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Abstract

In this paper, we investigate new active-set-
type methods for l1-regularized linear regres-
sion that overcome some difficulties of exist-
ing active set methods. By showing a rela-
tionship between l1-regularized linear regres-
sion and the linear complementarity problem
with bounds, we present a fast active-set-type
method, called block principal pivoting. This
method accelerates computation by allowing
exchanges of several variables among working
sets. We further provide an improvement of
this method, discuss its properties, and also
explain a connection to the structure learning
of Gaussian graphical models. Experimen-
tal comparisons on synthetic and real data
sets show that the proposed method is signifi-
cantly faster than existing active set methods
and competitive against recently developed
iterative methods.

1 INTRODUCTION

L1-regularized linear regression, also known as the
Lasso (Tibshirani, 1996), has been a highly success-
ful method for various applications. By constraining
the l1-norm of the coefficient vector, this method si-
multaneously avoids over-fitting to training data and
achieves sparsity in obtained coefficients. The sparsity
has two important benefits; it improves interpretation
by explicitly showing the relationship between the re-
sponse and the features (Tibshirani, 1996), and it also
allows computationally efficient models because only a
small number of coefficients remain nonzero.

Researchers used l1-regularization for many other
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learning problems including logistic regression (Lee
et al., 2006), graphical model selection (Banerjee et al.,
2008; Friedman et al., 2008b), principal component
analysis (Zou et al., 2006), and sparse coding (Lee
et al., 2007; Mairal et al., 2009). Although some
researchers designed specialized algorithms for those
problems, many utilized l1-regularized linear regres-
sion as a subproblem to solve their intended sparse
learning tasks. Hence, an efficient algorithm for l1-
regularized linear regression is important not only in
its own right but also for those extended sparse learn-
ing problems.

Since the objective function of l1-regularized linear re-
gression is not differentiable, development of an ef-
ficient algorithm is not trivial. Among several ap-
proaches, one of the most influential has been the least

angle regression (LARS) by Efron et al. (2004). In
LARS, features are sequentially selected so that they
remain equiangular, exploiting the fact that coefficient
paths are piecewise linear with respect to the regular-
ization parameter. Despite its ability to discover the
full regularization paths, however, LARS is designed
to select one feature at a time, and it can become
very slow when applied to large problems. Lee et al.
(2007) proposed the feature-sign search algorithm as a
part of their study on sparse coding. This algorithm
is a relaxed form of LARS so that a particular solu-
tion can be efficiently found by not following the exact
coefficient path. The algorithm follows the structure
of active-set methods (Nocedal and Wright, 1999) and
shares the same difficulty of LARS for large problems.

Several iterative methods have been introduced to
overcome the scalability issue. Recent developments
in signal processing literature include an interior point
method (Kim et al., 2007) and a gradient projection
method (Figueiredo et al., 2007). Such methods have a
particular advantage for their intended purpose, which
is signal reconstruction, because they can handle very
large problems. Another promising algorithm using a
coordinate descent method (Friedman et al., 2008a)
was recently introduced.
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In this paper, we investigate new active-set-type meth-
ods. By an active-set-type method, we mean an algo-
rithm that directly searches for the sets of active and
passive variables and computes the solution only up to
numerical rounding errors. By showing a relationship
between l1-regularized linear regression and the linear
complementarity problem with bounds (BLCP), we
present an efficient method, called block principal piv-

oting, which overcomes the difficulty of the LARS and
feature-sign search methods. Although the block prin-
cipal pivoting method was proposed for linear com-
plementarity problems (Júdice and Pires, 1994), its
substantial benefit to l1-regularized linear regression
has not been studied previously and is an important
contribution of this paper. We further propose an im-
provement of this method, discuss its characteristics,
and also show a connection to the structure learning
of Gaussian graphical models. Experimental compar-
isons on both synthetic and real data sets show the
proposed method significantly outperforms several ex-
isting ones.

