
         413

Ultra-high Dimensional Multiple Output Learning With
Simultaneous Orthogonal Matching Pursuit: Screening Approach

Mladen Kolar Eric P. Xing

Machine Learning Department
Carnegie Mellon University

Pittsburgh, PA, USA

Machine Learning Department
Carnegie Mellon University

Pittsburgh, PA, USA

Abstract

We propose a novel application of the Si-
multaneous Orthogonal Matching Pursuit (S-
OMP) procedure to perform variable selec-
tion in ultra-high dimensional multiple out-
put regression problems, which is the first
attempt to utilize multiple outputs to per-
form fast removal of the irrelevant variables.
As our main theoretical contribution, we
show that the S-OMP can be used to re-
duce an ultra-high number of variables to be-
low the sample size, without losing relevant
variables. We also provide formal evidence
that the modified Bayesian information cri-
terion (BIC) can be used to efficiently se-
lect the number of iterations in the S-OMP.
Once the number of variables has been re-
duced to a manageable size, we show that a
more computationally demanding procedure
can be used to identify the relevant variables
for each of the regression outputs. We further
provide evidence on the benefit of variable se-
lection using the regression outputs jointly,
as opposed to performing variable selection
for each output separately. The finite sample
performance of the S-OMP has been demon-
strated on extensive simulation studies.

1 Introduction

Multiple output ultra-high dimensional regression
problems commonly arise in a genome-wide associa-
tion mapping studies. These studies aim to find a
small set of causal single-nucleotide polymorphisms
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(SNP) (variables) that account for genetic variations of
a large number of genes (regression outputs). However,
this is a very challenging problem for current statisti-
cal methods since the number of variables is likely to
reach millions. Genes in a biological pathway are co-
expressed as a module and it is often assumed that
a causal SNP affects multiple genes in one pathway,
but not all of the genes in the pathway. In order to
effectively reduce the dimensionality of the problem
and to detect the causal SNPs, it is very important
to look at how SNPs affect all genes in a biological
pathway. Since the experimentally collected data is
usually very noisy, regressing genes individually onto
SNPs may not be sufficient to identify the relevant
SNPs that are only weakly correlated with each gene.
However, once the whole biological pathway is exam-
ined, it is much easier to find the causal SNPs. In this
paper, we demonstrate that the Simultaneous Orthog-
onal Matching Pursuit (S-OMP) (Tropp et al., 2006)
can be used to quickly reduce the dimensionality of the
problem, without losing any of the relevant variables.

As the dimensionality of the problem and the num-
ber of outputs increase, it becomes computationally
hard to solve the commonly used convex programs
used to identify relevant variables in multiple output
regression problems. Previous work Liu et al. (2009);
Lounici et al. (2009); Kim et al. (2009), do not scale
well to settings when the number of variables exceeds
& 10000 and the number of outputs exceeds & 1000
as in genome-wide association studies. Furthermore,
estimation error of the regression coefficients depends
on the number of variables in the problem, so that the
variable selection can improve convergence rates of es-
timation procedures. These concerns motivate us to
propose and study the S-OMP as a fast way to remove
many of the irrelevant variables.

Formally, the association mapping problem can be cast
as a variable selection problem in a multiple output
regression model

Y = XB + W (1)
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where Y = [y1, . . . ,yT ] ∈ R
n×T is a matrix of out-

puts, whose column yt is an n-vector for the t-th
output, X ∈ R

n×p is a random design matrix, with
each row xi denoting a p-dimensional input, B =
[β1, . . . ,βT ] ∈ R

p×T is the matrix of regression co-
efficients and W = [ǫ1, . . . , ǫT ] ∈ R

n×T is a matrix of
IID random noise, independent of X. We are inter-
ested in estimating the regression coefficients, under
the assumption that they share a common structure,
e.g., there exists a subset of variables with non-zero
coefficients for more than one regression output. We
informally refer to such outputs as related. Two in-
teresting questions, commonly asked in this setting,
are: i) how can information be shared between related
outputs in order to improve the efficiency over the in-
dependent estimation on each output separately; ii)
how to improve the variable selection based on infor-
mation from related outputs. To address these two
questions, one line of research (e.g., Zhang, 2006; Liu
et al., 2009; Lounici et al., 2009) has looked into the

following estimation procedure; B̂ is a minimizer of

min
βt∈Rp,t∈[T ]

T
∑

t=1

||yt −Xβt||22 + λ

p
∑

j=1

pen(β1,j , . . . , βT,j),

(2)
with pen(a) = maxt∈[T ] |at| or pen(a) = ||a||2 for a
vector a ∈ R

T . Under an appropriate choice of the
penalty parameter λ, the estimator B̂ has many rows
equal to zero, which correspond to irrelevant vari-
ables. However, solving (2) can be computationally
prohibitive.

