Supplementary material

The following proposition is needed for the proof of Theorem 3.
Proposition 2 (Formula of the Geometric Series) Let $(s)_{i \in \mathbb{N}_{0}}$ be a sequence of real numbers satisfying $s_{0}=$ 0 and $s_{i+1}=q s_{i}+p \quad\left[\right.$ or $\left.s_{i+1} \leq q s_{i}+p\right]$ for some $p, q>0$. Then it holds:

$$
\begin{equation*}
s_{i}=p \frac{1-q^{i}}{1-q}, \quad\left[\text { or } \quad s_{i} \leq p \frac{1-q^{i}}{1-q}\right] \tag{14}
\end{equation*}
$$

respectively.
Proof.
(a) We prove part (a) of the theorem by induction over $i \in \mathbb{N}_{0}$, the case of $i=0$ being obvious.

In the inductive step we show that if Eq. (14) holds for an arbitrary fixed i it also holds for $i+1$:

$$
\begin{aligned}
s_{i+1} & =q s_{i}+p=q\left(p \frac{1-q^{i}}{1-q}\right)+p=p\left(q \frac{1-q^{i}}{1-q}+1\right) \\
& =p\left(\frac{q-q^{i+1}+1-q}{1-q}\right)=p\left(\frac{1-q^{i+1}}{1-q}\right) .
\end{aligned}
$$

(b) The proof of part (b) is analogous.

Proof of Theorem 3.

Proof.
(a) Inserting the optimal attack strategy of Prop. 1 into Eq. (11) of Ax. 1, we have:

$$
\mathbf{X}_{i+1}=\mathbf{X}_{i}+\frac{1}{n}\left(B_{i}\left(\mathbf{X}_{i}+\mathbf{a}\right)+\left(1-B_{i}\right) \boldsymbol{\epsilon}_{i}-\mathbf{X}_{i}\right)
$$

which can be rewritten as:

$$
\begin{equation*}
\mathbf{X}_{i+1}=\left(1-\frac{1-B_{i}}{n}\right) \mathbf{X}_{i}+\frac{B_{i}}{n} \mathbf{a}+\frac{\left(1-B_{i}\right)}{n} \boldsymbol{\epsilon}_{i} \tag{15}
\end{equation*}
$$

Taking the expectation on the latter equation, and noting that by Axiom $1 E(\boldsymbol{\epsilon})=0$ and $E\left(B_{i}\right)=\nu$ holds, we have

$$
\mathbf{E}\left(\mathbf{X}_{i+1}\right)=\left(1-\frac{1-\nu}{n}\right) E\left(\mathbf{X}_{i}\right)+\frac{\nu}{n} \mathbf{a}
$$

Since by Eq. (12) we have $E\left(D_{i}\right)=E\left(\mathbf{X}_{i}\right) \cdot \mathbf{a}$ and $\|\mathbf{a}\|=R=1$, we conclude

$$
E\left(D_{i+1}\right)=\left(1-\frac{1-\nu}{n}\right) E\left(D_{i}\right)+\frac{\nu}{n}
$$

Now statement (a) follows by the formula of the geometric series, i.e. by Prop. 2, from the latter recursive Equation.
(b) Multiplying both sides of Eq.(15) with a and substituting $D_{i}=\mathbf{X}_{i} \cdot \mathbf{a}$ results in

$$
D_{i+1}=\left(1-\frac{1-B_{i}}{n}\right) D_{i}+\frac{B_{i}}{n}+\frac{\left(1-B_{i}\right)}{n} \boldsymbol{\epsilon}_{i} \cdot \mathbf{a} .
$$

Inserting $B_{i}^{2}=B_{i}$ and $B_{i}\left(1-B_{i}\right)=0$, which holds because B_{i} is Bernoulli, into the latter equation, we have:

$$
\begin{aligned}
D_{i+1}^{2}= & \left(1-2 \frac{1-B_{i}}{n}+\frac{1-B_{i}}{n^{2}}\right) D_{i}^{2}+\frac{B_{i}}{n^{2}}+\frac{\left(1-B_{i}\right)}{n^{2}}\left\|\boldsymbol{\epsilon}_{i} \cdot \mathbf{a}\right\|^{2} \\
& +2 \frac{B_{i}}{n} D_{i}+2\left(1-B_{i}\right)\left(1-\frac{1}{n}\right) D_{i} \boldsymbol{\epsilon}_{i} \cdot \mathbf{a}
\end{aligned}
$$

