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Abstract

We relate function class complexity to struc-
ture in the function domain. This facilitates
risk analysis relative to cluster structure in
the input space which is particularly effec-
tive in semi-supervised learning. In partic-
ular we quantify the complexity of function
classes defined over a graph in terms of the
graph structure.

1 INTRODUCTION

We relate the learning process to cluster structure in
the data which the learner is attempting to classify. It
is well-known that data-dependent measures of func-
tion class complexity can lead to sharper risk bounds
than those which do not capture the data distribu-
tion. We elaborate this principle by demonstrating a
relationship between the richness of a function class
and structural features in data drawn from the under-
lying input space X on which it acts. Specifically, a
typical assumption in machine learning is that data
are clustered and we refine a recent upper bound on
Rademacher complexity of a function class, by relating
it to cluster structure in the domain.

The intended application of these ideas is in the set-
tings of transductive and semi-supervised learning. In
(Chapelle and Zien, 2005) it is argued that virtually all
successful semi-supervised learning techniques exploit
the cluster assumption. In these frameworks we typi-
cally work with empirically defined hypothesis classes
and it is natural to relate the learning process to the
data which informs their construction. In such frame-
works, an empirical metric on X which captures the in-
trinsic geometry of the data can be constructed giving
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an opportunity to relate learning to the intrinsic struc-
ture of data. A typical empirical metric, equivalent to
electrical resistance distance, is particularly sensitive
to clustering, thus relating function class complexity
to the cluster structure of X is effective in this case.

A key object in these settings is a graph formed us-
ing the available data and, as pointed out in (Han-
neke, 2006) it is important to reach an understanding
of which properties of a graph are relevant to the per-
formance of an algorithm which predicts the labeling
of the graph, and we provide a further step in that
direction: in the spirit of the work of (Herbster, 2008)
in the online setting, we present risk bounds (and sug-
gest a regularization algorithm) derived from the clus-
ter structure of the graph in the resistance metric. In
particular we bound the richness of a class of functions
with bounded cut defined over the vertices of a graph.
When a graph exhibits good k-means clustering, in the
resistance metric, this cluster structure seems to serve
as a sharp practical measure of the richness of clas-
sifiers over a graph when learning under the typical
“smoothness” assumption of a small graph cut; this is
intuitive and is established using a duality theory.

We finally give a semi-supervised risk bound in which
the complexity terms are related to the cluster struc-
ture of the (labeled and unlabeled) data instances.

2 PRELIMINARIES

We denote by H a class of real-valued functions (hy-
potheses) mapping a domain X to a decision space
D. It is typical to assign a measure of complexity
F : H → IR≥0 over functions in H. This generally
captures a prior belief that the hypothesis most likely
to explain the relationship between data and their clas-
sification is simple, or that the true classifier respects
the structure of the input space. Given F : H → IR≥0

we denote

Hα := {h ∈ H : F (h) ≤ α}.
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We consider only function classes consisting of linear
functions (in some, possibly kernelized, space) so that
(soft) classification is h(x) = 〈h,x〉.

Given a distribution PXY over the labeled input space
X × Y, and a loss function ` : D × Y → IR≥0

we denote the true risk of h ∈ H by risk`(h) :=
IE(X,Y )∼PXY `(h(X), Y ), and the risk on a specific set
T by risk`T (h) := 1

|T |
∑

(x,y)∈T `(h(x), y) and, in par-
ticular, the empirical risk on a labeled training sample
S by r̂isk`S(h) := 1

|S|
∑

(x,y)∈S `(h(x), y). When `(·, ·)
is the 0− 1 loss of binary classification, `0−1(y, y′) :={

0 if y = y′

1 if y 6= y′
, then, for simplicity, we denote the cor-

responding binary classification risk and its empirical
counterpart by risk(·) and r̂iskS(·) respectively.

Definition The empirical Rademacher complexity of
a function class H, on a sample S = {x1, ...xm} is
defined,

R̂S(H) := IEσ

[
sup
h∈H

(
1
m

m∑
i=1

h(xi)σi

)]

where the σi are Rademacher random variables.

Definition Given a probability distribution over the
draw of training samples from X , the Rademacher
complexity of a function class H, w.r.t. samples of
size m, is defined Rm(H) := IES(R̂S(H)).