In the current work, we consider the ultra-high dimen-
sional setting where the number of variables p is much
higher than the sample size n, e.g. p = O(exp(nδp))
for a positive constant δp, but the regression coeffi-
cients βt are sparse, i.e., for each t, there exist a small
number of variables that are relevant to the output.
Under the sparsity assumption, it is highly important
to efficiently select the relevant variables in order to
improve the accuracy of the estimation and prediction,
and to facilitate the understanding of the underlying
phenomenon for domain experts. In the seminal paper
of Fan and Lv (2008), the concept of sure screening was
introduced, a property of the variable selection proce-
dure that keeps all the relevant variables with high
probability. We show that the S-OMP, has the sure
screening property for the multiple output regression
problem in (1). To the best of our knowledge, this is
the first attempt to analyze the sure screening property
in the ultra-high dimensional space using the shared
information from the multiple regression outputs.

The variable selection in the model (1) can be for-
malized in two ways: (1) the union support recovery
of B, where a subset of variables is selected that af-

fect at least one output; (2) the exact support recov-
ery of B, where the exact positions of non-zero ele-
ments in B are estimated. We address the problem
of the exact support recovery, which is of particular
importance in problems like genome-wide association
mapping (Kim and Xing, 2009) or biological network
estimation (Peng et al., 2008), in two steps. In the
first step, the S-OMP is used to screen the variables,
i.e., select a subset of variables that contain all the
true variables. In the second step, we use the adaptive
Lasso (ALasso) (Zou, 2006) to further select a subset
of screened variables for each task.

The model in (1) has been used in many different do-
mains ranging from multivariate regression (Obozin-
ski et al., 2009; Negahban and Wainwright, 2009) and
sparse approximation (Tropp et al., 2006) to neural
science (Liu et al., 2009), multi-task learning (Lounici
et al., 2009; Argyriou et al., 2008) and biological net-
work estimation (Peng et al., 2008). A number of au-
thors has provided theoretical understanding of the
estimation in the model using the convex program (2)

to estimate B̂. Lounici et al. (2009) showed the ben-
efits of the joint estimation, when there is a small set
of variables common to all outputs and the number of
outputs is large. Obozinski et al. (2009) and Negahban
and Wainwright (2009) analyzed the consistent recov-
ery of the union support. Negahban and Wainwright
(2009) provided the analysis of the exact support re-
covery for a special case with two outputs.

The Orthogonal Matching Pursuit (OMP) has been
analyzed before in the literature (see, e.g., Zhang,
2009; Lozano et al., 2009; Wang, 2009; Barron et al.,
2008). In particular, our work should be contrasted to
Wang (2009), which showed that the OMP has the sure
screening property in a linear regression with a single
output, and to the exact variable selection property of
the OMP analyzed in Zhang (2009) and Lozano et al.
(2009). The exact variable selection requires much
stronger assumptions on the design, such as the ir-
representable condition, that are hard to satisfy in the
ultra-high dimensional setting. On the other hand, the
sure screening property can be shown to hold under
much weaker assumptions.

In this paper, we make the following novel contribu-
tions: i) we prove that the S-OMP can be used for the
ultra-high dimensional variable screening in multiple
output regression problems and demonstrate its per-
formance on extensive numerical studies; ii) we show
that a two step procedure can be used to select exactly
the relevant variables for each task; and iii) we prove
that a modification of the BIC score (Chen and Chen,
2008) can be used to select the number of steps in the
S-OMP.
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2 Methodology

