solution method where the
LP relaxation upper bounds the score of the optimal
structure. If the solution to the relaxed problem is in-
tegral, we are guaranteed that it is the optimal struc-
ture. Otherwise, we can use the fractional solution to
guide branch-and-bound towards finding the optimal
structure. Guo & Schuurmans [2006] also proposed an
LP approximation for structure learning, but solving it
required semidefinite programming. Furthermore, the
outer bounds we use here are novel and include those
of Guo & Schuurmans [2006] as a special case.

We solve the LP relaxation using a simple coordinate-
descent algorithm in the dual. The method is fast and,
in combination with dual-subgradient steps, effectively
avoids getting stuck in poor solutions. The LP relax-
ation is iteratively tightened in a cutting plane fashion
by searching over a new class of valid inequalities. The
gain from each additional inequality constraint (if vio-
lated) is easily assessed in the dual. Moreover, the dual
formulation maintains an upper bound on the score of
the optimal structure at all times and this can be ex-
ploited in guiding branch and bound partitions.

2 Background

Our goal is to find the highest scoring (“optimal”)
Bayesian network structure G given a dataset D. We
assume that the scoring metric is decomposable in
the sense that it can be written as a sum of terms
where each term depends only on the choice of par-
ents pai = si for each node i in the Bayesian network.
Here si is a set valued variable specifying the parents
of i. Most typical scoring metrics, including the BDe
metric [Heckerman et al. , 1995] and BIC, are decom-
posable and can be written as

score(G;D) =
n∑

i=1

score(i|pai = si;D) =
n∑

i=1

Wi(si) (1)

where we have adopted a shorthand Wi(si) for the
local scores and n is the number of random variables.

Finding the best structure Ĝ = G(ŝ) corresponds to
finding the best choice of parent sets ŝ = {ŝ1, . . . , ŝn}.

The key difficulty in maximizing score(G(s);D) with
respect to s stems from the fact that G(s) has to be
acyclic. As a result, the parent sets s1, . . . , sn cannot
be chosen independently from each other. Most of our
paper is focused on dealing with this constraint.

The other difficulty has to do with a potentially large
number of values that each si can take (all subsets of
the other variables). This set can be be pruned effec-
tively in practice, however. For example, if Wi(si) ≥
Wi(s′i) for si ⊂ s′i, then we never have to consider s′i
(cf. de Campos et al. [2009]). Choosing a larger set of
parents s′i would merely impose stronger constraints
on the other variables without a commensurate gain
in the score. We will also typically limit a priori the
maximum number of parents allowed for each variable.

Let Pa(i) denote the collection of already pruned par-
ent sets for node i. Note that Pa(i) is necessarily based
on the Markov Blanket of i and will also include vari-
ables that are not parents of i.

3 Structure learning as an LP

In what follows, we cast the structure learning prob-
lem as a linear program over a polytope P of valid
acyclic structures. The polytope is defined as a con-
vex hull of vertices where each vertex corresponds to
a valid acyclic structure. The vertices are represented
as binary vectors where each coordinate corresponds
to a possible choice of parents for a variable. More
specifically, we represent an acyclic graph with a bi-
nary vector η = [η1; . . . ;ηn] where each ηi is an indi-
cator vector (of dimension |Pa(i)|) specifying the par-
ent set chosen for the corresponding node. In other
words, if node i selects parents si, then ηi(si) = 1 and
all the remaining coordinates of ηi are zero. Note also
that η is a sparse vector with exactly n coordinates
equal to one. We use η(s) to denote the binary vector
corresponding to the graph G(s) obtained by selecting
parent sets s = [s1, . . . , sn].

The polytope P is now the convex hull of all η(s) where
si ∈ Pa(i) and s = [s1, . . . , sn] correspond to a DAG.1

The key property of this polytope is that η(s) for any
graph G(s) with cycles is guaranteed to lie outside P.