Rademacher complexity provides generalization
bounds which are typically sharper than VC bounds,
since it captures the distribution of the data under
consideration:

Theorem 2.1. (Bartlett and Mendelson, 2002) As-
sume a loss function ` : D × Y → IR≥0 is K-Lipschitz
in its first argument and bounded by C, then for any
δ > 0, we have, with probability at least 1− δ over the
draw of a training sample S of size m, that

sup
h∈H

(
risk`(h)− r̂isk`S(h)

)
≤ 2KRm(H) + C

√
log 1

δ

2m
.

3 RELATING COMPLEXITY TO
DOMAIN STRUCTURE

Definition Given a set S of points drawn from a
vector space X a clustering of S is any partition
C = {C1, ...CN} of S. Given a metric d : X ×
X → IR≥0, for each k we define the center of Ck
by ck := argminx∈X

∑
x′∈Ck d

2(x′,x) and note that
if d(·, ·) arises from an inner product, d2(x,x′) =
〈x − x′,x − x′〉, then this is identical to the centroid

ck = 1
|Ck|

∑
x∈Ck x. For each x ∈ S we denote its cor-

responding center by c(x) := ck where k is such that
x ∈ Ck.

3.1 A “DUALITY” OF COMPLEXITY ON
H AND DISTANCE ON X

Given a class of linear functions H : X → IR, any norm
||·|| onH (which would generally capture complexity in
H) gives rise to a specific metric d(·, ·) : X ×X → IR≥0

defined, via the dual norm || · ||∗, by

d(xi,xj) : = ||xi − xj ||∗

= sup
h∈H

|h(xi)− h(xj)|
||h||

.

Call such a metric the implied metric. Intuitively, if
xi and xj can be classified differently by some simple
hypothesis in h they are distant in d(·, ·), and con-
versely if they are distinctly classified only by complex
hypotheses then they are close. Given a norm on H, it
is this implied metric which we use to quantify cluster
structure in X .

3.1.1 Examples

1. Linear classification in an arbitrary RKHS.
Given any kernel K on a space X , consider
the reproducing kernel Hilbert space H =
span{K(x, ·) : x ∈ X}, consisting of all linear
combinations of the features {K(x, ·)}x∈X , with
inner product 〈K(x, ·),K(x′, ·)〉H := K(x,x′),
such that a given point x ∈ X receives the (soft)
classification h(x) = 〈h,K(x, ·)〉H. Kernel meth-
ods often amount to seeking a classifier by min-
imizing, or regularizing in H w.r.t., the norm
||h||H =

√
〈h, h〉H, whose dual, by the arguments

above, defines an implied metric on the feature
space (and by extension on X ),

dK(x,x′) : = d(K(x, ·),K(x′, ·))

= sup
||h||H 6=0

{
|〈h,K(x, ·)−K(x′, ·)〉H|

||h||H

}
=
√
K(x,x) +K(x′,x′)− 2K(x,x′).

2. Transductive classification on a graph.
Given an n-vertex connected graph G = (V, E),
with (weighted) adjacency A, we seek a classi-
fier h ∈ IRn which classifies the vertices V =
{v1, ...vn} according to h(vi) := sgn(h>ei) =
sgn(hi), where we have identified each vertex vi
with the corresponding standard basis vector ei
in IRn. A typical scheme is to minimize a smooth-
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ness functional

FL(h) : =
1
2
||h||2L :=

1
2
h>Lh

=
1
2

∑
(i,j)∈E

(hi − hj)2Aij

induced by the graph Laplacian L, subject to la-
bel constraints (Zhu et al., 2003; Belkin et al.,
2004). By following the above procedure, the dual
of the semi-norm ||h||L, again implies a metric
dL(·, ·) on V as follows,

dL(vi, vj) : = ||ei − ej ||∗L

= sup
h∈IRn,||h||L 6=0

{
|h>(ei − ej)|
||h||L

}

= sup
h∈IRn,||h||L 6=0

{
|(Lh)>L+(ei − ej)|√

(Lh)>L+(Lh)

}

= sup
w∈col(L)

{
|w>L+(ei − ej)|√

w>L+w

}
=
√

(ei − ej)>L+(ei − ej),

where L+ is the pseudoinverse of the graph Lapla-
cian. This metric is equal to the square root of the
electrical resistance between vertices on G (Klein
and Randić, 1993), which arises by viewing the
graph as an electrical network in which each edge
corresponds to a resistor with conductance equal
to the edge weight. This captures the geometry of
a discrete input space by measuring the ease with
which current flows through a body defined by
the data which should be more appropriate than
a generic distance in an ambient space.