2.1 The model and notation

We will consider a slightly more general model

yt = Xtβt + ǫt, t = 1, . . . , T (3)

than the one given in (1). The model in (1) is a spe-
cial case of the model in (3), with all the design ma-
trices {Xt}t∈[T ] equal. Assume that for all t ∈ [T ],
Xt ∈ R

n×p. For the design Xt, we denote Xt,j the
j-th column, xt,i the i-th row and xt,ij the element at
(i, j). Denote Σt = Cov(xt,i). Without loss of gen-
erality, we assume that Var(yt,i) = 1, E(xt,ij) = 0
and Var(xt,ij) = 1. The noise ǫt is zero mean and
Cov(ǫt) = σ2In×n. We assume that the number of
variables p ≫ n and that the regression coefficients
βt are jointly sparse. Let M∗,t denote the set of
non-zero coefficients of βt and M∗ = ∪T

t=1M∗,t de-
note the set of all relevant variables. For an arbitrary
set M = {j1, . . . , jk}, Xt,M denotes the design with
columns indexed by M, BM denotes the rows of B

indexed by M and Bj = (β1,j , . . . ,βT,j)
′. The cardi-

nality of the set M is denoted as |M|. Let s := |M∗|
denote the total number of relevant variables, so under
the sparsity assumption we have s < n. For a square
matrix A, Λmin(A) and Λmax(A) are used to denote
the minimum and the maximum eigenvalue, respec-
tively. Lastly, we use [p] to denote the set {1, . . . , p}.
Before we continue, we give a few definitions that will
facilitate the presentation of the algorithm and theo-
retical results.

Definition 1. The union support recovery deals with

estimation of M∗, the set of all relevant variables.

Definition 2. The exact support recovery deals with

estimation of {M∗,t}t∈[T ], the exact set of non-zero

elements of B.

Definition 3. An estimation procedure is said to have

the sure screening property if it is able to find an esti-

mator M̂ of the union support that satisfies P[M∗ ⊆
M̂] → 1 as n → ∞.

2.2 Simultaneous Orthogonal Matching

Pursuit: Screening

The Simultaneous Orthogonal Matching Pursuit is
outlined in Algorithm 1. Before describing the algo-
rithm, we introduce some additional notation. For a
model M, let Ht,M be the orthogonal projection onto
Span(Xt,M), i.e., Ht,M = Xt,M(X′

t,MXt,M)−1X′
t,M,

and define the residual sum of squares (RSS) as

RSS(M) =
∑T

t=1 y′
t(In×n − Ht,M)yt.

The algorithm starts with an empty model M(0) = ∅.
We recursively define the model M(k) based on the

Algorithm 1 Group Forward Regression

Input: Dataset {Xt,yt}
T
t=1

Output: Sequence of selected models {M(k)}n−1
k=0

1: Set M(0) = ∅
2: for k = 1 to n − 1 do
3: for j = 1 to p do

4: M̃
(k)
j = M(k−1) ∪ {j}

5: Ht,j = X
t,M̃

(k)
j

(X′

t,M̃
(k)
j

X
t,M̃

(k)
j

)−1X′

t,M̃
(k)
j

6: RSS(M̃(k)
j ) =

PT

t=1 y′
t(In×n − Ht,j)yt

7: end for
8: ĵk = argminj∈{1,...,p}\M(k−1) RSS(M̃(k)

j )

9: M(k) = M(k−1) ∪ {ĵk}
10: end for

model M(k−1). The model M(k) is obtained by adding
a variable ĵk, which minimizes RSS(M(k−1) ∪ j) over
the set [p]\M(k−1), to the model M(k−1). Repeating
the algorithm for n−1 steps, a sequence of nested mod-
els {M(k)}n−1

k=0 is obtained, with M(k) = {ĵ1, . . . , ĵk}.
To practically select one of the models from
{M(k)}n−1

k=0 , we minimize the modified BIC criterion
(Chen and Chen, 2008), which is defined as

BIC(M) = log

(

RSS(M)

nT

)

+
|M|(log(n) + 2 log(p))

n
(4)

with |M| denoting the number of elements of the
set M. Let ŝ = argmink∈{0,...,n−1} BIC(M(k)), so that

the selected model is M(ŝ). Observe that M(ŝ) esti-
mates only the union support and that further subse-
lection is needed to estimate the exact support.

Remark: The S-OMP algorithm is outlined only con-
ceptually in this section. The steps 5 and 6 of the al-
gorithm can be implemented efficiently using the pro-
gressive Cholesky decomposition see, e.g., Cotter et al.
(1999).

