
Lever

A PROOFS

A.1 PROOF OF THEOREM 4.3

The theorem is due to (Pelckmans and Suykens, 2007),
but no full proof could be found in the literature so we
supply one here. The proof follows the familiar strat-
egy of using a McDiarmid-type inequality followed by
the introduction of a ghost sample, requiring a little
more manipulation due to the transductive setting.

We require some preliminaries: let P be the set of all n!
permutations of n = m+u objects Z: for each π ∈ P,
each πi is a distinct element of Z. Let πij be the
permutation vector obtained by exchanging element i
with j in π. We use the following lemma.
Lemma A.1. (El-Yaniv and Pechyony, 2007, Lemma
3) Suppose that, for each π, f : P → IR is symmet-
ric on (π1, ...πm) and on (πm+1, ...πn) and |f(π) −
f(πij)| ≤ β for all i and j. Let π be drawn uniformly
at random from P, then

IPπ (f(π)− IEπ(f(π)) ≥ ε) ≤ exp
(

−2ε2

β2 min(m,u)

)
.

We now prove the theorem.

Proof Define D(S) := suph∈H
(

risk`T (h)− r̂isk`S(h)
)

and notice that D satisfies the conditions of Lemma
A.1 with β = C( 1

m + 1
u ), thus with probability at least

1− δ over the draw of S

D(S) ≤ IES(D(S)) + C
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1
m

+
1
u

)√
min(m,u)

2
log

1
δ
.

(17)

Denote Zi := (Xi, Yi) for each (Xi, Yi) drawn from Z.
For each h ∈ H denote `h(Zi) := `(h(Xi), Yi) so that
LH := {`h : h ∈ H} is the class of loss functions
indexed by H over Z. We have

IES(D(S)) = IES
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=
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[
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(
1
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m∑
i=1
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=
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[
sup
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(
IES′

[
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`h(Z ′si)

]

− 1
m

m∑
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`h(Zsi)

)]
(19)

where S ′ = {Z ′s1 , ...Z
′
sm} = {(X ′s1 , Y

′
s1), ...(X ′sm , Y

′
sm)}

is a familiar “ghost sample” drawn according to the
same distribution as S, that is, uniformly without re-
placement from Z. Continuing, the r.h.s. of (19) is no
greater than,

n

u
IES,S′

[
sup
h∈H

(
1
m

m∑
i=1

`h(Z ′si)− `h(Zsi)

)]

≤ n

u
IES,S′,σ

[
sup
h∈H

(
1
m

m∑
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`h(Z̃ ′si)− `h(Z̃si)

)]
(20)

=
n

u
IES,S′,σ

[
sup
h∈H

(
1
m

m∑
i=1

σi`h(Z ′si)− σi`h(Zsi)

)]
,

(21)

where the {σi}mi=1 are independent Rademacher vari-
ables and where Z̃si := 1

2 (1+σi)Zsi + 1
2 (1−σi)Z ′si and

Z̃ ′si := 1
2 (1− σi)Zsi + 1

2 (1 + σi)Z ′si .

Inequality in (20) occurs because S̃ := {Z̃s1 , ...Z̃sm}
and S̃ ′ := {Z̃ ′s1 , ...Z̃

′
sm} can each contain repeated in-

stances and are less likely than S and S ′ to have in
common a copy of the same labeled point, thus the
expected supremum is larger: we prove this formally,
for a particular σ, S and S ′ denote,

K := {(i, j) : Zsi = Z ′sj}

K̃ := {(i, j) : Z̃si = Z̃ ′sj},

and call such occurances “clashes”. Put N := |K| −
|K̃| ≥ 0 so that the action of σ on S, S ′ swaps N
clashes; there are N instances which S and S ′ had in
common, which occur in one of S̃, S̃ ′ with multiplicity
2. Now let m0 = m− |K| and define,

Σ := {ζ1, ...ζm0} := S\{Zi : (i, j) ∈ K for some j}
Σ′ := {ζ ′1, ...ζ ′m0

} := S ′\{Z ′j : (i, j) ∈ K for some i}

Σ̃ := {ζ̃1, ...ζ̃m0+N} := S̃\{Z̃i : (i, j) ∈ K̃ for some j}

Σ̃′ := {ζ̃ ′1, ...ζ̃ ′m0+N} := S̃ ′\{Z̃ ′j : (i, j) ∈ K̃ for some i}

so that, for example, Σ is S with any elements common
to S and S ′ removed. Note that {ζ1, ...ζm0 , ζ

′
1, ...ζ

′
m0
}

are all distinct. Further, w.l.o.g. we order Σ̃ and Σ̃′

such that at least one copy of any elements which oc-
cur in either Σ̃ or Σ̃′ with multiplicity 2 (there are
N such elements in total, shared between Σ̃ and Σ̃′)
is placed in a position j where m0 < j ≤ m0 + N .
This ordering ensures {ζ̃1, ...ζ̃m0 , ζ̃

′
1, ...ζ̃

′
m0
} are all dis-

tinct. Because of this, the sets {ζ1, ...ζm0 , ζ
′
1, ...ζ

′
m0
}

and {ζ̃1, ...ζ̃m0 , ζ̃
′
1, ...ζ̃

′
m0
} have the same distribution:

they are both drawn uniformly without replacement
from Z. Now we set

h∗ := argmax
h∈H

m0∑
i=1

`h(ζ̃ ′i)− `h(ζ̃i)
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and note,
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− sup
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(
1
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[
1
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]
≥ 0.