3. Semi-supervised classification. The previous
transductive example can be extended “out of
sample” using arguments in (Sindhwani et al.,
2005). We wish to build a classifier h : X →
IR and are given a sample of data points S =
{x1, ...xn} from X , but the true distribution of
data from X is otherwise unknown. Given a ker-
nel K : X × X → IR which defines a RKHS of
functions H over X with inner product 〈·, ·〉H, we
may consider the space H̃ of functions from H
with modified inner product,

〈h, g〉H̃ := γH〈h, g〉H + γS〈Sh, Sg〉S ,

where S(·) is the (linear) point evaluation func-
tion on S, Sh = (h(x1), ...h(xn))>, and 〈·, ·〉S is
an inner product over the space of functions over
S, and γH, γS control the relative weight given
to the inner product in H and the empirical in-
ner product. If 〈Sh, Sg〉S = (Sh)>M(Sg), where

M is a positive semi-definite matrix measuring
smoothness on a graph G formed on S, accord-
ing to (Sindhwani et al., 2005) H̃ is a RKHS with
kernel K̃ : X × X → IR given by

K̃(x,x′) =
1
γH

K(x,x′)

− γS
γH
k>x(γHI + γSMK)−1Mkx′ , (1)

where kx = (K(x1,x), ...K(xn,x))>, and K is
the n × n Gram matrix Kij = K(xi,xj) for i,
j ≤ n.

The norm ||h||H̃ :=
√
〈h, h〉H̃ implies a metric on

X given by

dK̃(x,x′) =
√
K̃(x,x) + K̃(x′,x′)− 2K̃(x,x′),

thus, (an approximation to) the resistance dis-
tance (or another such empirical distance) can be
extended to the whole of X .

3.2 BOUNDING RADEMACHER
COMPLEXITY

We require the notion of strong convexity (see e.g.
Kakade et al., 2008).

Definition In an inner product space U , a function
f : U → IR is κ-strongly convex w.r.t. a norm || · || on
U if for all u,v ∈ U we have f(u)−f(v)−〈∇f(v),u−
v〉 ≥ κ

2 ||u− v||
2.

We require the following lemma, which is a generaliza-
tion of (Kakade et al., 2008, Lemma 4).

Lemma 3.1. Let S be a closed convex set and F :
S → IR≥0 be κ-strongly convex w.r.t. a norm || · ||
over S. Let {Zi}mi=1 be conditionally zero mean ran-
dom variables such that IE[(||Zi||∗)2] ≤ r2i . Then
IE[F ∗(

∑m
i=1 Zi)] ≤

1
2κ

∑m
i=1 r

2
i , where F ∗ denotes the

Legendre-Fenchel conjugate of F .

Proof Let Sk :=
∑k
i=1 Zi. F is κ-strongly convex

w.r.t. || · || and so F ∗ is 1
κ -strongly smooth w.r.t. || · ||∗

(Shalev-Shwartz, 2007), this means

F ∗ (Sm−1 + Zm) ≤ F ∗ (Sm−1)

+ 〈∇F ∗ (Sm−1) , Zm〉+
1

2κ
(||Zm||∗)2.

Denoting IEk−1(·) := IEZk(· | Z1, ...Zk−1) and taking
conditional expectation gives,

IEm−1[F ∗ (Sm)] ≤ F ∗ (Sm−1) +
1

2κ
IEm−1[(||Zm||∗)2],

and since F ∗(0) = supz(−F (z)) ≤ 0 the result follows
by iterated use of the tower rule.
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We now refine a result of (Kakade et al., 2008,
Theorem 3), which uses convex duality to bound
Rademacher complexity, by accounting for cluster
structure.
Theorem 3.2. For a class H of bounded linear func-
tions on a vector space X , if F : H → IR≥0 is κ-
strongly convex w.r.t. a norm || · ||F on H, then for
any sample S = {x1, ...xm} of points from X and all
clusterings C of S we have, for all α > 0,

