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Abstract

Bayesian principal component analysis (BPCA),
a probabilistic reformulation of PCA with
Bayesian model selection, is a systematic ap-
proach to determining the number of essential
principal components (PCs) for data representa-
tion. However, it assumes that data are Gaussian
distributed and thus it cannot handle all types of
practical observations,e.g. integers and binary
values.

In this paper, we propose simple exponen-
tial family PCA (SePCA), a generalised family
of probabilistic principal component analysers.
SePCA employs exponential family distributions
to handle general types of observations. By us-
ing Bayesian inference, SePCA also automati-
cally discovers the number of essential PCs. We
discuss techniques for fitting the model, develop
the corresponding mixture model, and show the
effectiveness of the model based on experiments.

1 Introduction

Principal component analysis (PCA) is a popular dimen-
sion reduction tool for statistical data analysis. In appli-
cations of PCA, it is necessary to determine the number
of essential principal components (vectors of PC loadings,
“PCs” for short) for data representation. Bayesian PCA
(BPCA) (Bishop, 1999a), an important extension to proba-
bilistic PCA (PPCA) (Tipping and Bishop, 1999), has been
proposed to determine the number of essential PCs. How-
ever, PPCA and BPCA assume that observations are sam-
pled from Gaussian distributions in thesample space. In
practice, however, this assumption is not usually true. Par-
ticularly, it certainly fails when the observations are notin
the form of real-valued vectors,e.g. the sample space can
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be of integers or binary values.

Exponential family PCA (EPCA) (Collins et al., 2002),
on the other hand, models general types of observed data
by treating PCA in a maximum likelihood framework and
defining the likelihood with exponential family distribu-
tions. However, EPCA is a deterministic model in terms
of the latent variables, where latent variables refer to PCs
and low dimensional representations (Welling et al., 2008).
Thus EPCA has difficulty using Bayesian inference to deal
with over-fitting problems. Recently, a probabilistic treat-
ment to EPCA has been proposed (Mohamed et al., 2009).
However, it lacks an explicit scheme for model selection,
which is important in practice.

In this paper, we develop a new family of generative mod-
els of PCA, simple exponential family PCA (SePCA), in
which parameters of a set of exponential family distribu-
tions are represented by combining PCs. In other words,
given observations, these exponential family distributions
define the likelihood functions of the latent variables,i.e.
the PCs and the low-dimensional representations. Such
likelihood functions link real-valued latent variables and
observations of general types,e.g. integers and binary val-
ues. The link is promising because we can imposeau-
tomatic relevance determination (ARD) (MacKay, 1995)
on the real-valued latent variables and thus determine the
effective number of necessary PCs. Roughly speaking,
SePCA prefers simple models, and the chosen number of
PCs reflects the complexity of the hidden structures in the
observed data.

ARD prior makes fitting SePCA easy. In SePCA,maximum
a posteriori (MAP) estimation can be employed for the in-
ference on the latent variables. This is useful in the context
of the exponential family likelihood functions, where exact
marginalisation is commonly difficult. The simple infer-
ence also forgoes the need for configuring the conjugate
prior for each specific distribution of the exponential fam-
ily. We also construct mixtures of the model, where both
the partition of the data and the local models are automati-
cally determined as a part of the fitting.

In the remainder of this paper, we review relevant litera-
tures and introduce the necessary background of PCA in
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Section 2. The proposed SePCA model and the correspond-
ing mixture extension are developed in Sections 3 and 4,
respectively. In Section 5, we test the proposed model with
experiments and compare the results against those from re-
lated techniques. Section 6 concludes the paper.

2 Related Work

PCA is a popular data analysis tool and has been applied
to a wide variety of applications (Jolliffe, 1986; Turk and
Pentland, 1991). It searches for PCs, onto which the projec-
tions of data have the maximum variance (Hotelling, 1933).
Alternatively, it minimises the squared error for data recon-
struction by using PCs. One concern regarding PCA and
most of its variants is that they are deterministic models
based on task-specific heuristic premises. It is difficult to
justify in principle those heuristics, and they lack semantics
for systematically treating the problem of model selection.