2 ACTIVE-SET-TYPE METHODS

2.1 FORMULATIONS AND OPTIMALITY

CONDITIONS

Suppose data are given as (xi, yi)
n
i=1 where yi ∈ R

is the response of xi ∈ R
p. We assume that yi’s are

centered so that
∑n

i=1 yi = 0. The coefficients β ∈ R
p

are to be found by solving a minimization problem,

min
β∈Rp

L(β, λ) =
1

2
‖y −Xβ‖22 + λ ‖β‖1 , (1)

where λ is a parameter, the ith row of X is xT
i , and

the ith element of y is yi. Whereas we are concerned
in Eq. (1) in this paper, an alternative formulation in
which l1-norm is used for constraints is possible (Tib-
shirani, 1996). The dual of Eq. (1) can be written as

min
r∈Rn

L(r, λ) =
1

2
rT r − yT r s.t.

∥

∥XT r
∥

∥

∞
≤ λ, (2)

using the derivation given in (Kim et al., 2007). Eq. (2)
is easier to handle because the objective function is
smooth and constraints are simple.

Our discussion for the derivation of new methods
starts from writing down the optimality conditions for
the dual problem in Eq. (2). Let r∗ be the solution
of Eq. (2), and let β∗

+, β∗
− ∈ R

p be corresponding La-
grange multipliers for the two inequality constraints,
XT r ≤ λ and XT r ≥ −λ, respectively. Defining
β∗ = β∗

+ − β∗
−, the Karush-Kuhn-Tucker (KKT) con-

ditions for Eq. (2) can be written as

d∗ = XT r∗ = XT y −XT Xβ∗, (3a)

−λ ≤ d∗ ≤ λ, (3b)

−λ < d∗i < λ ⇒ β∗
i = 0, (3c)

d∗i = λ ⇒ β∗
i ≥ 0, (3d)

d∗i = −λ ⇒ β∗
i ≤ 0. (3e)

Note that because the problem in Eq. (2) is convex, a
solution satisfying Eqs. (3) is optimal for Eq. (2).

2.2 ACTIVE-SET METHODS AND

LIMITATION

The key idea of active-set-type methods for Eqs. (1)
and (2) is the following. Let E∗+, E∗− ⊆ {1, · · · , p}
denote the active constraints of the solution r∗ in
Eq. (2); that is, E∗+ =

{

i|
(

XT r∗
)

i
= λ

}

and E∗− =
{

i|
(

XT r∗
)

i
= −λ

}

. If we know E∗+ and E∗− in ad-
vance, then the solution β∗ can be easily computed
by using Eq. (3c) and solving a normal equation for
Eq. (3a). The goal of active-set methods is to find the
sets

(

E∗+, E∗−
)

in some systematic way.

A standard example of active-set-type methods is
the active-set method (Nocedal and Wright, 1999),
which is a well known scheme generally applicable
to quadratic programming problems. The active-set
method begins with an initial feasible solution, for
which a zero vector is usually used. The method
maintains working sets (E+, E−) as candidates for
(

E∗+, E∗−
)

and iteratively exchanges a variable among
(E+, E−, {1, · · · , p} − (E+ ∪ E−)) in such a way that
the value of the objective function monotonically de-
creases. Due to the monotonic-decreasing property,
the active-set method is guaranteed to finish in a fi-
nite number of steps.

In the case of l1-regularized linear regression, the
feature-sign algorithm in (Lee et al., 2007) exactly fol-
lows the structure of the active-set method. In fact,
applying the standard active-set method to the dual
problem in Eq. (2), the feature-sign algorithm can be
directly derived although the authors did not use this
derivation. LARS is a modified active-set algorithm
in which the modification is elegantly designed so that
the full coefficient paths can be computed.

Despite the finite termination property, the active-set
methods have a major limitation: Because typically
only one variable is exchanged among the working
sets per iteration, they can become very slow for large
problems. The number of iterations severely depends
on the number of nonzero elements of the optimal so-
lution. For large problems, an algorithm in which the
number of iterations does not depend upon the prob-
lem size is needed. We now describe such an algorithm.
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3 BLCP AND BLOCK PRINCIPAL

PIVOTING METHODS

The optimality conditions in Eqs. (3) are indeed equiv-
alent to the linear complementarity problem with
bounds (BLCP) (Júdice and Pires, 1994). BLCP is
a generalized class of problems from linear comple-
mentarity problems (LCP) (Murty, 1988), and LCP
and BLCP frequently arise in quadratic programming.
Among several approaches for BLCP, an efficient algo-
rithm proposed in (Júdice and Pires, 1994) implements
an intuitive way of speeding up the process of finding
(

E∗+, E∗−
)

. In this section, we summarize the algorithm
and also propose its improvement.