2.3 Exact variable selection

After the dimensionality of the original problem has
been reduced to the size of the model M(ŝ), which is
less than the sample size n, one can address the prob-
lem of estimating the regression coefficients and recov-
ering the exact support of B using a lower dimensional
selection procedure. In this paper, we use the adap-
tive Lasso as a lower dimensional selection procedure,
which was shown to have oracle properties Zou (2006).
The ALasso solves the penalized least square problem

β̂t = argmin
βt∈Rŝ

||yt−Xt,M(ŝ)βt||22+λ
∑

j∈M(ŝ)

wj |βt,j |, (5)

where (wj)j∈M(ŝ) is a vector of known weight and λ is
a tuning parameter. Usually, the weights are defined
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as wj = 1/|β̂t,j | for a
√

n-consistent estimator of βt.
Observe that the adaptive Lasso in (5) is defined for
each output separately, so that the exact support of B

can be recovered under an assumption that the num-
ber of outputs does not diverge too quickly. We point
out that solving the multi-task problem defined in (2)
can be efficiently done on the reduced set of variables,
but it is not obvious how to obtain the estimate of the
exact support using (2). In Section 4, our numerical
studies show that the ALasso applied to the reduced
set of variables can be used to estimate the exact sup-
port of B.

3 Theory

In this section we state conditions under which Al-
gorithm 1 has the sure screening property. We also
show that the model selected using the modified BIC
criterion contains all the relevant variables.

3.1 Assumptions

Before we state the theorem characterizing the perfor-
mance of the S-OMP, we give some technical condi-
tions that are needed for our analysis.

A1: The random noise vectors ǫ1, . . . , ǫT are inde-
pendent Gaussian with zero mean and covariance
matrix σ2In×n.

A2: Each row of the design matrix Xt is IID Gaussian
with zero mean and covariance matrix Σt. Further-
more, there exist two positive constants 0 < φmin <
φmax < ∞ such that

φmin ≤ min
t∈[T ]

Λmin(Σt) ≤ max
t∈[T ]

Λmax(Σt) ≤ φmax. (6)

A3: The true regression coefficients are bounded,
i.e., there exists a positive constant Cβ such that
||β||2,1 ≤ Cβ. Define Bmin as a T -vector that satisfies
||Bmin||22 = minj∈M∗

∑

t∈[T ] β
2
t,j , i.e., the norm of the

vector Bmin lower bounds the norm of a row of B for
any relevant variable. There exist positive constants
cβ and δmin such that T−1||Bmin||22 ≥ cβn−δmin .

A4: There exist positive constants Cs, Cp, δs and δp

such that |M∗| ≤ Csn
δs and log(p) ≤ Cpn

δp .

The normality condition A1 is assumed here only to
facilitate presentation of theoretical results, as is com-
monly assumed in literature, (e.g., Zhang and Huang,
2008; Fan and Lv, 2008). The normality assumption
can be avoided at the cost of more technical proofs,
e.g., Lounici et al. (2009), where the main technical
difficulty is showing that the concentration properties
still hold. Under the condition A2 we will be able to

show that the empirical covariance matrix satisfies the
sparse eigenvalue condition (see Lemma 6) with prob-
ability tending to one. The assumption that the rows
of the design are Gaussian can be easily relaxed to
the case when the rows are sub-Gaussian, without any
technical difficulties in proofs, since we would still ob-
tain exponential bounds on the tail probabilities. The
condition A3 states that the regression coefficients are
bounded, which is a technical condition likely to be
satisfied in practice. Furthermore, it is assumed that
the row norms of BM∗

do not decay to zero too fast
or, otherwise, they would not be distinguishable from
noise. The condition is not too restrictive, e.g., if ev-
ery non-zero coefficient is bounded away from zero by
a constant, the condition A3 is trivially satisfied with
δmin = 0. However, we allow for the coefficients of the
relevant variables to get smaller as the sample size in-
creases and still guarantee that the relevant variable
will be identified. The condition A4 sets the upper
bound on the number of relevant variables and the to-
tal number of variables. While the total number of
variables can diverge to infinity much faster than the
sample size, the number of relevant variables needs
to be smaller than the sample size. It can be seen
from A3 and A4 that many outputs should share
the same non-zero coefficients. Otherwise, some co-
efficients would be too weak to be detected.