Probabilistic models, on the other side, provide a sys-
tematic approach to the tradeoff between over-fitting and
model complexity. Tipping and Bishop (1999) proposed
PPCA, where the low dimensional representation is taken
as underlying latent random variables and PCs are the max-
imum likelihood estimation of parameters. A further step in
probabilistic treatment of PCA, Bayesian PCA (BPCA), is
then introduced by Bishop Bishop (1999a,b). BPCA treats
PCs as random variables rather than parameters. This treat-
ment permits prior belief on the PCs and leads to automatic
model selection. The prior used by BPCA is motivated by
ARD regularisation of neural networks (MacKay, 1995).
ARD treats each PC as a class of weights and computes its
“decay rate” (MacKay, 1995, Sec. 3 and 7) to determine
whether it is relevant. It works only for real-valued PCs.
Therefore, given discrete or binary observations, ARD can-
not work together with the models that search in thesample
space to find PCs for reconstructing the observed data.

On the other hand, the exponential family distributions
have been used to model discrete or binary data (McCul-
lagh and Nelder, 1989; Collins et al., 2002; Sajama and
Orlitsky, 2005; Mohamed et al., 2009; Guo, 2009). By in-
corporating the exponential family distributions into gener-
ative models, we reach a new family of probabilistic PCA
models, which can handle general types of observations,
can select models automatically, and can be extended to
mixture models.

Before introducing the proposed model, it is helpful to un-
derstand the maximum likelihood interpretation of PCA (in
contrast to the viewpoint of maximum variance) and the in-
tegration of exponential family distributions under the PCA
framework.

Maximum Likelihood Interpretation In PCA, a sample
x is represented with a set of scores, which is used to com-
bine the PCs. Then the corresponding combinationθ is

Table 1: Frequently used notations
N The number of samples in the observed data set
D Dimension of the sample space,i.e. the number

of features in the input space
d Dimension of the latent space (latent dimen-

sion),i.e. the number of PCs
xn The n-th sample in the observed data set as a

D-dimensional tuple
X The observed data set as a matrix of sizeD×N

yn ∈ R
d The vector of then-th PC scores

Y ∈ R
d×N The matrix of PC scores

wj ∈ R
D The vector of thej-th PC loadings

W ∈ R
D×d The matrix of PC loadings

the reconstruction ofx by the PCA model (See Sec. 3 for
more details about the denotations). From a probabilistic
viewpoint, the discrepancies betweenx andθ can be taken
as noises with a particular distribution. Then(x − θ) is a
sample of a random noise variable,i.e. samples are drawn
from a distribution with meanθ

p(x|θ) = pNoise(x − θ). (1)

This is the likelihood function ofθ for the observed sample
x. PCA can then be interpreted as maximising the likeli-
hood of a set of{θ1, . . . , θN}. This maximum likelihood
interpretation relates to the traditional view of PCA as fol-
lows: if pNoise is chosen to be a Gaussian, the negative
log-likelihood reduces to the squared reconstruction error.

Exponential Family PCA Based on the maximum like-
lihood interpretation, we can replace Gaussian distribu-
tion with general distributions,e.g. the exponential fam-
ily (Collins et al., 2002), to naturally extend PCA to other
noise models.

The conditional probability ofx on θ takes thecanonical
form of the exponential family of distributions

p(x|θ) = exp{xT
θ + g(θ) + h(x)}, (2)

whereθ encodes thenatural parameters. In general,θ does
not lie in the same sample space asx, as it does in the spe-
cial case of the Gaussian distribution. Theparameter space
of θ is Euclidean,i.e. the outputs in (2) are not themselves
noise-free “virtual data points” as the outputθ in (1), when
the data is discrete or of binary values. Instead, they are of
the form of a standard real-valued vector regardless of the
type of the observed data.