3.1 BLOCK PRINCIPAL PIVOTING

Suppose the index set {1, · · · , p} is partitioned into
three disjoint subsets (H,F+,F−); i.e., F = F+ ∪
F− = {1, · · · , p} − H and F+ ∩ F− = ∅. The sets
(H,F+,F−) will be our working sets. We eventually
want to make (F+,F−) identical to

(

E∗+, E∗−
)

up to
exchanges of degenerate variables.1 Let βH and dH
denote the subsets of vectors β and d corresponding
to index set H. Likewise, let XH denote a submatrix
of X that consists only of the column vectors whose
indices belong to H. The subsets and submatrices for
F+,F−, and F are similarly defined.

We start with an initial setting for (H,F+,F−), where
H = {1, · · · , p} ,F+ = F− = ∅ is usually used. For the
subsets, we assume

βH = 0, dF+
= λ, dF

−

= −λ, (4)

and compute the remaining elements of β and d using
Eqs. (3) as follows:

dF =
(

XT y
)

F
−XT

FXFβF , (5a)

dH =
(

XT y
)

H
−XT

HXFβF . (5b)

Since dF is fixed by the assumptions in Eq. (4), one
can first solve for βF in Eq. (5a) and substitute the
result into Eq. (5b) to obtain dH.

Then, we check if the obtained values are optimal using
the following conditions:

−λ ≤ dH ≤ λ, βF+
≥ 0, βF

−

≤ 0. (6)

If β and d satisfy Eqs. (4)-(6), then they satisfy the
optimality conditions in Eqs. (3). If β and d satisfy all
these conditions, we call the pair (β, d) feasible; oth-
erwise, it is called infeasible. If a feasible pair (β, d)
is found, then it means that the current working sets

1We say βi is degenerate if βi = 0 and (di = λ or −λ)
are satisfied at the same time.

(F+,F−) are the same with
(

E∗+, E∗−
)

, and therefore
the algorithm terminates with the solution β. Oth-
erwise, we change the sets (H,F+,F−) and try the
process again.

The issue is how we update the sets (H,F+,F−). To
this end, we define infeasible variables to be the ones
that violate at least one condition in Eq. (6), which
consist of the following four cases:

G = ∪4
k=1Jk, (7a)

J1 = {i ∈ H : di > λ} , (7b)

J2 = {i ∈ H : di < −λ} , (7c)

J3 = {i ∈ F+ : βi < 0} , (7d)

J4 = {i ∈ F− : βi > 0} . (7e)

The set G contains all infeasible variables. Now choose
a subset Ĝ ⊆ G and let

Ĵ1 = Ĝ ∩ J1, Ĵ2 = Ĝ ∩ J2, Ĵ3 = Ĝ ∩ J3, Ĵ4 = Ĝ ∩ J4.

Then, the update rule is given as

H ← (H− (Ĵ1 ∪ Ĵ2)) ∪ (Ĵ3 ∪ Ĵ4), (8a)

F+ ← (F+ − Ĵ3) ∪ Ĵ1, (8b)

F− ← (F− − Ĵ4) ∪ Ĵ2. (8c)

The size |Ĝ| represents how many variables are ex-
changed per iteration, and the choice of Ĝ characterizes
the algorithm. If |Ĝ| > 1, then the algorithm is called
a block principal pivoting algorithm. If |Ĝ| = 1, then
the algorithm is called a single principal pivoting algo-
rithm. The active set method can be understood as an
instance of single principal pivoting algorithms. After
updating by Eqs. (8), the algorithm repeats the entire
procedure until the number of infeasible variables (i.e.,
|G|) becomes zero.

In order to speed up the procedure, Ĝ = G is used,
which we call the full exchange rule. This exchange
rule considerably improves the search procedure by re-
ducing number of iterations. Although this property
is desirable, however, using only the full exchange rule
does not guarantee finite termination, and we need
more refinement.

3.2 FINITE TERMINATION

In active set methods, the variable to exchange is care-
fully selected to reduce the objective function. How-
ever, the full exchange rule does not have this property
and may lead to a cycle although it occurs rarely. To
fix this problem, a backup exchange rule is used to
guarantee termination in a finite number of steps.