With a slight abuse of notation, we will use η also for
the interior points η ∈ P that correspond to weighted
averages of binary vectors representing acyclic graphs.
We are now ready to state the structure learning prob-

1Note that the dimension and structure of the polytope
are different for different pruning strategies.
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lem as a linear program:

max η ·W =
∑n

i=1

∑
si∈Pa(i) ηi(si)Wi(si)

s.t. η ∈ P (2)

The optimal value of this linear program is obtained
at a vertex that corresponds to the highest scoring
Bayesian network. The complexity of the structure
learning problem is now entirely hidden in the expo-
nentially many facets (linear half-space constraints)
that are needed to specify P.

We remark that P defined above is different from the
acyclic subgraph polytope Pdag studied extensively in
polyhedral combinatorics. Pdag is defined as the con-
vex hull of the edge indicator vectors for every set of
edges specifying an acyclic graph [Grötschel et al. ,
1985]. However, the score associated with a Bayesian
network is not a linear function of individual edge se-
lections, but rather depends on the set of incoming
edges (parent sets). Thus Pdag would not suffice to
cast the structure learning problem as a linear pro-
gram.

4 LP Relaxation

We seek to relax the linear program by finding an outer
bound approximation to the polytope P. We identify
here two strategies for relaxing the polytope: first, by
projecting η ∈ P to a known polytope defined over
the choice of directed edges, and, second, introducing
a new class of constraints directly outer bounding P.

Any point (interior or vertex) η ∈ P corresponds to
a distribution over parent set choices reflecting one
or more acyclic graphs. Based on η, we can easily
calculate the probability that any directed edge such
as (j, i) (an edge from j to i) is present, i.e.

µji =
∑

si∈Pa(i)

ηi(si)δ(j ∈ si), (3)

where δ(j ∈ si) is an indicator function. By concate-
nating all such µji into a vector µ of directed edge
selections, we have defined a linear projection from
η ∈ P to the acyclic subgraph polytope µ ∈ Pdag.
Any known facet of Pdag can consequently be intro-
duced as a constraint on η by lifting. In particular,
cycle inequalities of the form∑

(j,i)∈EC

µji ≤ |EC | − 1, (4)

where a cycle is represented as a sequence of directed
edges EC , are facet defining though not sufficient for
specifying Pdag [Grötschel et al. , 1985]. The corre-

parent set selection
probabilities

edge
appearance
probabilities

projection

cycle inequalities
are not sufficient

invalid parent set selection 
probabilities may project to 

valid edge probabilities

Figure 1: Projection and lifting between parent set
selections and edge selections.

sponding lifted constraint on η is obtained by expand-
ing the definition of µji to obtain:∑

(j,i)∈EC

∑
si∈Pa(i)

ηi(si)δ(j ∈ si) ≤ |EC | − 1 (5)

We call the polytope over the parent set selections aris-
ing from all such lifted cycle inequalities, together with
the simple constraints ηi(si) ≥ 0 and

∑
si
ηi(si) = 1,

the cycle relaxation Pcycle. It can be shown that these
cycle inequalities are equivalent to the transitivity con-
straints used in Guo & Schuurmans [2006].

The cycle relaxation is not tight in general for two
reasons (see Figure 1). First, cycle inequalities gener-
ally provide an outer bound on Pdag that is not tight.
Thus, they permit marginal edge selections that do
not arise as marginals from any valid distribution over
directed acyclic graphs (DAGs). Note, however, that
there are cases when cycle inequalities are provably ex-
act. For example, when G is planar (i.e., can be drawn
on a plane without crossing edges), the cycle inequal-
ities exactly define Pdag [Grötschel et al. , 1985]. The
setting rarely occurs in practice when n > 4. Other
facet defining inequalities for Pdag are known, such as
the fence inequalities [Grötschel et al. , 1985]. Such
constraints involve edge selection variables that corre-
spond to a non-planar graph (at least 5 nodes).

The second and more subtle reason for why the above
cycle relaxation is not tight is that the parent set selec-
tion variables ηi(si), which were necessary to formulate
a linear objective, couple the edge variables. Rather
than select each parent of i independently, we are
forced to make coordinated selections as specified by
each si ∈ Pa(i). Thus, the edge selection marginals µ
resulting from any distribution over si (such as ηi(si))
are dependent, even for two edges j → i and k → i
that cannot form a cycle. The acyclic subgraph poly-
tope Pdag only represents µ and thus does not consider
correlated choices of edges.