3 Simple Exponential Family PCA

This section details the proposed simple exponential family
PCA, or SePCA for short, that can be applied to modelling
general types of data. This paper uses the following nota-
tion conventions. Boldface Latin letters represent matrices
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and vectors, where uppercase and lowercase are for matri-
ces and vectors, respectively. We use column vectors by
default, and a vector also refers to a column in the corre-
sponding matrix,e.g. xn is then-th column ofX. Fre-
quently used symbols are listed in Tab. 1.

SePCA is defined as follows. Given observationsX,
SePCA automatically determinesd by introducing ARD
(MacKay, 1995), and findsd vectors of PC loadings,W,
andd PC scores for each observation, collected inY, so
each column ofΘ = WY specifies the natural parameters
of an exponential family distribution to generate the corre-
sponding column ofX.

3.1 Model specification

Figure 1(a) shows the generative process of SePCA. To
generatexn, we begin by drawingd scores asyn, which
is the low dimensional representation ofxn, from a Gaus-
sian prior,

p(yn) = N (yn|0, I), (3)

where0 andI are all-zero vectors and identity matrix with
appropriate dimensions, respectively. The following stepis
to generate the PCsw1, . . . ,wd. Eachwj has an isotropic
Gaussian prior controlled by a precision (inverse variance)
hyper-parameter, and thus

p(W|α) =

d
∏

j=1

N (wj |0, α−1
j I), (4)

whereα = {α1, . . . , αd} represents the set of precision
hyper-parameters. The latent dimensiond can be tenta-
tively set sufficiently large,e.g. d = D − 1. Then fitted
α will control whether eachwj is valid or switched off,
which is motivated by the “weight decay parameters” in
ARD (MacKay, 1995).

With W andyn, the natural parameter vectorθn = Wyn

is ready for the exponential family distribution that gener-
atesxn. Thusxn is drawn from

p(xn|W,yn) = Exp(xn|θn), θ = Wyn, (5)

whereExp(xn|θn) is the exponential family distribution
defined in (2). Thenp(xn|W,yn) is the likelihood func-
tion of W and yn. Note that we may also write it as
p(x|θn) for convenience.

Putting (3), (4) and (5) together, we arrive at the joint dis-
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Figure 1: Diagram showing the generative process of the
models: (a) SePCA and Bayesian PCA (Bishop, 1999a),
(b) Exponential family PCA (Collins et al., 2002), and(c)
Bayesian EPCA (Mohamed et al., 2009).

tribution. Its logarithmic form is given by

log p(X,Y,W|α)

= log p(X|Y,W) + log p(Y) + log p(W|α)

=
∑

n

(

xT
nWyn + g(Wyn) + h(xn)

)

−
1

2

(

d(N + D) log(2π) +
∑

n

‖yn‖
2
2

+

d
∑

j=1

(

αj‖wj‖
2
2 − D log αj

)

)

. (6)

We graphically compare the proposed SePCA against
Bayesian PCA (BPCA Bishop, 1999a), exponential fam-
ily PCA (EPCA Collins et al., 2002) and Bayesian expo-
nential family PCA (BEPCA) (Mohamed et al., 2009) in
Fig. 1. The probabilistic structure of the proposed model
(Fig. 1(a)) appears to resemble that of BPCA. The main
difference between them is the conditional distribution of
x given W andy. In BPCA, p(x|W,y) is a Gaussian,
while we adopt the exponential family forp(x|W,y) in
order to generalise the scope ofx from real-valued vectors
to general types. EPCA is essentially a deterministic model
(Fig. 1(b)). We turn its parametersW andY to latent vari-
ables, where the probabilistic treatment helps handle issues
such as over-fitting. BEPCA is a fully probabilistic treat-
ment of EPCA (Fig. 1(c)). It introduces an additional layer
of probabilistic structure as the prior ofY. BEPCA differs
from the proposed model in that the prior of each PCw

is assumed to be the conjugate prior of the chosen likeli-
hoodp(x|θ). Conjugate prior provides mathematical con-
venience; at the cost of this convenience, SePCA achieves
(i) forgoing hyper-parameter tuning, (ii) explicitly yielding
the effective number of necessary PCs and (iii) simplifying
implementation by using the prior of Gaussian distribution
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for different likelihood functions.