3.2 The screening consistency

Theorem 4. Assume the model in (3) and that the

conditions A1-A4 are satisfied. Furthermore, assume

that

n1−6δs−6δmin

max{log(p), log(T )} → ∞, as n → ∞. (7)

Then there exists a number m∗
max = m∗

max(n), so that

in m∗
max all the relevant variables are included in the

model, i.e., as n → ∞

P[M∗ ⊆ M(m∗

max)]

≥ 1 − C1 exp

(

−C2
n1−6δs−6δmin

max{log p, log T}

)

,
(8)

for some constants C1, C2. The exact value of m∗
max

is given as

m∗
max = ⌊24φ−2

minφmaxC
2
βC2

s c−2
β n2δs+2δmin⌋. (9)

Remarks: Under the assumptions of Theorem 4,
m∗

max ≤ n − 1, so that the procedure effectively re-
duces the dimensionality below the sample size. From
the proof of the theorem, it is clear how multiple out-
puts help to identify the relevant variables. The cru-
cial quantity in identifying all relevant variables is the
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minimum non-zero row norm of B, which allows us to
identify weak variables if they are relevant for a large
number of outputs even though individual coefficients
may be small.

Proof. We outline the proof here, while the details are
given in the supplementary materials. The proof uses
ideas from Zhang (2009) and Wang (2009).

Under the assumptions of the theorem, the number of
relevant variables s is relatively small compared to the
sample size n. The proof strategy can be outlined as
follows: i) we are going to show that, with high prob-
ability, at least one relevant variable is going to be
identified within the following m∗

one steps, condition-
ing on the already selected variables M(k) and this
holds uniformly for all k; ii) we can conclude that all
the relevant variables are going to be selected within
m∗

max = sm∗
one steps. Exact values for m∗

one and m∗
max

are given below. Without loss of generality, we ana-
lyze the first step of the algorithm, i.e., we show that
the first relevant variable is going to be selected within
the first m∗

one steps.

Assume that in the first m∗
one − 1 steps, there were no

relevant variables selected. Assuming that the m∗
one-

th selected variable is still an irrelevant one, we will
arrive to a contradiction, which shows that at least
one relevant variable has been selected in the first m∗

one

steps. For any step k, the squared error reduction is
given as ∆(k) := RSS(k − 1) − RSS(k), that is

∆(k) =
∑

t

||H(k)

t,ĵk

(In×n − Ht,M(k))yt||22 (10)

with H
(k)
t,j = X

(k)
t,j X

(k)′

t,j ||X(k)
t,j ||−2 and X

(k)
t,j = (In×n −

Ht,M(k))Xt,j . We are interested in the quantity
∑m∗

one

k=1 ∆(k), when all the selected variables ĵk (see
Algorithm 1) belong to [p]\M∗.

In what follows, we will derive a lower bound for ∆(k).

We perform our analysis on the event E where Σ̂

satisfies the sparse eigenvalue condition in Lemma 6
with m∗

max. From the definition of ĵk, ∆(k) is lower
bounded as

∆(k) ≥ max
j∈M∗

∑

t

||H(k)
t,j (In×n − Ht,M(k))Xt,M∗

βt,M∗
||22

− max
j∈M∗

∑

t

||H(k)
t,j (In×n − Ht,M(k))ǫt||22

= (I) − (II).

We deal with these two terms separately. One can
show that

(I) ≥ 2−3φ2
minφ−1

maxC
−2
β ns−1T−1||Bmin||42

≥ 2−3φ2
minφ−1

maxC
−2
β C−1

s n1−δsT−1||Bmin||42,

and that

(II) ≤ 23φ−1
minφmaxT (m∗

max + 2) log p

≤ 9φ−1
minφmaxCpn

δpTm∗
max,

with high probability. Combining (I) and (II), one
obtains a lower bound on ∆(k) that does not depend
on k, so that

n−1T−1
∑

t∈[T ]

||yt||22 ≥ 2(1 − Cn3δs+4δmin+δp−1) → 2,

under the conditions of the theorem. We have ar-
rived to a contradiction, since under the assumptions
Var(yt,i) = 1 and by the weak law of large numbers
n−1T−1

∑

t∈[T ] ||yt||22 → 1 in probability. Therefore,
at least one relevant variable will be selected in m∗

one

steps.

To complete the proof, one needs to lower bound the
probability of the event E . For that we can invoke
Lemma 6.

The following theorem guarantees that the model
M(ŝ), selected with the modified BIC criterion, is
screening consistent.