We illustrate this with the following example. Con-
sider estimating a Bayesian network over three binary
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variables, y1, y2, and y3, which are related only by hav-
ing an even parity. As a result, the scores for possible
parent sets are symmetric where each variable prefers
the other two as parents. The maximizing solution to
the cycle relaxation would be:

η1(s1) = 1/2, s1 = {2, 3}, η1(s1) = 1/2, s1 = {∅}
η2(s2) = 1/2, s2 = {1, 3}, η2(s2) = 1/2, s2 = {∅}
η3(s3) = 1/2, s3 = {1, 2}, η3(s3) = 1/2, s3 = {∅}

The resulting edge marginals µji are all 1/2 and clearly
satisfy the cycle inequalities 1/2 + 1/2 + 1/2 ≤ 2 and
similarly for 2-cycles. The di-graph of possible edges is
a triangle, therefore planar, and the cycle inequalities
fully specify Pdag. However, the solution is not a valid
distribution over DAGs, but a fractional vertex that
lies outside P.

4.1 A new class of valid constraints

The above discussion implies that one needs to go be-
yond standard Pdag constraints to obtain tight relax-
ations of P. Here we introduce such a class of ad-
ditional constraints, and later show how they can be
optimized over (see Section 5).

Given a subset (or cluster) of nodes C ⊆ V , we con-
sider the following linear constraint on η:

(c1)
∑
i∈C

∑
si∈Pa(i)

ηi(si)IC(si) ≥ 1 (6)

where IC(si) is an indicator function for C∩si = ∅, i.e.,
that the parent set selection si either lies outside the
cluster C or is the empty set. The constraint enforces
the fact that, in an acyclic graph, any subset of nodes
must have at least one node whose parents lie outside
the cluster. The constraint subsumes all lifted cycle
inequalities for cycles of length |C| within the cluster.

For a set C of clusters, we define the polytope
Pcluster(C) to be the set of η that satisfy (c1) for all
C ∈ C, as well as the simple constraints ηi(si) ≥ 0,∑

si
ηi(si) = 1. For the case where C is all subsets of

V , we denote the resulting polytope by Pcluster. Al-
though Pcluster is generally not equal to P, it is strong
enough to fully specify P when the Bayesian networks
are restricted to the class of branching programs or
directed trees. In this special case, where each vari-
able is restricted to have either zero or one parent, P
is equivalent to the directed minimum spanning tree
polytope, which is fully characterized by the (c1) con-
straints Magnanti & Wolsey [1995]. Thus, these new
constraints provide a substantially stronger guarantee
than that given by the cycle relaxation.

In what follows, we provide an algorithm that uses
such cluster-based constraints for approximating the
structure learning problem.

5 Dual Bound Optimization

Our goal is to approximate the exact structure learning
LP in Eq. 2 by replacing P with an outer bound that is
as tight as possible. The previous discussion suggests
replacing P with Pcluster yielding the following LP:

max
η∈Pcluster

η ·W (7)

Exact optimization of Eq. 7 is generally not feasible,
since Pcluster contains an exponential number of in-
equalities. However, as we show next, using the dual
of Eq. 7 allows us to often solve this problem in prac-
tice. Our optimization scheme is similar in structure to
column generation and iterative constraint generation
approaches to approximate inference [Sontag et al. ,
2008]. We begin by considering the dual of Eq. 7. The
dual variables in this case are λC (one per cluster) and
the dual itself is given by:

min
∑n

i=1 max
si∈Pa(i)

[
Wi(si) +

∑
C:i∈C

λC IC(si)
]
−
∑
C

λC

s.t. λC ≥ 0,∀C ⊆ V
(8)

Note that the constraints are simple non-negativity
constraints on λC . Furthermore, setting λC = 0 means
that we are not enforcing the corresponding constraint.