In the rest of this section, we provide details on fitting
the SePCA model in an EM framework Hunter and Lange
(2004); Gormley and Murphy (2008).

3.2 Parameter estimation

The number of effective PCs is determined by estimating
the continuous parameterα. The marginal likelihood func-
tion of α for observationsX is

p(X|α) =

∫

W,Y

p(X,Y,W|α)dYdW (7)

=

∫

W,Y

p(X|Y,W)p(Y)p(W|α)dYdW.

In order to maximisep(X|α), we consider it as marginali-
sation overW

p(X|α) =

∫

W

p(X|W)p(W|α)dW, (8)

where

p(X|W) =

∫

Y

p(X|Y,W)p(Y)dY. (9)

Then the derivative ofp(X|α) w.r.t. eachαj is

∂p(X|α)

∂αj

=

∫

W

p(X|W)p(W|α)

[

D

2αj

−
‖wj‖2

2

2

]

dW

=
p(X|α)

2

[

D

αj

−

∫

W

p(W|X, α)‖wj‖
2
2dW

]

, (10)

wherep(W|X, α) = p(X|W)p(W|α)/p(X|α). Setting
this derivative to zero, the estimation ofαj ∈ α is as fol-
lows,

αj =
D

EW|X [‖wj‖2
2]

, (11)

where the expectation is taken over the posterior distribu-
tion p(W|X, α). Note that the evaluation of (11) is itera-
tive, because the posterior ofW is itself affected byα (cf.
the integrand in (8)).

If the number of observations is sufficiently large and the
posterior ofW is peaked, for evaluating (11), it is suffi-
cient to make a further simplification by replacing the ex-
pectation with the point estimate. We then approximate the
update ofαj with

αj =
D

‖wMP
j ‖2

2

, (12)

wherewMP
j is the MAP estimation ofwj . Therefore the

problem of estimating the model parameter is reformulated
as an optimisation w.r.t.W.

3.3 Inference

Inference on W Consider the posterior distribution of
W givenX andα

p(W|X, α) ∝ p(X|W)p(W|α). (13)

To maximise p(W|X, α), we can instead maximise
log p(X|W) + log p(W|α). However, it is difficult to
carry out this optimisation directly. The termlog p(X|W)
in the objective function cannot be represented explicitly
in terms ofW, becausep(X|Y,W) contains a term of
some general exponential family density (cf. (9)). In this
paper, we approximate the log-marginal likelihood with a
lower bound and adopt the expectation-maximisation (EM)
scheme for optimisation.

The lower bound is derived as follows. For an arbitrary
distributionq(Y) on Y, according to Jensen’s inequality,
we have

log p(X|W) =

∫

Y

q(Y) log p(X|W)dY

=LqY (W) + KL(q‖p), (14)

where KL(q‖p) is the Kullback-Leibler divergence be-
tweenq(Y) and the posterior distributionp(Y|W,X), and
LqY (W) is the lower bound. It is defined by

LqY (W) =

∫

Y

q(Y) log p(X,Y|W)dY + HqY , (15)

whereHqY is the entropy ofq and independent ofW.