The backup rule is to exchange the infeasible variable
with the largest index:

Ĝ = {i : i = max {j : j ∈ G}} . (9)
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Algorithm 1 Block principal pivoting algorithm for
the l1-regularized liner regression

Input: X ∈ R
n×p, y ∈ R

n, λ ∈ R

Output: β

1: Initialize H = {1, · · · , p}, F+ = F− = ∅, β = 0,
d = −XT y, k = Kmax, t = p + 1

2: Set Eq. (4) and compute (βF ,dH) by Eqs. (5).
3: while (β, d) is infeasible do

4: Find G by Eqs. (7).
5: If |G| < t, set t = |G|, k = Kmax, and Ĝ = G.

If |G| ≥ t and k ≥ 1, set k = k − 1, and Ĝ = G.
If |G| ≥ t and k = 0, set Ĝ by Eq. (9).

6: Update (H,F+,F−) by Eqs. (8).
7: Set Eq. (4) and compute (βF ,dH) by Eqs. (5).
8: end while

In this case, the set Ĝ contains only one variable, so
it is a single principal pivoting rule. This simple rule
guarantees a finite termination: Assuming that matrix
XT X has full rank, the single principal pivoting rule
in Eq. (9) returns the solution for Eqs. (3) in a finite
number of steps (Júdice and Pires, 1992).

Combining the full exchange rule and the backup rule,
the block principal pivoting algorithm is summarized in
Algorithm 1. Because the backup rule is slower than
the full exchange rule, it is used only if the full ex-
change rule does not work well. Variable t is used to
control the number of infeasible variables, and vari-
able k is used as a buffer on the number of the full
exchange rules that may be tried. When the full ex-
change rule fails to decrease the number of infeasible
variables within Kmax iterations, the backup rule is
used until it reduces the number of infeasible variables
under the lowest value achieved so far, which is stored
in t. This has to occur in a finite number of steps
because the backup rule has a finite termination prop-
erty. As soon as the backup rule achieves a new lowest
number of infeasible variables, then we return to the
full exchange rule. Since the number of infeasible vari-
ables is systematically reduced, the algorithm termi-
nates in a finite number of steps. The choice of Kmax

has trade-offs, and Kmax = 3 was shown to work well
in practice (Júdice and Pires, 1994).

3.3 REDUCED BLOCK EXCHANGE

The full exchange rule is the most greedy version of
exchange rules, and it can slow down if features are
highly correlated. In this case, the full exchange rule
tends to exchange too many variables unnecessarily
and spend more iterations until termination. For large
problems, this behavior can be more problematic be-
cause unnecessarily increasing the size of F means that
we have to solve large linear equations in Eq. (5a) even

Table 1: Characteristics of active-set-type methods:
LARS, feature-sign (FS), and block principal pivoting
(BP)

LARS FS BP

variable search equiangular active-set block

regularization path X

monotonic decrease X X

finiteness X X X

scalable X

though the final number of nonzero values,
∣

∣E∗+ ∪ E
∗
−

∣

∣,
can be small.

To address this difficulty, we designed reduced block

exchange rule by constraining the maximum increase
of |F| as follows.

1. Allow full exchanges for reducing |F|, i.e., Ĵ3 =
J3 and Ĵ4 = J4.

2. Limit the increase of |F| by enforcing that |Ĵ1 ∪
Ĵ2| ≤ αp where 0 < α < 1 is a parameter.

The sets Ĵ1 and Ĵ2 can be naturally determined by
sorting J1 and J2 based on the absolute values of the
violation, i.e., di−λ for J1 and −λ−di for J2. In our
experiments, α = 0.2 generally produced good results.
We modify Algorithm 1 by using this exchange rule in
the first two cases of Step 5 and call the modified one
reduced block principal pivoting method.

3.4 SUMMARY OF CHARACTERISTICS

A summary of active-set-type methods is shown in
Table 1. LARS computes the entire regularization
path by spending more time to compute the equian-
gular vector. The feature-sign algorithm maintains
the monotonic-decreasing property but does not follow
the regularization path. The block principal pivoting
method maintains the finite termination property and
becomes scalable to large problems. While LARS has
benefits for computing the full regularization path, for
obtaining a particular solution, block principal pivot-
ing methods have advantage. This is the case if the
parameter is estimated by prior knowledge or by theo-
retical analysis, or if l1-regularized linear regression is
used as a subroutine for other sparse learning tasks.