R̂S(Hα) ≤ B
√
|C|
m

+

√
2αρS
mκ

, (2)

where ρS := 1
m

∑m
i=1 d

2
F (xi, c(xi)), dF (·, ·) is the im-

plied metric on X and B := suph∈Hα,x∈X |h(x)|. Fur-
ther, for all clusterings C of X we have,

Rm(Hα) ≤ BIES

[√
|CS |
m

]
+

√
2α
mκ

IES [
√
ρS ], (3)

where expectation is over the draw of a random sample
S = {X1, ...Xm} from X and CS := {Ck ∈ C : S ∩
Ck 6= Φ} is the clustering restricted to the sample S.

Proof Let C = {C1, ...CN} be an arbitrary clustering
of S, and denote mj := |Cj |.

R̂S(Hα) = IEσ

[
sup
h∈Hα

〈h, 1
m

m∑
i=1

σixi〉

]

= IEσ

[
sup
h∈Hα

(
〈h, 1

m

m∑
i=1

σic(xi)〉

+ 〈h, 1
m

m∑
i=1

σi(xi − c(xi))〉

)]

≤ IEσ

 sup
h∈Hα

〈h, 1
m

N∑
j=1

∑
i:xi∈Cj

σicj〉


+ IEσ

[
sup
h∈Hα

〈h, 1
m

m∑
i=1

σi(xi − c(xi))〉

]
(4)

We take these two terms in turn.

IEσ

 sup
h∈Hα

〈h, 1
m

N∑
j=1

∑
i:xi∈Cj

σicj〉


≤ 1
m

N∑
j=1

IEσ

 sup
hj∈Hα

 ∑
i:xi∈Cj

σi

 〈hj , cj〉


≤ B

m

N∑
j=1

IEσ

∣∣∣∣∣∣
∑

i:xi∈Cj

σi

∣∣∣∣∣∣


≤ B

m

N∑
j=1

√
mj ≤ B

√
N

m
. (5)

The final lines hold by the concavity of the square
root and since

∑N
j=1mj = m. For the second term we

follow the procedure in (Kakade et al., 2008): denote,
θ := 1

m

∑m
i=1 σi(xi − c(xi)). By Fenchel’s inequality

we have, for any λ > 0, 〈h, λθ〉 ≤ F (h) + F ∗(λθ), so,

IEσ

[
sup
h∈Hα

〈h,θ〉
]
≤ IEσ

[
sup
h∈Hα

(
F (h)
λ

)
+
F ∗(λθ)

λ

]
≤ α

λ
+

1
λ

IEσ [F ∗(λθ)] (6)

We have that || λmσi(xi − c(xi))||∗F ≤
λdF (xi,c(xi))

m
and so by Lemma 3.1, IEσ [F ∗(λθ)] ≤
λ2

2κm2

∑m
i=1(dF (xi, c(xi)))2 = λ2ρS

2κm . Therefore by

picking λ =
√

2αmκ
ρS

in (6), we have,

IEσ

[
sup
h∈Hα

〈h,θ〉
]
≤
√

2αρS
mκ

. (7)

Combining (4), (5) and (7) gives the result.

Note that these bounds are optimized by a good k-
means clustering. In line with intuition, if the data
distribution clusters and a good classifier respects this
structure we can learn well with few examples and if
the training sample reveals this structure we can be
more confident in our risk analysis. In the apendix we
suggest a risk analysis and algorithm derived from this
result.

4 APPLICATION TO
TRANSDUCTION

Statistical analyses of induction typically require that
the hypothesis class is not informed by available data
instances. Thus, being necessarily inherited from the
geometry of the ambient representation space of the
data, the metric in which structure is quantified in
our theory is unlikely to ideally capture the intrinsic
geometry of the data distribution. In the settings of
transduction and semi-supervised learning the learner
is more informed about the nature of the data distribu-
tion, reducing an element of uncertainty, and typically
uses this information to choose a data-dependent hy-
pothesis class implying a metric on the input space
which captures the intrinsic geometry of the data. We
will see that the empirically-defined metric implied on
the input space by learning under typical “smooth-
ness” assumptions is very sensitive to the clustering of
data – much more so than any non-empirical metric.