The mode of the posterior distribution ofW can be approx-
imated by theW that maximisesLqY (W) + log p(W|α)

WMP ≈ argmax
W

{LqY (W) + log p(W|α)} . (16)

SinceLqY (W) containslog p(X,Y|W), which generally
involves non-trivial transformations ofW, we then adopt
gradient-based maximisation to updateW. The gradient
of the maximisation objective in (16) w.r.t.W is

∂(LqY (W) + log p(W|α))

∂W
=

∂LqY (W)

∂W
− Wdiag[α],

(17)

wherediag[α] represents ad×d diagonal matrix with diag-
onal elementsα1, . . . , αd. For∂LqY (W)/∂W, substitute
p(X,Y|W) = p(X|Y,W)p(Y) into the integrand in (15)
and refer to (6). We have (omitting the constant termh(x))

∂LqY (W)

∂W
=

∫

Y

q(Y)
∂ log p(X,Y|W)

∂W
dY

=

∫

Y

q(Y)
[

g′(Θ)YT + XYT
]

dY

=EY

[

g′(Θ)YT
]

+ XEY [Y]
T

, (18)
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whereΘ = WY. Note that for an array (vector or ma-
trix) of inputs, g(·) in (6) represents the sum of element-
wise evaluation,g(Θ) =

∑

i,j g(θi,j). Then g′(Θ) in
(18) is a matrix, where the(i, j)-th entry isg′(θi,j). EY

is the expectation over the distributionq(Y). In the ex-
pectation step, we matchq(Y) to the posterior distribution
p(Y|X,W). Details are given below.

Inference onY For q(Y), it is necessary to have (i) its
representation and (ii) a method of computing the expec-
tations over it. The simplest method is to find the MAP
estimation ofY by maximisinglog p(X,Y|W). The ex-
pectation in (18) can then be approximated in the way simi-
lar to the simplification of the inference forW. Thus in the
simple scheme, the inference onW andY is an alternat-
ing optimisation algorithm. Algorithm 1 summarises the
key steps to which we add the following remarks. First, the
two steps of the alternating optimisation are both convex.
However, the joint optimisation is not convex in general.
Second, if we carry out the optimisation sequentially1, the
algorithm can be deemed as a regularised version of that
of EPCA, which is itself reminiscent of a classical method
(Csiszár and Tusnády, 1984) of solving conventional PCA
(Collins et al., 2002). Thus, the algorithms of (Csiszár and
Tusnády, 1984) and EPCA, which are both deterministic,
have a new interpretation as solving for the MAP estima-
tion of a probabilistic model.

Algorithm 1 : Inference on the latent variablesW andY

Input : X, α, WInit

Output : WMP, YMP

WMP←WInit

while not converge do
YMP← argmax

Y

(

log p(X|WMP,Y) + log p(Y)
)

WMP ← argmax
W

(LqY (W) + log p(W|α))
end

4 Mixtures of SePCA

The probabilistic characteristic of SePCA grants us a nat-
ural mechanism to build a mixture of local models to deal
with complex data structures.

ConsiderM local SePCA models with the mixing pro-
portion parametersΠ = {π1, . . . , πM},

∑

m πm = 1 and
πm > 0, we have

p(x) =

M
∑

m=1

πmp(x|m), (19)

wherep(x|m) is the evidence of a local modelm for ob-
servingx. In our model, we havep(x|m) = p(x|α(m)) (cf.

1Introduce an inner loop, in each step, the latent variables
responsible for one latent dimension are optimised,i.e. Loop
over j = 1, . . . , d, for eachj, alternately optimisewj and
y

1
(j), . . . , yn(j).

(7)), where the superscript(m) indicates the local SePCA
model. Then the marginal log-likelihood function of a mix-
ture model is

L(A,Π) =
N

∑

n=1

log p(xn|A,Π)

=

N
∑

n=1

log

{

∑

zn

M
∏

m=1

[

πmp(xn|α
(m))

]zn,m

}

, (20)

where A = {α(1), . . . , α(M)} and zn is an M -
dimensional binary latent variable for each sample,zn,m =
1 when then-th sample is associated with them-th lo-
cal SePCA model andzn,m = 0, otherwise. There-
fore for zn,m = 1, p(zn|Π) = πm and p(xn|zn,A) =
p(xn|α(m)).