Block principal pivoting methods require that the fea-
ture matrix X has full column rank. However, since
the other two methods are typically implemented using
normal equations, they similarly require that features
in active set have full column rank in every iteration.
Furthermore, additional l2-norm regularization such as
elastic net (Zou and Hastie, 2005) can be adopted to
alleviate this concern. In return, block principal piv-
oting methods enable significant speed-up.

In some sparse learning tasks in which l1-regularized



         401

Kim, Park

linear regression is used as a subroutine, the full rank
assumption is always satisfied. We describe an exam-
ple in the following section.

4 GAUSSIAN STRUCTURE

LEARNING

For graphical models such as Markov random fields
(MRFs), sparse structures often need to be learned
from data. In the Gaussian case, learning structure
is equivalent to identifying zero and nonzero elements
of the inverse covariance matrix. We briefly describe
how the proposed method can be used to accelerate
the structure learning of Gaussian graphical models
within the framework of (Banerjee et al., 2008).

Suppose (xi)
n
i=1, xi ∈ R

p are observed from multi-
variate Gaussian distribution, N(µ,Σ). Our goal is to
estimate the inverse covariance matrix Σ−1 such that
a small number of elements in Σ−1 are nonzero. Fol-
lowing Banerjee et al. (2008), a penalized maximum
likelihood formulation can be written as

max
Z

log detZ − trace(ZΣ̂)− η

p
∑

i,j=1

|Zij | , (10)

where Σ̂ = 1
n

∑n

i=1(xi − µ̂)(xi − µ̂)T , µ̂ = 1
n

∑n

i=1 xi,
and η > 0 is a parameter to control the strength of
penalty. The dual form for Eq. (10) is written as

min
W
− log det(Σ̂ + W )− d (11)

s.t. Σ̂ + W ≻ 0, − η ≤Wij ≤ η, ∀i, j,

where A ≻ 0 means that A is positive definite.

Eq. (11) can be efficiently solved by block coordinate
descent approach. Let V = Σ̂ + W , initialize V with
Σ̂ + ηI, and assume that Σ̂ and V are partitioned as

V =

(

V11 v12

vT
12 v22

)

, Σ̂ =

(

S11 s12

sT
12 s22

)

,

where v12, s12 ∈ R
p−1 and v22, s22 ∈ R. Then, we

update v12 (and vT
12, of course) while fixing all other

elements. Using Schur complement, the update prob-
lem can be simplified as

v12 = arg min
v

vT W−1
11 v s.t. ‖v − s12‖∞ ≤ η. (12)

One can solve Eq. (12) for each column (and corre-
sponding row) of V by permutations. Banerjee et al.
(2008) solved Eq. (12) using a smooth optimization
technique, and Friedman et al. (2008b) used a coordi-
nate descent method for the dual of Eq. (12).

In this paper, we efficiently solve Eq. (12) by exploiting
its relation to Eq. (2). As we did for Eq. (2), we can

write the KKT optimality conditions for Eq. (12) as

k = s12 −W11l, (13a)

−η ≤ k ≤ η, (13b)

−η < ki < η ⇒ li = 0, (13c)

ki = η ⇒ li ≥ 0, (13d)

ki = −η ⇒ li ≤ 0, (13e)

where v = s12 − k. Hence, the proposed method pre-
sented in Section 3 can be directly used for Eqs. (13).
As shown in (Banerjee et al., 2008), W11 remains pos-
itive definite throughout iterations, satisfying the full
rank assumption.

5 EXPERIMENTAL VALIDATION

We implemented the proposed methods in MATLAB
and compared with several existing ones. We first
compared active-set-type methods under various con-
ditions, and then we compared with iterative methods
and tested on real data sets. We also provide results
for Gaussian structure learning task. All experiments
were executed on a 2.66GHz Intel Quad Core processor
with Linux OS, with multi-threading option disabled.
All results are the average of 10 executions.