Theorem 5. Assume that the conditions of Theo-

rem 4 are satisfied. Let

ŝ = argmin
k∈{0,...,n−1}

BIC(M(k)) (11)

be the index of the model selected by optimizing the

modified BIC criterion. Then, as n → ∞

P[M∗ ⊆ M(ŝ)] → 1. (12)

Proof. We outline the proof here, while the details are
given in the supplementary materials. To prove the
theorem, we use the same strategy as in Wang (2009).
From Theorem 4 we have that P[∃k ∈ {0, . . . , n − 1} :
M∗ ⊆ M(k)] → 1, so kmin := mink∈{0,...,n−1}{k :

M∗ ⊆ M(k)} is well defined and kmin ≤ m∗
max, for

m∗
max defined in (9). We show that

P[ min
k∈{0,...,kmin−1}

(BIC(M(k))−BIC(M(k+1))) > 0] → 1,

(13)
so that P[ŝ < kmin] → 0 as n → ∞. We proceed by
lower bounding the difference in the BIC scores as

BIC(M(k)) − BIC(M(k+1))

≥ log

(

1 +
RSS(M(k)) − RSS(M(k+1))

RSS(M(k+1))

)

− 3n−1 log(p),

(14)

where we have assumed p > n. Define the event
A := {n−1T−1

∑

t∈[T ] ||yt||22 ≤ 2}. Note that
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RSS(M(k+1)) ≤ ∑

t∈[T ] ||yt||22, so on the event A the
difference in the BIC scores is lower bounded as

log(1 + 2n−1T−1∆(k)) − 3n−1 log(p), (15)

where ∆(k) is defined in (10). Using the fact that
log(1 + x) ≥ min(log(2), 2−1x) and the lower bound
on ∆(k) from the proof of Theorem 4, we have

BIC(M(k)) − BIC(M(k+1))

≥ min(log 2, Cn−δs−2δmin) − 3n−1 log p,
(16)

for some positive constant C. It is easy to check that
log 2−3n−1 log p > 0 and Cn−δs−2δmin−3n−1 log p > 0
under the conditions of the theorem. The lower bound
in (16) is uniform for k ∈ {0, . . . , kmin}, so the proof
is complete if we show that P[A] → 1. But this easily
follows from the tail bounds on the central chi-squared
random variable.

4 Simulation studies

We conduct a number of numerical studies to evaluate
the finite sample performance of the S-OMP. We con-
sider three procedures that perform estimation on in-
dividuals outputs: Sure Independence Screening (SIS)
and Iterative SIS (ISIS) (Fan and Lv, 2008), and the
OMP, for comparison purposes. The evaluation is done
on the model in (1). SIS and ISIS are used to select a
subset of variables and then the ALasso is used to fur-
ther refine the selection. We denote this combination
as SIS-ALasso and ISIS-ALasso. The size of the model
selected by SIS is fixed as n− 1, while the ISIS selects
⌊n/ log(n)⌋ variables in each of the ⌊log(n) − 1⌋ iter-
ations. From the screened variables, the final model
is selected using the ALasso, together with the BIC
criterion (4) to select the penalty parameter λ. We
use the OMP without further refinement using the
ALasso, since it was observed from the numerical stud-
ies in Wang (2009) that the combination does not gain
much improvement. The S-OMP is used to reduce the
dimensionality below the sample size jointly using the
regression outputs. Next, the ALasso is used on each
of the outputs to further perform the estimation. This
combination is denoted SOMP-ALasso.

Let B̂ = [β̂1, . . . , β̂T ] ∈ R
p×T be an estimate obtained

by one of the estimation procedures. We evaluate
the performance averaged over 200 simulation runs.
Let Ên denote the empirical average over the simula-
tion runs. We measure the size of the union support
Ŝ = S(B̂) := {j ∈ [p] : ||B̂j ||22 > 0}. Next, we es-
timate the probability that the screening property is
satisfied Ên[1I{M∗ ⊆ S(B̂)}], which we call coverage
probability. The fraction of incorrect zeros is mea-
sured as s−1

Ên[|S(B̂)C ∩M∗|]. Similar quantities are

defined for the exact support recovery. The following
simulation studies are used to comparatively access the
numerical performance of the procedures. Additional
simulations are given in the Supplementary material.

Simulation 1: The following toy model is based on the
simulation I in Fan and Lv (2008) with (n, p, s, T ) =
(400, 20000, 18, 500). Each xi is drawn independently
from a standard multivariate normal distribution, so
that the variables are mutually independent. For
j ∈ [s] and t ∈ [T ], the non-zero coefficients of B

are given as βt,j = (−1)u(4n−1/2 log n + |z|), where
u ∼ Bernoulli(0.4) and z ∼ N (0, 1). The number
of non-zero elements in Bj is given as a parame-
ter Tnon−zero = 300, i.e., a variable is shared across
300 outputs. The positions of non-zero elements are
chosen uniformly at random from [T ]. The noise is
Gaussian with the standard deviation σ set to con-
trol the signal-to-noise ratio (SNR). SNR is defined as
Var(xβ)/Var(ǫ) and we set it to SNR = 5.