The mixture model is fitted by using an EM algorithm. Ac-
cording to Jensen’s inequality, a lower bound of (20) is

L(A,Π) ≥ LqZ(A,Π) + Hqz

=

N
∑

n=1

∑

zn

q(zn) log {p(xn, zn|A,Π)} + Hqz (21)

for an arbitrary distributionq(zn). The Hqz is the en-
tropy of q(zn). We can estimateA andΠ by maximising
LqZ(A,Π).

1. Estimation ofΠ is similar to the corresponding proce-
dure used in fitting Gaussian mixtures (e.g. Bishop, 2007,
Ch. 9 and 10). We findΠ = argmaxΠ LqZ(A,Π), sub-
ject to

∑

m πm = 1 andπm > 0. Based on the Lagrangian
method, the estimate forπk ∈ Π is

πk =

∑

n Rn,k
∑

m,n Rn,m

=
Rk

∑

m Rm

, (22)

where the matrixR representsq(z), Rn,m is the probability
Prob{zn,m = 1}, according toq(z), andRm=

∑

nRn,m.

2. Estimation ofA consists of updatingα(k) for each local
SePCA model. For thek-th local model, updatingα(k)

j

is analogous to the re-estimation ofα in (11) for a single
model

α
(k)
j =

D

‖w
(k),MP
j ‖2

2

, (23)

wherew(k),MP
j is thej-th column ofW(k),MP, which is the

MAP estimation of the PCs in thek-th local model. As
in (11), equation (23) is an approximated expectation over
the posterior ofW(k). The posterior mode is estimated by
maximising the weighted log-likelihood

W(k),MP =argmax
W(k)

{

log p(W(k)|α(k))

+
∑

n

Rn,k

Rk

log p(xn|W
(k))

}

. (24)
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Figure 3: Models learnt by EPCA, BEPCA and SePCA
(a) Hinton diagrams of PCs;(b) Mean parameters;(c) Conditional probability of the training data given the learnt mean;
(d) Conditional probability of the prototypes (cf. Fig. 2(a)) given the learnt mean. In the Hinton diagrams in (a), black and
white indicates negative and positive elements, respectively; and the box size indicates element magnitude. In (c-d),the
gray level indicates numerical values in[0, 1], where black indicates0 and white indicates1.

20 40 60 80 100 120

5

10

15

20 40 60 80 100 120

5

10

15

(a) (b)

Figure 2: Synthetic binary vector data set
(a) 3 prototype binary vectors,40 copies of each prototype;
(b) training data generated by randomly flipping bits in (a)
with probability0.1. Each image contains16 rows and120
columns of binary bits, where each column represents one
data vector (clearer in (b)).

3. In the E-step, we updateq(z) and let it match the true
posterior of the “membership” of each sample

Rn,k =
πkp(xn|k)

p(xn)
, (25)

wherep(xn) is given in (19) andp(xn|k) is computed us-
ing the updated mixture parameters in the M-step.

5 Experiments

We first test the SePCA on the synthetic data used in Mo-
hamed et al. (2009) and Tipping and Bishop (1999). Three
16-D binary prototype vectors are generated with each bit
drawn from{0, 1} with equal probability. The data con-
sists of120 samples,40 from each prototype. Then each
bit is flipped with probability0.1. Figure 2 shows one data
set from the randomly generated prototypes in (a), and (b)
shows the data set after the noises have been added. The
samples in (b) will be used to train the model, whose those
in (a) will used to assess the fitted models.

We apply EPCA (Collins et al., 2002), BEPCA (Mohamed
et al., 2009), and SePCA on this binary data set. The
specific exponential family distribution is chosen to be
Bernoulli, and the latent dimension is set tod = 15.