Since there are exponentially many λC variables, we do
not optimize over all of them. Instead, we set all λC to
zero except for C ∈ C for some set of C, and increase
C gradually. The algorithm proceeds as follows:

1. Update λC for all C ∈ C so that the dual objective
is decreased.

2. Decode a DAG from the current values of λ. If
its score is equal to the dual objective, we have
solved the problem exactly.

3. If solution is not exact, choose a new cluster to
add to C and go back to step 1.

The above steps are repeated until the problem is
solved or the set C becomes too large. We initialize
C to ∅. The following sections describe these steps in
more detail.

5.1 Dual Updates on λC

To decrease the dual objective, we perform coordinate
descent on the λC (e.g., see Sontag et al. [2008]). This
turns out to correspond to simple closed form updates,
derived below.

If we fix λC′ , C ′ 6= C, then the part of the objective
pertaining to λC is given by

JC(λC) =
∑
i∈C

max
si∈Pa(i)

[WC;i(si) + λCIC(si)]− λC (9)
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where WC;i(si) = Wi(si) +
∑

C′ 6=C:i∈C′ λC′ IC′(si).
The minimum of JC(λC) can be obtained explicitly.
To this end, we can maximize over si conditioned on
the value of the cluster indicator and get:

W 1
C;i = max

si∈Pa(i): IC(si)=1
WC;i(si) (10)

W 0
C;i = max

si∈Pa(i): IC(si)=0
WC;i(si) (11)

If the maximization is over an empty set, the corre-
sponding value is −∞. We subsequently sort the dif-
ferences δi = W 0

C;i −W 1
C;i, i ∈ C, so that δi1 ≤ δi2 ≤

· · · ≤ δi|C| . In the absence of the non-negativity con-
straint for λC , the minimum value of the piecewise
linear function JC(λC) would be obtained within the
interval [δi1 , δi2 ] (the value is constant within this in-
terval). The constrained optimum can thus be chosen
to be λC = max{ (δi1 + δi2)/2, 0}.

The above coordinate descent algorithm may get stuck
in suboptimal λ (since the objective is not strictly con-
vex). For this reason, in optimizing the dual, we alter-
nate between the block coordinate updates above and
the following normalized subgradient steps:

λC ← λC + ε if
∑
i∈C

IC(ŝi) = 0 (12)

λC ← max{λC − ε, 0} if
∑
i∈C

IC(ŝi) > 1 (13)

where ŝi is any parent set choice that maximizes
Wi(si) +

∑
C′:i∈C′ λC′IC′(si). The variation in the so-

lution introduced by the subgradient steps also helps
in identifying violated constraints. We decrease the
step size ε after each round of adding violated cluster
constraints according to εt = ε0/

√
t.

5.2 Decoding a DAG

Once we have solved the dual problem, we would like to
obtain the corresponding primal solution. When the
relaxation is not tight, we would still like to obtain
an approximate integral solution, a particular setting
of the parent set variables s1, . . . , sn. This integral
solution is also used as a lower bound in the branch and
bound algorithm discussed below. We provide here a
brief description of a new decoding algorithm that does
not require the dual variables to be at the optimum,
i.e., decoding can be done at any point in the course
of the dual algorithm.

The dual objective involves terms that are maximized
locally with respect to the parent set variables. A de-
coding based on such a dual objective means a con-
sistent setting of all the parent set variables (a setting
that represents a DAG). If this can be done without
changing the dual value, then the dual is tight and the

configuration s1, . . . , sn is the MAP solution. This is
known as a certificate of optimality.