5.1 ACTIVE-SET-TYPE METHODS

To see the behavior of active-set-type methods under
various conditions, we tested them with synthetic data
sets generated by a linear model: y = Xβ + ǫ. We
tried two types of feature matrix X, and how we gen-
erated them is described below. Each βi was sampled
from uniform distribution on [−1, 1]. Then, indepen-
dent Gaussian noise ǫ was generated and scaled so that
the average magnitude of ǫi is five percent of the aver-
age magnitude of (Xβ)i. MATLAB implementations
of the feature-sign (Lee et al., 2007) and the LARS
algorithms (Sjöstrand, 2005) were used.2

We first tested active-set-type methods with sparse
random features. We sampled each element of X from
uniform distribution on [0, 1] and randomly selected 70
percent of the elements to make them zero. As shown
in Table 2, considerable improvements were achieved
by the two new methods: the block principal pivot-
ing (BP) and reduced block principal pivoting (BPR).
The numbers of iterations required by these methods
are small for various problem sizes and values of pa-
rameter λ. Accordingly, the execution time of these
methods depend less severely on such variations than
the LARS and feature-sign methods. One can see that
the BP and BPR algorithms are up to 100 (or more)
times faster than LARS.

2The LARS algorithm was modified to stop at the so-
lution for given parameter λ.
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Table 2: Execution results of the LARS, feature-sign (FS), block principal pivoting (BP), and reduced block
principal pivoting (BPR, with α = 0.2) methods on data sets with sparse random features (see text). The third
column shows the number of nonzero elements in obtained β for the corresponding value of λ.

# of iterations Time (seconds)

Problem size λ Nonzeros LARS FS BP BPR LARS FS BP BPR

16 70 71 71 2 2 1.07 0.367 0.341 0.34

9.71 263 264 264 4 4 4.23 1.53 0.357 0.352

2500 × 1000 5.89 485 486 486 4 5 12.3 6.49 0.402 0.378

3.58 654 655 655 4 8 23.5 13.0 0.439 0.459

2.17 769 772 770 5 8 41.0 21.2 0.516 0.493

25.9 83 84 84 2 2 5.46 2.32 2.37 2.37

15.7 436 437 437 4 4 24.3 7.79 2.41 2.41

5000 × 2000 9.56 884 887 885 4 5 91.1 45.0 2.62 2.57

5.80 1226 1233 1228 4 8 222 118 2.94 2.90

3.52 1493 1500 1495 4 7 462 226 3.31 3.05

35.3 269 270 270 3 3 79.7 29.6 27.2 27.2

21.4 1134 1135 1135 4 5 394 145 27.8 27.7

10000 × 5000 13.0 2128 2129 2129 5 6 2112 872 31.2 29.6

7.89 3027 3030 3028 5 7 7632 2955 36.4 33.1

4.79 3675 3696 3676 5 9 15969 5954 42.4 40.8

0.1 0.3 0.5 0.7 0.9

10
1

10
2

10
3

Correlation

Ite
ra

tio
ns

LARS
FeatureSign
BP
BPR

(a)

0.1 0.3 0.5 0.7 0.9

10
−1

10
0

Correlation

T
im

e 
(s

ec
)

LARS
FeatureSign
BP
BPR

(b)

0.1 0.3 0.5 0.7 0.9
0

5

10

15

20

25

30

35

40

Correlation

S
pe

ed
−

up
 (

%
)

(c)

0.1 0.3 0.5 0.7 0.9

10
−1

10
0

10
1

Correlation

T
im

e 
(s

ec
)

GPSR −2
CD −2
GPSR −3
CD −3
BPR

(d)

200 400 600 800 1000

10
−2

10
0

10
2

10
4

Size

T
im

e 
(s

ec
)

COVSEL
FeatureSign
gplasso
BPR

(e)

Figure 1: (a,b): Iteration counts and execution time of the LARS, FS, BP, and BPR methods on data sets with
correlated features (see text) (c): Speed-up by BPR upon BP (d): Execution time of BPR and other iterative
optimization schemes (e): Execution time for Gaussian structure learning for various sizes.

Next, we observed behaviors with correlated features.
For various values of ρ, we created X by generat-
ing 1000 samples of multivariate Gaussian distribution
with 500 variables where the correlation coefficient of
each pair of variables is ρ. We generated ten instances
of such data for each ρ, and for each instance, all al-
gorithms were executed for several λ’s obtained as fol-
lows. We computed the smallest λ that allows β = 0
as a solution, which is λmax =

∥

∥XT y
∥

∥

∞
, and then

we divided the interval (λmax, λmax × 0.01) by six in
log-scale to get the five values in the middle. Average
results over ten data sets and the five parameter val-
ues are shown in Figure 1-(a,b,c). Initially, we thought
that BP can much slow down with highly correlated
features; however, both BP and BPR appeared faster
than other methods even for the highly correlated case.
As correlation increase, a smaller number of features
tend to remain nonzero because all the features be-
come more similar. This generally resulted in smaller
number of iterations and execution time for the LARS,
feature-sign, and BPR methods in high correlation.