Simulation 2: The following scenario is used to eval-
uate the performance of the methods as the num-
ber of non-zero elements in a row of B varies. We
set (n, p, s) = (100, 500, 10) and the number of out-
puts T = 1000. We vary Tnon−zero ∈ {0.8T, 0.2T}.
xi and B are given as in Simulation 1, i.e., xi is
drawn from a multivariate standard normal distribu-
tion and the non-zero coefficients B are given as βt,j =
(−1)u(4n−1/2 log n + |z|), where u ∼ Bernoulli(0.4)
and z ∼ N (0, 1). The noise is Gaussian, with the
standard deviation defined through the SNR = 5.

Simulation 3: The following model is borrowed from
Wang (2009). We assume a correlation structure be-
tween variables given as Var(Xj1 ,Xj2) = ρ|j1−j2|,
where ρ = 0.5. This correlation structure appears nat-
urally among ordered variables. We set (n, p, s, T ) =
(100, 5000, 3, 150) and Tnon−zero = 80. The relevant
variables are at positions (1, 4, 7) and non-zero coeffi-
cients are given as 3, 1.5 and 2 respectively. The SNR
is set to 5.

Simulation 4: The following model assumes a block
compound correlation structure. For a parameter ρ,
the correlation between two variables Xj1 and Xj2 is
given as ρ, ρ2 or ρ3 when |j1 − j2| ≤ 10, |j1 − j2| ∈
(10, 20] or |j1−j2| ∈ (20, 30] and it is set to 0 otherwise.
We set (n, p, s, T ) = (150, 4000, 8, 150), Tnon−zero = 80
and the parameter ρ = 0.5. The relevant variables are
located at positions 1, 11, 21, 31, 41, 51, 61, 71 and
81, so that each block of highly correlated variables has
exactly one relevant variable. The values of relevant
coefficients is given as in Simulation 1. The noise is
Gaussian and the SNR is set to 5.

Simulation 5: This model represents a difficult setting.
It is modified from Wang (2009). We set (n, p, s, T ) =
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Table 1: Simulation 1 (n, p, s, T ) = (400, 20000, 18, 500)

Tnon−zero = 300, SNR = 5

Method Coverage Incorrect Size of
Name (%) Zeros(%) Support

Union Support
SIS-ALASSO 100.0 0.0 21.1
ISIS-ALASSO 100.0 0.0 20.8

OMP 100.0 0.0 23.0
S-OMP 100.0 0.0 18.0

S-OMP-ALASSO 100.0 0.0 18.0
Exact Support

SIS-ALASSO 24.0 0.0 5400.9
ISIS-ALASSO 99.0 0.0 5402.8

OMP 100.0 0.0 5405.0
S-OMP-ALASSO 100.0 0.0 5400.0

(200, 10000, 5, 500), Tnon−zero = 250. For j ∈ [s] and
t ∈ [T ], the non-zero elements equal βt,j = 2j. Each
row of X is generated as follows. Draw independently
zi and z′i from a p-dimensional standard multivari-
ate normal distribution. Now, xij = (zij + z′ij)/

√

(2)
for j ∈ [s] and xij = (zij +

∑

j′∈[s] zij′)/2 for j ∈
[p]\[s]. Now, Corr(xi,1, yt,i) is much smaller then
Corr(xi,j , yt,i) for j ∈ [p]\[s], so that it becomes diffi-
cult to select variable 1. The noise is Gaussian with
standard deviation σ = 1.5.

The simulation results are summarized in Tables 1-3,
from which we have the following observations. When
the variables are independent, it is relatively easy for
all methods to cover the union support and the exact
support. In this setting, it was previously shown in
Fan and Lv (2008) and Wang (2009) that procedures
which estimate independently from different outputs
do well. Additional simulations (given in the Supple-
mentary materials) suggest that the joint estimation
with S-OMP-ALasso has some advantages when the
SNR is low and when a variable is relevant for a large
number of outputs. On the other hand, as the num-
ber of non-zero elements Tnon−zero in a row of B de-
creases, SIS-ALasso, ISIS-ALasso and OMP start to
perform comparably and sometimes even better. The
theory suggests (but does not prove) that the crucial
parameter for a variable to be selected is the minimum
non-zero row norm in the case of the S-OMP and the
minimum absolute value of a non-zero regression coeffi-
cient in the other cases. When the correlation between
variables start to increase, as in the simulations 3, 4
and 5, the S-OMP outperforms the other procedures,
which tend to under-fit the model.