The decoding algorithm is defined in two stages. In the
first stage, we induce an ordering over the variables
based on the dual solution and then, in the second,
simply maximize over the parent sets consistent with
the ordering using the original scores Wi(si). The or-
dering is obtained iteratively based on the dual scores

Wi(si;λ) = Wi(si) +
∑

C:i∈C

λCIC(si) (14)

as follows. Initialize P1 = ∅. For t = 1, . . . , n,

Ri = max
si∈Pa(i)

Wi(si;λ)− max
si∈Pa(i), si⊆Pt

Wi(si;λ) (15)

it = arg min
i∈V \Pt

Ri, Pt+1 = Pt ∪ {it} (16)

The resulting node ordering i1, . . . , in will lead to de-
coded values ŝ1, . . . , ŝn in the second stage. The choice
of ordering is critical. By choosing i ∈ V \ Pt in iter-
ation t we exclude all j ∈ V \ Pt, j 6= i from the set
of possible parents of i as they would come later in
the ordering. The iterative criterion aims to minimize
the regret due to such exclusions. The lemma below
further motivates the criterion.
Lemma 1. Let i1, . . . , in be any ordering and Pt =
{i1, . . . , it−1} be the set of nodes preceding it in the
ordering. The regret Rit

is computed as in the algo-
rithm based on Pt. Then

current dual value ≥ decoded value +
n∑

t=1

Rit
(17)

Proof. The proof is a sequence of inequalities begin-
ning with the dual value.

n∑
t=1

max
sit∈Pa(it)

Wit(sit ;λ)−
∑
C

λC

=
n∑

t=1

[
max

sit∈Pa(it), sit⊆Pt

Wit(sit ;λ) +Rit

]
−
∑
C

λC

≥
n∑

t=1

[Wit(ŝit ;λ) +Rit ]−
∑
C

λC

=
n∑

t=1

[
Wit

(ŝit
) +

∑
C:it∈C

λCIC(ŝit
) +Rit

]
−
∑
C

λC

=
n∑

t=1

Wit
(ŝit

) +
∑
C

λC [
∑
i∈C

IC(ŝi)− 1] +
n∑

t=1

Rit

≥
n∑

t=1

Wit
(ŝit

) +
n∑

t=1

Rit

where ŝ1, . . . , ŝn is the decoded solution. Because the
decoded solution is an acyclic graph,

∑
i∈C IC(ŝi) ≥ 1

for all clusters C. This is the last inequality.
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5.3 Choosing clusters to add

In order to rank alternative clusters C to add to C, we
would ideally use the decrease in the dual afforded by
incorporating each cluster. This would, however, mean
that we would have to re-estimate all λ in response to
each possible new cluster to include. A simpler alter-
native is to evaluate how much the objective would
decrease if we optimized λC while keeping the other
dual variables fixed. This decrease is, in fact, exactly
max{δi1 , 0}.

We do not have a full separation algorithm for cluster
constraints (c1). However, we heuristically search for
the violated constraints in two distinct ways. First,
we will find the most violated cycle inequality and in-
troduce a cluster constraint (that subsumes the cycle
inequality) for the corresponding set of nodes. The
most violated cycle in the dual can be found easily us-
ing a modified all-pairs shortest path algorithm. To
this end, we evaluate for each directed edge

δji = max
si∈Pa(i): j∈si

[Wi(si) +
∑

C:i∈C

λCIC(si)] (18)

− max
si∈Pa(i): j 6∈si

[Wi(si) +
∑

C:i∈C

λCIC(si)] (19)

δji > 0 indicates that the current dual solution sup-
ports including a directed edge (j, i); none of the edges
for which δji < 0 would appear in the corresponding
primal solution.

We look for the cycles that maximize the minimum
value of δji along the cycle. Let ∆k→l represent the
minimum value of δji along a path from k to l. We
maximize ∆k→l while keeping track of the shortest
path that attains the value. pk→l point to the first
node in the selected directed path from k to l. A
simple modified all-pairs shortest path algorithm for
evaluating these is given by:

(0) Initialize ∆j→i = δji and pj→i = i for all possible
directed edges we can select; ∆j→i = −∞ for the
remaining edges.

(1) For k = 1, . . . , n, i = 1, . . . , n, j = 1, . . . , n

if min{∆i→k,∆k→j} > ∆i→j

then ∆i→j = min{∆i→k,∆k→j}, pi→j = pi→k

As a result, the cycle that contains k and l and also
maximizes the minimum value of δji along the cycle
has value min{∆k→l,∆l→k}. The cycle can be re-
traced starting with the pointers pk→l and pl→k. We
only incorporate cycles for which min{∆k→l,∆l→k} >
0, i.e., cycles that are immediately useful.