Transduction refers to the learning framework in which
the unlabeled instances from the test set are avail-
able at the start of the learning process, and it is
assumed that they are drawn from the same under-
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lying distribution, so that there is no bias in the la-
beling. For analytical purposes the setting is equiv-
alently posed as follows: denote by X a finite input
space and Y the corresponding label space so that
Z = X×Y = {(x1, y1), ...(xn, yn)} is the joint space of
labeled inputs. From Z is drawn uniformly without re-
placement a training sample of labeled examples S =
{(Xs1 , Ys1), ...(Xsm , Ysm)} ⊆ Z, leaving the remain-
ing test set T = {(Xt1 , Yt1), ...(Xtu , Ytu)} = Z\S.
The training sample together with all unlabeled in-
stances from the test set {Xt1 , ...Xtu} is available to
the learner and each unlabeled data point must be la-
beled. For a given loss function ` : D×Y → IR≥0 a no-
tion of risk suitable for a binary classifier h : X → D in
this transductive setting is the average loss incurred on
the test set, risk`T [h] := 1

|u|
∑u
i=1 `(h(xti), yti) which is

sometimes called the transductive risk.

4.1 TRANSDUCTIVE RADEMACHER
COMPLEXITY

Recalling Section 2, for clarity we henceforth denote
the transductive Rademacher complexity by Rtrs

m (·)
when the draw of a sample is uniform without replace-
ment from a finite set and Rind

m (·) the standard induc-
tive Rademacher complexity. We specialize the bound
provided by (3) to the transductive setting by exploit-
ing the concavity of

√
· and evaluating the expectation.

Corollary 4.1. For a class H of bounded functions
on a finite set X , if F : H → IR is κ-strongly convex
w.r.t. a norm || · ||F on H, then for all clusterings C
of X , for all α > 0,

Rtrs
m (Hα) ≤ BIES

[√
|CS |
m

]
+

√
2αρ
mκ

, (8)

where ρ := 1
n

∑n
i=1 d

2
F (xi, c(xi)), dF (·, ·) denotes the

implied metric on X , B := suph∈Hα,x∈X |h(x)|, ex-
pectation is w.r.t. the (uniform without replacement)
draw of a sample S = {Xs1 , ...Xsm} from X and
CS := {Ck ∈ C : Ck ∩ S 6= Φ} is the clustering re-
stricted to the sample S.

4.1.1 Binary Classifiers With Bounded
Graph Cut

Transduction is typically posed as predicting the label-
ing of a partially labeled n-vertex graph G = (V, E).
By representing each vi ∈ V by the standard basis el-
ement ei ∈ IRn we seek a classifier h ∈ H, such that
h(vi) := hi = h>ei is the (soft) classification of ver-
tex vi. As discussed in Section 3.1.1 one principle in-
volves minimizing the smoothness functional FL(h) :=
1
2h
>Lh, derived from the graph Laplacian. Note that

for h ∈ {−1, 1}n, 1
4h
>Lh = cut(h), the weighted

sum of all edges connecting differently labeled vertices.

This is 1-strongly convex w.r.t. ||h||L :=
√
h>Lh

and the implied metric on V in this case is given by
dL(vi, vj) =

√
(ei − ej)>L+(ei − ej), the square root

of the electrical resistance on the graph. The above
result therefore bounds the Rademacher complexity of
the class

Hφ := {h ∈ {−1, 1}n : h>Lh ≤ φ}

of binary classifiers with bounded cut:

Corollary 4.2. Given a graph G = (V, E), for any
clustering C of V, for all φ > 0,

Rtrs
m (Hφ) ≤ IES

[√
|CS |
m

]
+

√
φρ

m
. (9)

where ρ := 1
n

∑n
i=1 d

2
L(vi, c(vi)) and CS := {Ck ∈

C : S ∩ Ck 6= Φ} is the clustering restricted to the
sample S.

Note that each centroid c(vi) is not a point on the
graph but is represented in IRn by 1

|Ck|
∑
{j:vj∈Ck} ej

where k is such that vi ∈ Ck. Thus if G exhibits good
k-means clustering in the (square root of the) resis-
tance metric then the class of binary classifiers Hφ
is small. Because of the strong convexity framework
we can also extend this analysis to the “p-resistances”
of (Herbster and Lever, 2009), a generalization of p-
norms to graphs.