Taking the expectation on the latter equation, and noting that by Axiom $1 \boldsymbol{\epsilon}_{i}$ and \mathbf{D}_{i} are independent, we have:

$$
\begin{aligned}
& E\left(D_{i+1}^{2}\right)=\left(1-\frac{1-\nu}{n}\left(2-\frac{1}{n}\right)\right) E\left(D_{i}^{2}\right)+2 \frac{\nu}{n} E\left(D_{i}\right)+\frac{\nu}{n^{2}} \\
&+\frac{1-\nu}{n^{2}} E\left(\left\|\epsilon_{i} \cdot \mathbf{a}\right\|^{2}\right) \\
& \stackrel{(*)}{\leq} \\
&\left(1-\frac{1-\nu}{n}\left(2-\frac{1}{n}\right)\right) E\left(D_{i}^{2}\right) 2 \frac{\nu}{n} E\left(D_{i}\right)+\frac{1}{n^{2}}
\end{aligned}
$$

where ${ }^{(*)}$ holds because by Axiom 1 we have $\left\|\boldsymbol{\epsilon}_{i}\right\|^{2} \leq R$ and by definition $\|\mathbf{a}\|=R, R=1$. Inserting the result of (a) in the latter equation results in the following recursive formula:

$$
E\left(D_{i+1}^{2}\right) \leq\left(1-\frac{1-\nu}{n}\left(2-\frac{1}{n}\right)\right) E\left(D_{i}^{2}\right)+2\left(1-c_{i}\right) \frac{\nu}{n} \frac{\nu}{1-\nu}+\frac{1}{n^{2}} .
$$

By the formula of the geometric series, i.e. by Prop. 2, we have:

$$
E\left(D_{i}^{2}\right) \leq\left(2\left(1-c_{i}\right) \frac{\nu}{n} \frac{\nu}{1-\nu}+\frac{1}{n^{2}}\right) \frac{1-d_{i}}{\frac{1-\nu}{n}\left(2-\frac{1}{n}\right)},
$$

denoting $d_{i}:=\left(1-\frac{1-\nu}{n}\left(2-\frac{1}{n}\right)\right)^{i}$. Furthermore by some algebra

$$
\begin{equation*}
E\left(D_{i}^{2}\right) \leq \frac{\left(1-c_{i}\right)\left(1-d_{i}\right)}{1-\frac{1}{2 n}} \frac{\nu^{2}}{(1-\nu)^{2}}+\frac{1-d_{i}}{(2 n-1)(1-\nu)} . \tag{16}
\end{equation*}
$$

We will need the auxiliary formula

$$
\begin{equation*}
\frac{\left(1-c_{i}\right)\left(1-d_{i}\right)}{1-\frac{1}{2 n}}-\left(1-c_{i}\right)^{2} \leq \frac{1}{2 n-1}+c_{i}-d_{i} \tag{17}
\end{equation*}
$$

which can be verified by some more algebra and employing $d_{i}<c_{i}$. We finally conclude

$$
\begin{array}{cll}
\operatorname{Var}\left(D_{i}\right) & = & E\left(D_{i}^{2}\right)-\left(E\left(D_{i}\right)\right)^{2} \\
& \stackrel{\text { Th.3(a); Eq.(16) }}{\leq} & \left(\frac{\left(1-c_{i}\right)\left(1-d_{i}\right)}{1-\frac{1}{2 n}}-\left(1-c_{i}\right)^{2}\right)\left(\frac{\nu}{1-\nu}\right)^{2} \\
& +\frac{1-d_{i}}{(2 n-1)(1-\nu)^{2}} \\
& \\
& \gamma_{i}\left(\frac{\nu}{1-\nu}\right)^{2}+\delta_{n}
\end{array}
$$

where $\gamma_{i}:=c_{i}-d_{i}$ and $\delta_{n}:=\frac{\nu^{2}+\left(1-d_{i}\right)}{(2 n-1)(1-\nu)^{2}}$. This completes the proof the theorem.