BPR showed a clear advantage against BP especially
for the highly correlated case. Figure 1-(a,b) show
that BPR reduced both the number of iterations and
the execution time of BP, and Figure 1-(c) illustrates
the speed-up of BPR against BP. For high correlation,

the reduced block exchange rule effectively controls the
increase of |F| and becomes more efficient than the
full exchange rule. Hence, we focused on BPR in the
following experiments.

5.2 COMPARISON WITH ITERATIVE

METHODS

To see relative performance against iterative optimiza-
tion methods, we compared BPR with two recently
proposed methods: the gradient projection method by
Figueiredo et al. (2007) (GPSR) and the coordinate
descent method by Friedman et al. (2008a) (CD).3

To compare these algorithms under the same condi-
tion, we stopped both algorithms in the following way.
Suppose the solution in the kth iteration is βk, and let
dk = XT y −XT Xβk. Then, defining

gk
i =











−dk
i + λ if (βk

i > 0) or (βk
i = 0 and di > λ)

−dk
i − λ if (βk

i < 0) or (βk
i = 0 and di < −λ)

0 if βk
i = 0 and − λ ≤ di ≤ λ

3The code of GPSR was obtained from the authors.
For CD, although the authors provide an R package, we
reimplemented in MATLAB/C to compare in the same en-
vironment and stopping criterion. Our code was carefully
optimized by using C (i.e., MEX files) for iterative opera-
tions, which can be slow in MATLAB script.
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Table 3: Execution results on data sets from UCI data repository. The results for gradient projection (GPSR)
and coordinate descent (CD) methods are given for two tolerance (τ) values.

Time (sec) # of nonzeros (selected features)

Active-set-type (AS) 10−2 10−3 AS 10−2 10−3

size λ LARS FS BPR GPSR CD GPSR CD GPSR CD GPSR CD

Arrhy- 452 0.86 0.046 0.041 0.014 0.028 0.015 0.043 0.023 52 54 53 53 52

thmia ×279 0.57 0.073 0.063 0.022 0.045 0.026 0.072 0.025 78 83 80 80 80

0.16 0.224 0.144 0.023 0.046 0.033 0.163 0.042 140 174 155 143 140

6238 0.74 2.61 0.75 0.41 4.80 0.693 36.4 0.954 116 137 117 116 116

Isolet ×617 0.11 9.37 3.94 0.431 8.93 2.09 63.7 3.57 301 362 308 305 301

0.017 24.5 13.3 0.728 4.49 3.76 74.2 8.73 515 604 532 529 520

Internet 3279 0.53 9.02 2.72 1.52 5.32 1.82 17.9 1.96 243 256 189 243 196

Ad ×1558 0.28 17.0 6.14 1.57 3.79 1.86 19.3 2.54 408 448 330 424 357

0.081 76.6 38.5 1.85 2.86 3.31 19.0 5.46 862 1075 755 882 771

6000 0.64 160 44.8 30.4 75.6 36.3 249 39.0 465 534 464 466 465

Gisette ×5000 0.34 448 153 31.2 73.5 48.5 264 58.1 1070 1330 1121 1083 1057

0.18 1495 606 35.0 58.2 74.7 304 100.0 1829 2702 1964 1877 1825

and ∆k =(
∥

∥gk
∥

∥

2
/# of nonzeros in gk), an algorithm

was stopped if ∆k ≤ τ∆0 where ∆0 is the value us-
ing initial values and τ is a chosen tolerance. This
criterion can be obtained by using the subdifferential
of l1-norm along with the criterion in (Lin and Moré,
1999). We observed that at most τ = 10−2 or 10−3

is recommended because values larger than these pro-
duced very inaccurate solutions in our repeated trials
(See also Section 5.3).

Execution results of these algorithms on the correlated
data set mentioned in the previous subsection are pre-
sented in Figure 1-(d).4 The results indicate that BPR
is highly competitive against these state-of-the-art it-
erative methods, even for a loose tolerance. Interest-
ingly, BPR and the two iterative methods showed re-
verse trends with respect to the correlation coefficients:
the two iterative methods became slower for highly
correlated data unlike BPR.