Analysis For Prototypical Clusters

The prototypical example of a cluster is a clique, we
consider the (unweighted) graph K, a collection of N
cliques K1, ...KN , such that |Ki| = ki, connected arbi-
trarily with edges (see Figure 1).

49

51

Figure 1: A Collection Of Cliques

By standard rules for resistors in series and parallel,
the electrical resistance between any two distinct ver-
tices in an k-clique is 2

k , and, by Rayleigh’s monotonic-
ity principle, the inter-clique distances in a k-clique on
K satisfy d2

L(vi, vj) ≤ 2
k . Now, for any set of n vertices
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V ′ we have

1
n

∑
i:vi∈V′

d2
L(vi, c(vi))

=
1

2n2

∑
i,j:vi,vj∈V′

(ei − ej)>L+ (ei − ej)

≤ 1
2

1
n

∑
i:vi∈V′

1
n− 1

∑
j:vj∈V′,j 6=i

d2
L(vi, vj),

so, on K, the resistance distance from any vertex vi to
the centroid of its clique Kj satisfies d2

L(vi, c(vi)) ≤ 1
kj

.
Thus, for the graph K, (9) implies that

Rtrs
m (Hφ) ≤

√
N

m
+

√
Nφ

mn
. (10)

Accounting for the cluster structure here offers sig-
nificant improvement since the resistance distance be-
tween vertices in separate cliques is much larger (and
on weighted graphs can be arbitrarily large).

Comparison To VC-Dimension Bounds

We now compare the result (9) to the bound of (Klein-
berg et al., 2004) on the VC-dimension of Hφ for un-
weighted graphs:

VCdim(Hφ) = O
(
φ

φ?

)
, (11)

where φ? is the minimum number of edges that must
be removed in order to disconnect the graph. Since

Rm(H) = O
(√

VCdim(H)
m

)
, Rm(H) should be di-

rectly compared to
√

VCdim(H)
m . For an unweighted

collection of cliques K which is fairly easily discon-
nected1, e.g. φ? < n

N , the bound (10) can be pre-

ferred to
√

VCdim(Hφ)
m = O

(√
φ

mφ?

)
for φ reasonably

large, e.g. φ > Nφ?. We note that because of the

appearance of the
√

1
n term in the bound (10) there

is a lot of slack to relax the connectivity of the graph
while still maintaining a good bound. We note how-
ever that at the other end of the connectivity spec-
trum the bound (9) degrades: for example, for an un-
weighted path graph (9) becomes vacuous, at least for
small m, and the VC bound is tight. This situation
is improved by passing to p-resistances (Herbster and
Lever, 2009): essentially the bound (8) holds simulta-
neously over a family of p-norms defined on the graph
labellings and p-resistance, for p→ 1, is more suitable
when the graph is sparse and partially solves the prob-
lem encountered here. Due to lack of space this will be

1Note that φ? doesn’t reveal much about graph struc-
ture and could realistically be as small as 1 in practical
applications

presented in future work. We note however that (9)
degrades here because d2

L(vi, c(vi)) = O(n) for a path
graph, and this situation is probably far from typical
in applications.

4.2 TRANSDUCTIVE RISK ANALYSIS

The following risk bound, due to (Pelckmans and
Suykens, 2007) but generalized here, is valid in the
transductive setting2. For completeness a proof is sup-
plied in the appendix.

Theorem 4.3. (Pelckmans and Suykens, 2007) For
a given loss function ` : D × Y → IR≥0, K-Lipschitz
in its first argument, bounded by C, for any δ > 0,
simultaneously for all h ∈ H,

IPS

(
risk`T (h) ≤ r̂isk`S(h) + 2K

m+ u

max(m,u)
Rtrs

min(m,u)(H)

+ C

(
1
m

+
1
u

)√
min(m,u)

2
log

1
δ

)
≥ 1− δ,

where probability is w.r.t. the (uniform, with-
out replacement) draw of the training sample S =
{(Xs1 , Ys1), ...(Xsm , Ysm)} from Z and T ∪ S = Z.