5 Conclusions

In this work, we analyze the Simultaneous Orthogonal
Matching Pursuit as a method for variable selection in
an ultra-high dimensional space. We prove that the
S-OMP is screening consistent and provide a practical

Table 2: Simulation 2 (n, p, s, T ) = (100, 500, 10, 1000)

Tnon−zero = 800, SNR = 5

Method Coverage Incorrect Size of
Name (%) Zeros(%) Support

Union Support
SIS-ALASSO 100.0 0.0 11.9
ISIS-ALASSO 100.0 0.0 11.7

OMP 100.0 0.0 33.0
S-OMP 100.0 0.0 10.0

S-OMP-ALASSO 100.0 0.0 10.0
Exact Support

SIS-ALASSO 0.0 65.5 2759.0
ISIS-ALASSO 0.0 62.7 2984.0

OMP 100.0 0.0 8023.1
S-OMP-ALASSO 0.0 48.1 4152.9

Table 3: Simulation 2 (n, p, s, T ) = (100, 500, 10, 1000)

Tnon−zero = 200, SNR = 5

Method Coverage Incorrect Size of
Name (%) Zeros(%) Support

Union Support
SIS-ALASSO 100.0 0.0 10.0
ISIS-ALASSO 100.0 0.0 10.0

OMP 100.0 0.0 139.6
S-OMP 100.0 0.0 10.0

S-OMP-ALASSO 100.0 0.0 10.0
Exact Support

SIS-ALASSO 100.0 0.0 2000.0
ISIS-ALASSO 100.0 0.0 2000.0

OMP 100.0 0.0 2131.6
S-OMP-ALASSO 100.0 0.0 2000.0

way to select the number of steps in the procedure us-
ing the modified Bayesian information criterion. Our
limited numerical experience shows that the method
performs well in practice and that the joint estimation
from multiple outputs often outperforms methods that
use one regression output at the time.
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Appendix

The following Lemma (proved in supplement) is used
to prove Theorem 4.

Lemma 6. Let x ∼ N (0,Σ) and Σ̂ = n−1
∑n

i=1 xix
′
i

be the empirical estimate from n independent realiza-

tions of x. Denote Σ = [σab] and Σ̂ = [σ̂ab]. As-

sume φmin ≤ Λmin(Σ) ≤ Λmax(Σ) ≤ φmax. Then as

n → ∞,

P[ max
M⊆[p],|M|<s

Λmax(Σ̂M) ≥ 2φmax] = O(exp(− n

s3 log p
))

and

P[ min
M⊆[p],|M|<s

Λmin(Σ̂M) ≤ φmin/2] = O(exp(− n

s3 log p
)).
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Table 4: Simulation 3 (n, p, s, T ) = (100, 5000, 3, 150)
Tnon−zero = 80, SNR = 5, ρ = 0.5

Method Coverage Incorrect Size of
Name (%) Zeros(%) Support

Union Support
SIS-ALASSO 100.0 0.0 3.0
ISIS-ALASSO 100.0 0.0 3.0

OMP 100.0 0.0 19.6
S-OMP 100.0 0.0 3.00

S-OMP-ALASSO 100.0 0.0 3.00
Exact Support

SIS-ALASSO 60.0 0.2 239.5
ISIS-ALASSO 84.0 0.1 239.8

OMP 100.0 0.0 256.6
S-OMP-ALASSO 100.0 0.0 240.0

Table 5: Simulation 4 (n, p, s, T ) = (150, 4000, 8, 150)
Tnon−zero = 80, SNR = 5, ρ = 0.5

Method Coverage Incorrect Size of
Name (%) Zeros(%) Support

Union Support
SIS-ALASSO 100.0 0.0 8.4
ISIS-ALASSO 100.0 0.0 8.9

OMP 100.0 0.0 12.3
S-OMP 100.0 0.0 8.0

S-OMP-ALASSO 100.0 0.0 8.0
Exact Support

SIS-ALASSO 0.0 23.8 487.8
ISIS-ALASSO 0.0 7.6 592.5

OMP 99.0 0.0 644.4
S-OMP-ALASSO 7.0 2.8 622.2
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