Some of the cluster constraints may be violated even if
all of the cycle inequalities are satisfied, as the clusters

are strictly stronger constraints. Our second strategy
for finding violated clusters is based on greedily grow-
ing clusters, starting from each individual node. The
criterion for adding a node k to a cluster C is simply
the gain in the dual value resulting from enforcing the
cluster constraint for C ∪ k. Using the notation intro-
duced above for the dual algorithm (see Eqs. 10 and
11), we add node k to cluster C if it maximizes

min
i∈C∪k

(W 0
{C∪k},i −W

1
{C∪k},i)−min

i∈C
(W 0

C,i −W 1
C,i) (20)

and the difference is non-negative. These values can be
efficiently updated in the course of iteratively growing
the cluster. If the resulting value of mini∈C(W 0

C,i −
W 1

C,i) (the gain) is not strictly positive, the cluster is
not included in the dual.

6 Branch and bound

When the LP relaxation is not tight, it is important
to combine the relaxation with a branch and bound
approach so as to obtain a certificate of optimality for
the decoded structure. Since the dual linear program
maintains an upper bound on the LP value at any
point in the dual optimization, it is particularly well-
suited for use as part of a branch and bound method.
Our approach proceeds as follows. We first solve the
LP in the dual. If the decoded value does not agree
with the dual value (the LP is not tight), we divide
the problem into two parts, initializing each part with
the same clusters and the dual variables. The two dual
LPs are then re-optimized separately. The branch and
bound method maintains the best decoded value ob-
tained in any branch and prunes away branches whose
LP value falls below the decoded value. The branch
with the highest LP value (most likely to contain the
optimal solution) is always selected for division. The
process continues until the best decoded value agrees
with the highest LP value.

Our heuristic criterion for division is based on identi-
fying a key node i and an associated cluster C. The
parent sets of i are subsequently divided according to
whether they lie outside the cluster (IC(si) = 1) or
overlap with the nodes in the cluster (IC(si) = 0).
The resulting IC(si) = 1 branch will set λC = 0 after
re-solving since all the parent sets of i will satisfy the
cluster constraint. The IC(si) = 0 branch will have
to identify another variable j ∈ C to satisfy the clus-
ter constraint, therefore increasing the value of λC .
Progress is guaranteed in either branch provided that
node i was used to satisfy the constraint for C. In
order to ensure that the dual value actually decreases
due to branching, two or more clusters must prefer dif-
ferent selections of parent sets for node i. This compe-
tition between clusters is manifested in the coordinate
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descent steps (IC(si) turns from zero to one after opti-
mizing the cluster constraint). We identify the variable
with the largest number of flips as the key variable.

7 Experiments

In this section, we provide empirical results demon-
strating that our method can be used to find good
solutions (either exact, or within a small optimality
gap) to structure learning problems.

To compare our approach to exact dynamic program-
ming (DP) methods, we modified and further opti-
mized the DP approach described in Silander & Myl-
lymäki [2006] so that it can take advantage of pruned
parent set choices for each node. The reported times
do not include the time required to generate the parent
set choices, since this was common to both methods.

We used four reference problems: 1) expression data
for a subset of 22 microRNAs out of 218, described
in Lu et al. [2005], 2) binary phenotypic data for C.
elegans involving 25 variables, 3) WDBC from the UCI
repository with 31 variables, 4) 1000 samples from the
Alarm network with 37 variables. The pruned parent
set scores for these reference problems can be found on
the supplementary website.2 DP results were obtained
for all but the Alarm network (however, the projected
time is provided).

We show in Figure 2 a comparison of the running
times to exactly solve these structure learning prob-
lems to optimality. Although the results on the first
three problems are comparable, our method solves the
Alarm network orders of magnitude faster. We used
the BDe scoring metric for these comparisons.