We specialize this to the case of predicting the binary
labeling of a graph G and apply the bound (9). Let
H = {−1, 1}n and FL(h) = 1

2h
>Lh where L is the

Laplacian of G. For simplicity we suppose m < u.
We have D = Y = {−1, 1} and by choosing the 0 − 1
loss, which is 1

2 -Lipschitz for this function class, and
bounded by 1, we have the following result bounding
transductive binary classification risk of any algorithm
which produces a binary labeling of a graph:

Theorem 4.4. Given a graph G = (V, E) for any
clustering C of V, for any δ > 0, with probability at
least 1 − δ over the draw of S, simultaneously for all
h ∈ {−1, 1}n,

riskT (h)− r̂iskS(h)

≤ n

u

(
IES

[√
|CS |
m

]
+ 2

√
F ′L(h)ρ
m

+

√
log 1

δ

2m

)
, (12)

where ρ := 1
n

∑n
i=1 d

2
L(vi, c(vi)), F ′L(h) :=

minr∈{1,2,...}max
(
φr, 2 r+1

r FL(h)
)
, φr := r log 2

2ρ and
CS := {Ck ∈ C : S ∩ Ck 6= Φ} is the clustering re-
stricted to the sample S.

Proof Define the stratification3: H(0) = {} and, for
t ∈ {1, 2, ...}, H(t) = Hφt . Theorem 4.3 implies that

2As u → ∞ we recover the inductive bound of Theo-
rem 2.1.

3This technique is similar to that employed in (Balcan
and Blum, Theorem 12).
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Lever

with probability at least 1− δ
2t simultaneously for all

h ∈ H(t)\H(t−1) we have,

riskT (h)− r̂iskS(h) ≤ n

u

Rtrs
m (Hφt) +

√
log 2t

δ

2m


≤ n

u

IES

[√
|CS |
m

]
+

√
φtρ

m
+

√
t log 2
2m

+

√
log 1

δ

2m


≤ n

u

IES

[√
|CS |
m

]
+ 2

√
φtρ

m
+

√
log 1

δ

2m

 . (13)

Now noting that for r ∈ {1, 2, ...}, φt > φr implies that
t ≥ r + 1 and φt ≤ t

t−1φt−1 ≤ r+1
r φt−1, so

φt ≤ min
r∈{1,2,...}

max
(
φr,

r + 1
r

φt−1

)
≤ F ′L(h) (14)

The result follows by combining (14) with (13) and
applying the union bound over all t ∈ {1, 2, ...}.

This bound also suggests an algorithm obtained by
minimizing the bound simultaneously over classifiers
and clusterings; essentially a Laplacian regularization
whose regularization parameters are determined by the
cluster structure of the graph.

4.2.1 Comparison

We compare Theorem 4.4 to similar bounds in the lit-
erature. The following bound4 is provided in (Han-
neke, 2006).

Theorem 4.5. (Hanneke, 2006, Corollary 2) With
probability at least 1 − δ simultaneously for all h ∈
{−1, 1}n,

riskT (h) ≤ r̂iskS(h) +

√
n(u+ 1)

u2

FL(h)
φ? lnn+ ln 2(QW+1)

δ

2m
(15)

where φ? is the minimum number of edges that must be
removed to disconnect the graph, W :=

∑
(i,j)∈E Aij,

where A is the (weighted) adjacency of G, and Q is the
smallest positive rational number such that QAij ∈ ZZ
for all (i, j) ∈ E.

Since this is essentially equivalent to a bound derived
from a the VC-dimension bound (11), we note that (ig-
noring multiplicative constants) (12) will be preferred
to (15) whenever the Rademacher complexity bound

4We note that (Hanneke, 2006) provides a sharper im-
plicit bound. Since we are interested in the essential depen-
dence of these bounds on structural quantities of the graph
we compare, for simplicity, to the explicit bound only.

(9) is preferred to the VC-dimension bound (11), and
we refer the reader to the discussion of that subject
in Section 4.1.1: for clustered graphs which are fairly
easily disconnected, (12) seems preferable, neverthe-
less (15) remains tighter for sparser graphs, such as a
path graph.

The following result relates the cardinality of Hφ and
transductive classification risk to the spectrum {λi}ni=1

of the graph Laplacian:

Theorem 4.6. (Pelckmans et al., 2007, Theorem 1
and Theorem 2) With probability at least 1− δ,

sup
h∈Hφ

|riskT (h)− r̂iskS(h)| ≤
√

2(n−m+ 1)
nm

log
|Hφ|
δ

with |Hφ| ≤
(
en
nφ

)nφ
where nφ := |{λi : λi ≤ φ}|.

