Supplementary material

The following proposition is needed for the proof of Theorem 3.

Proposition 2 (Formula of the Geometric Series) Let (s)icn, be a sequence of real numbers satisfying so =
0 and sit1 =gqsi+p [orsit1 < gqsi+p| forsomep,q > 0. Then it holds:
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respectively.
Proof.
(a) We prove part (a) of the theorem by induction over ¢ € No, the case of ¢ = 0 being obvious.

In the inductive step we show that if Eq. (14) holds for an arbitrary fixed ¢ it also holds for ¢ 4 1:
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(b) The proof of part (b) is analogous. (]

Proof of Theorem 3.

Proof.
(a) Inserting the optimal attack strategy of Prop. 1 into Eq. (11) of Ax. 1, we have:
1
Xit1 =X + - (Bi(Xi+a)+ (1— Bie —X;) ,

which can be rewritten as:
Xi+1:<1*177Bi> Xi+Ea+wei’ (15)
n n n
Taking the expectation on the latter equation, and noting that by Axiom 1 E(e) = 0 and E(B;) = v holds, we
have

E(XH_l) = <1 — 1- V> E(Xl) —+ %a .
Since by Eq. (12) we have E(D;) = E(X;) - aand ||a|| = R = 1, we conclude
Euzﬂ)z(l—l_”)Euzy+%.

Now statement (a) follows by the formula of the geometric series, i.e. by Prop. 2, from the latter recursive
Equation.

(b) Multiplying both sides of Eq.(15) with a and substituting D; = X; - a results in
1-— Bi Bi 1- Bi
Dit1 = (1_7>Di+*+g€i‘a
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Inserting Bf = B; and B;(1 — B;) = 0, which holds because B; is Bernoulli, into the latter equation, we
have:
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Taking the expectation on the latter equation, and noting that by Axiom 1 €; and D; are independent, we have:
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where (*) holds because by Axiom 1 we have ||e;]|> < R and by definition ||a|| = R, R = 1. Inserting the

result of (a) in the latter equation results in the following recursive formula:
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E(D%,) < (1—1_V(2—l))E(Df)+2(1—ci)K 41

By the formula of the geometric series, i.e. by Prop. 2, we have:

E (D7) < (2(1—@-)5 2 1)%
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denoting d; := (1 — =% (2 — %))Z Furthermore by some algebra
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We will need the auxiliary formula
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which can be verified by some more algebra and employing d; < c;. We finally conclude

Var(D;) = E(D}) — (E(Dz))2
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where v; := ¢; — d; and 9y, := % This completes the proof the theorem.
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