It is worth mentioning that all the active-set-type
methods, including LARS, feature-sign, and BPR, re-
turn an exact solution. In contrast, iterative methods
do so only if very small tolerance is applied. The BPR
method enjoys the property that it returns an exact
solution without loosing scalability.

5.3 UCI DATA SETS

In Table 3, the execution results on data sets from UCI
repository5 are shown. Linear regression was consid-
ered for each data set with elastic net penalty with
small l2-norm regularization (parameter 10−4×λ when
λ is given for l1-norm). Being consistently faster than
the LARS and feature-sign methods, BPR was com-
petitive against iterative methods. For τ = 10−2, solu-
tions from iterative methods were inaccurate as can be

4We report the best results from the two methods: the
Barzilai-Borwein version for GPSR and the covariance up-
dating with active-set arrangement for CD.

5http://archive.ics.uci.edu/ml/

seen from the fact that the number of selected features
are different from that of exact solutions obtained by
active-set-type methods. When τ = 10−3 was applied
for higher accuracy, the computation time increased.
While providing exact solutions, BPR was very fast
among all the methods tested.

5.4 GAUSSIAN STRUCTURE LEARNING

Figure 1-(e) and Table 4 show execution results for
the structure learning of Gaussian graphical models.
Parameter η was selected using the formulation in
(Banerjee et al., 2008), and time was measured un-
til the duality gap, described in the same paper, of
10−1 is achieved. For the results shown in Figure 1-(e),
with various dimensions p, 1

3p samples of multivariate
Gaussian distribution with sparse inverse covariance
matrix were generated and used. BPR appeared sig-
nificantly faster than the COVSEL (Banerjee et al.,
2008) and feature-sign method, where the feature-sign
method was used for Eq. (12). BPR showed compara-
ble performance with graphical Lasso (gplasso) (Fried-
man et al., 2008b). The same trend can be observed
from Table 4, which shows execution times on the gene
expression data set used in (Banerjee et al., 2008).

6 RELATED WORK

In our prior work, a similar algorithm was used for
solving the nonnegativity-constrained least squares
(NNLS) problems (Kim and Park, 2008). The opti-
mality conditions for the NNLS problems appear as a
linear complementarity problem (LCP):

v = u + Mz, v ≥ 0, z ≥ 0, vT z = 0, (14)

which is simpler than BLCP. A notable difference is
that in NNLS, variables are exchanged between two
groups (zero or positive) due to nonnegativity con-
straints, whereas in l1-regularized linear regression,
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Table 4: Execution time (sec) of Gaussian structure
learning on Rosetta Compendium gene expression data
set (6316 features and 300 samples)

COVSEL feature-sign BP gplasso

53.55 225.24 4.82 4.07

variables can take any sign, and thus they are ex-
changed among three groups (negative, zero, or posi-
tive). Due to the difference, the exchange rules of the
proposed method are more complicated, and the finite-
termination proof becomes more difficult (Júdice and
Pires, 1992). One might observe that l1-regularized
linear regression can be reformulated as the NNLS
problems (Tibshirani, 1996; Figueiredo et al., 2007),
and the algorithm in (Kim and Park, 2008) might be
used. However, this approach is inefficient because the
reformulation doubles the variable size. Furthermore,
after reformulation, the matrix M in Eq. (14) becomes
always rank deficient, making the application of (Kim
and Park, 2008) infeasible.

7 DISCUSSIONS

We introduced new active-set-type algorithms for l1-
regularized linear regression and demonstrated their
computational benefits through experimental compar-
isons. The proposed method achieved significant
speed-up maintaining the accuracy of solutions.

Several questions remain to be investigated in future
work. First, the performance of BP or BPR would
depend on how often the full or the reduced block ex-
change rule fails so that the backup rule comes to play.
In our extensive tests in this paper, the backup rule ap-
pearance was not observed, and this shows that these
fast exchange rules in practice work well for various
data sets including the highly correlated case. Still,
further analysis on conditions under which the backup
rule could appear and how much it affects the per-
formance of overall algorithm will help further under-
standing. In addition, the current backup rule might
not be the best one, and the design of alternative
backup rules will be useful. Finally, there are a num-
ber of other sparse learning tasks in which applying the
proposed methods can immediately provide speed-up.
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