We compare these results with that given by (12). For
the simple toy example given in Figure 1, nφ = |V|
for φ ≥ 3 and so the bound on |Hφ| is vacuous. For a
practical comparison we consider the MNIST data set
of hand-written digits (Lecun and Cortes) and form a
4-NN graph from 500 instances each of the digits “0”
and “1”. The two approaches to bounding the richness
of Hφ on this data set and graph are summarized in
Table 1 (results are averaged over 5 randomly chosen
sets of data). The (average) true labeling y has a cut
of 8, and so y>Ly = 32.

Table 1: Practical Evaluation Of Complexity Bounds
φ nφ |Hφ| (Thm. 4.6) Rtrs

m (Hφ) (Eq. (9))
10 902

(
1000e
902

)902 1√
m

(√
2 + 0.57

√
10
)

25 1000 e1000 1√
m

(√
2 + 0.57

√
25
)

50 1000 e1000 1√
m

(√
2 + 0.57

√
50
)

A comparison of the consequent bounds given by The-
orem 4.6 and Theorem 4.3 apparently demonstrate
that the bound (9) on the Rademacher complexity of
Hφ yields a sharper quantification of the richness of
Hφ on this data. Note that nφ tends to be very large.

5 APPLICATION TO
SEMI-SUPERVISED LEARNING

The above ideas provide a semi-supervised bound in
which the complexity is entirely related to the clus-
ter structure of the data sample. We are given a set
S = {(Xs1 , Ys1), ...(Xsm , Ysm)} of m labeled instances
drawn i.i.d. from PXY over Z = X × Y and a set
XT = {Xt1 , ...Xtu} of u unlabeled instances drawn
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i.i.d. from the marginal PX . Let XS := {Xs1 , ...Xsm}
and I := XT ∪ XS denote the set of all n = m + u
instances. Consider a space H of bounded hypotheses
mapping X to D and a complexity measure F : H →
IR≥0, κ-strongly convex w.r.t. a norm || · ||F on H
and which is not informed by the sample of data in-
stances, and let Hα := {h ∈ H : F (h) ≤ α}. We then
consider the space H̃ of functions from H with “mod-
ified” complexity F̃ : H → IR≥0, κ̃-strongly convex
w.r.t. a norm || · ||F̃ on H, which can take into ac-
count an empirical complexity measure derived from
the entire sample of instances I. The following semi-
supervised bound on hypotheses from the empirically
defined H̃β := {h ∈ Hα : F̃ (h) ≤ β}, like the sample
complexity result of (Balcan and Blum, 2005, Theo-
rem 5) relies on the (non-empirical) Hα to prove con-
vergence of transductive to inductive risk. It is proved
in the appendix. The idea here is that the terms relat-
ing to the (non-empirical) hypothesis space Hα decay
as O( 1√

n
).

Theorem 5.1. Let ` : D × Y → IR≥0 be a loss func-
tion, K-Lipschitz in its first argument and bounded by
C. Then simultaneously for all h ∈ H̃β we have,

IP

(
risk`(h) ≤ r̂isk`S(h) + 2KRtrs

m (H̃β) + 2KR̂ind
I (Hα)

+ C

(√
1

2m
log

2
δ

+ 3

√
1

2n
log

4
δ

))
≥ 1− δ, (16)

where probability is w.r.t. the draw of the labeled and
unlabeled data from PXY . Further, for all clusterings
C, C′ of I,

Rtrs
m (H̃β) ≤ BIE

[√
|CXS |
m

]
+

√
2β
mnκ̃

∑
X∈I

d2
F̃

(X, c(X)),

and,

R̂ind
I (Hα) ≤ B

√
|C′|
n

+
1
n

√
2α
κ

∑
X∈I

d2
F (X, c′(X)),

where CXS := {Ck ∈ C : XS ∩ Ck 6= Φ} is the
clustering restricted to the labeled instances, expecta-
tion is with respect to the (uniform without replace-
ment) draw of XS from I, dF (·, ·) and dF̃ (·, ·) are
the metrics on X implied by || · ||F and || · ||F̃ , and
B := suph∈Hα,x∈X |〈h,x〉|.
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