The final line holds because, conditional on
{ζ̃1, ...ζ̃m0 , ζ̃

′
1, ...ζ̃

′
m0
}, elements of {ζ̃ ′m0+1, ...ζ̃

′
m0+N

}
are drawn from Z\{ζ̃1, ...ζ̃m0} and elements of
{ζ̃m0+1, ...ζ̃m0+N} are drawn from Z\{ζ̃1, ...ζ̃m0}.
Thus (20) holds.

To continue, we finally just note,

(21) ≤ 2
n

u
Rtrs
m (LH)

≤ 2K
n

u
Rtrs
m (H),

The final line is a consequence of the contraction
inequality for Rademacher complexities, (Meir and
Zhang, 2003, Theorem 7).

Finally, notice the symmetry in (18) for m ↔
u and that by producing precisely the sym-
metrically opposite argument we would derive
IES(D(S)) ≤ 2K n

mR
trs
u (H), hence IES(D(S)) ≤

2Kn
max(m,u)R

trs
min(m,u)(H).

A.2 PROOF OF THEOREM 5.1

Proof Let T := {(Xt1 , Yt1), ...(Xtu , Ytu)} where the
Yti are drawn from the conditional PY |X . The trans-
ductive bound Theorem 4.3 implies that,

IP

(
sup
h∈H̃β

(
risk`S∪T (h)− r̂isk`S(h)

)
≤ 2KRtrs

m (H̃β)

+ C

√
1

2m
log

2
δ

)
≥ 1− δ

2
,

the empirical counterpart of Theorem 2.1 (see e.g.
Boucheron et al., 2005) implies that

IP

(
sup
h∈Hα

(
risk`(h)− risk`S∪T (h)

)
≤ 2KR̂ind

I (Hα)

+ 3C

√
1

2n
log

4
δ

)
≥ 1− δ

2
,

and (16) follows from the union bound. The final re-
sults follow from the bounds (8,2) on the transduc-
tive Rademacher complexity and empirical inductive
Rademacher complexity.

B STRUCTURE-DEPENDENT
RISK BOUND AND
REGULARIZATION

Theorem 3.2 supplies a risk bound in terms of the ob-
served cluster structure in the training sample.
Theorem B.1. Using the notation of Theorem 3.2,
and when `(·, ·) is positive and bounded by C, for all
h ∈ H,

IPS

(
risk`(h) ≤ r̂isk`S(h) + 2K

(
B

√
|C|
m

+ 2

√
2F ′(h)ρS
mκ

)
+ 3C

√
log 2

δ

2m

)
≥ 1− δ.

where F ′(h) := minr∈{1,2,...}max
(
αr,

r+1
r F (h)

)
and

αr := 9C2κr log 2
16K2ρS

.

Proof Define the stratification: H(0) = {} and, for
t ∈ {1, 2, ...}, H(t) = Hαt . The empirical version of
Theorem 2.1 (see e.g. (Boucheron et al., 2005)) implies
that with probability at least 1− δ

2t simultaneously for
all h ∈ H(t)\H(t−1) we have,

risk`(h)− r̂isk`S(h) ≤ 2KR̂S(Hαt) + 3C

√
log 2t+1

δ

2m

≤ 2K

(
B

√
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(
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√
log 2

δ

2m
. (22)

Now noting that for r ∈ {1, 2, ...}, αt > αr implies
that t ≥ r + 1 and αt ≤ r+1

r αt−1 so

αt ≤ min
r∈{1,2,...}

max
(
αr,

r + 1
r

αt−1

)
≤ F ′(h) (23)
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The result then follows by combining (23) with (22)
and applying the union bound over all t ∈ {1, 2, ...}.

Theorem B.1 suggests an algorithm: pick the classifier
which minimizes the bound. this is simply regular-
ization w.r.t. the complexity F (·) but the regulariza-
tion parameters are determined by the observed clus-
ter structure in the data. In principle the information
needed to choose the regularization parameter should
be encoded in the data, so it would be of interest to
understand this relationship and reduce the need for
cross validation.

A special case of the above is RKHS regularization, ob-
tained by picking the 1-strongly convex Hilbert space
norm as a complexity, F (h) = 1

2 ||h||
2
H. The cluster

structure in this case is that in feature space.