Figure 3 illustrates how decoded solutions obtained in
the course of our algorithm are useful even prior to
convergence. In particular, the optimal structure is
found much before the dual value agrees with the de-
coded value (relaxation is tight). Our method can be
stopped at any point, with the guarantee that the score
of the optimal structure does not deviate from the de-
coded structure by more than the difference between
the dual and the decoded values.

We next compare our method to the branch and bound
approach of de Campos et al. [2009], using the code
provided by the authors.3 We refer to their algorithm
as SL and to ours as BBLP (for Branch and Bound
with Linear Programming). Both algorithms were run
with a constraint of in-degree at most 4 and the score
used BIC as the complexity penalty.

2http://groups.csail.mit.edu/tml/sl/
3http://www.ecse.rpi.edu/~cvrl/structlearning.

html.
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Figure 2: Time (in seconds) to solve reference prob-
lems with DP (black) and LP with branch and bound
(blue). Each variable was restricted to have at most 4
parents for both methods. A projected time is shown
for DP for the Alarm problem. Note that the y-axis is
shown in log scale.
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Figure 3: The evolution of the LP value (upper bound)
and the best decoded value as a function of branch and
bound iterations, for the Alarm problem.

We compare the algorithms on the datasets described
above (RNA, Phenotype and Alarm) as well as seven
other UCI datasets tested in de Campos et al. [2009]
with the pre-processing described therein. Since both
algorithms have efficient implementations and are any-
time, we run both of them up to five minutes and re-
port the gap between the lower and upper bounds ob-
tained.4. As can be seen in Table 1, BBLP obtains a
lower gap for all instances studied. Moreover, our ter-
mination times were substantially shorter (not shown).

Finally, we use the phenotype data with the BDe scor-
ing metric to illustrate the importance of the (c1) con-

4The runtimes for this experiment were shorter than
those described earlier in Figure 2 due to the different
hardware used, and the fact that a BIC score was used
as opposed to BDe.

http://groups.csail.mit.edu/tml/sl/
http://www.ecse.rpi.edu/~cvrl/structlearning.html
http://www.ecse.rpi.edu/~cvrl/structlearning.html
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BBLP SL
adult 0 5.1
car 0 0
letter 0 0
lung 0.002 2.5
mushroom 5 10
nursery 0 0
wdbc 0 6.8
zoo 0 0
RNA 0 0
phenotype 0 3.35
alarm 0 20

Table 1: Comparison of the structure learning algo-
rithm of de Campos et al. [2009] (denoted by SL) and
the LP method described here (denoted by BBLP),
for eleven datasets (see description in the text). The
numbers give the gap in percentage between the lower
and upper bounds (normalized by the lower bound),
after running both algorithms for up to five minutes.

straints (see Eq. 6). After enforcing all cycle inequal-
ities (see Eq. 5), the LP relaxation gives an upper
bound of -5993. Next, we added as many (c1) con-
straints as we could find using a heuristic separation
algorithm (see Section 5.3). Together with the cycle
inequalities, these obtained an upper bound of -6064.
The score of the optimal structure is -6071. Note that
the cycles + (c1) bound may actually be tighter, as
the separation heuristic could have missed some vio-
lated (c1) constraints. More generally, across all of
our experiments, we found that the (c1) constraints
were indispensable for branch and bound to succeed
at finding the optimal structures.

8 Discussion

We have presented a new exact method for finding the
Bayesian network structure. In contrast to other exact
methods, our approach derives from linear program-
ming relaxations of the structure learning problem.
We provide a fast dual algorithm for solving the asso-
ciated LP, introduce new constraints on the polytope
of valid acyclic graphs, a decoding algorithm for find-
ing an integer solution, and a mechanism for guiding
a branch-and-bound method on the basis of the dual
relaxation, so as to obtain a certificate of optimality.
In terms of the methodology, the linear programming
formulation also has strong ties to MAP inference.

Our empirical results are promising, indicating com-
petitive or better results than recent dynamic pro-
gramming and branch-and-bound approaches to struc-
ture learning.
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