Figure 3 shows the results of fitting models. In the figure,
from top to bottom, rows represent the results of EPCA,
BEPCA and SePCA respectively. Column (a) shows the
fitted PCs in Hinton diagrams. Column (b) shows the fit-
ted mean parameters of the Bernoulli distribution. In the
images, each pixel corresponds to a bit in the data, and its



         459

Jun Li, Dacheng Tao

brightness represents how likely that the bit is1. Column
(c) represents matching the mean parameters in (b) against
the noisy training data,i.e. the likelihood at each bit of
the fitted parameter for the training data. The number be-
low each sub-figure is the sum of the log-likelihood at each
pixel,

∑

p,q log p(Xp,q|µp,q). This sum is always negative,
and the closer to zero it is, the better the match. Column
(d), in contrast to column (c), represents matching mean
parameters against the prototypes.

The results in column (c) indicate that EPCA fits the train-
ing data bit by bit precisely and achieved high likelihood.
However, column (d) shows that EPCA has been adapted to
the noise seriously and resulted in considerable over-fitting.
On the contrary, SePCA effectively discovered the latent
dimensionality (cf. column (a)). Roughly speaking, by us-
ing limited PCs, SePCA fitted to the prototypes that mainly
underlie observations, and avoided fitting to the noise. The
performance of BEPCA is in between. It is less prone to the
over-fitting problem because of the prior. However, it can
not explicitly reveal the latent dimensionality; and cannot
automatically control the model complexity.

We trained models by using different estimated latent di-
mensions. For each of the fitted models, the log-likelihood
of both the noisy training data and the prototypes are cal-
culated. Figure 4 compares results. The error bars are ob-
tained by running the experiment10 times on randomly
generated data sets. EPCA tends to over-fit when more
than three PCs (latent dimension) are provided. The model
complexity and over-fitting mildly increased in BEPCA
with the estimated latent dimension. On the contrary,
SePCA discovered the true latent dimension and rejected
the surplus dimensions, and thus it is immune to over-fitting
caused by the tentative choice of the latent dimension.

In the second experiment, the USPS hand-written digits are
used to test the mixture model. We use600 binary images
of the digits2, 3 and4 to train 3 mixtures. The size of
the images is16 × 16. Since it is inconvenient to specify
mixtures in the parameter space, we initialiseq(zn) with
Rn,· = {0.34, 0.33, 0.33} (cf. (22)) and start from the M-
step.

Figure 5 shows the results of the fitted PCs. The first and
second rows are the first and second PCs of each mixture
respectively. The PCs in (a) are those from the first M-step.
They appear identical and indicate considerable confusion
and overlapping between the local models. Thus there is no
evidence of a clear head start (0.34 over0.33). The fitted
PCs of the mixtures are shown in (b). Figure 6 shows sev-
eral images generated by each local SePCA model. In this
case, each fitted local model has captured the underlying
factors that are responsible for one digit.
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Figure 4: Conditional log-likelihood versus latent dimen-
sions
(a): conditional probability of the training data given re-
constructed parameters;(b): conditional probability of the
prototypes, which is the information to be learned from the
training data (cf. Fig. 2(a)). The conditional probability
reflects the match between the data and the model. It indi-
cates the model has been fitted to the noise, if the training
data have a high probability and the prototype data have a
low one.

6 Conclusion and Discussions

In this paper, we have proposed SePCA, a new family of
generative models. The proposed model handles general
type observations with exponential family distributions that
are parameterised by the latent variable of PCs and low di-
mensional representations. By introducing automatic rel-
evance determination (ARD) to SePCA, the model auto-
matically determines the appropriate number of latent vari-
ables.

It is enlightening to consider our method from the view-
point of intrinsic dimension estimation. PCA-based pro-
jection methods often treat the problem as preserving or
discarding PCs (Camastra, 2004), and ARD is a systematic
approach. ARD employs a Gaussian prior for PCs.

This approach contradicts traditional PCA on some prac-
tical data types,e.g. integers or binary values. This is
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(a) (b)

Figure 5: PCs of the local SePCA models in a trained mix-
ture model
(a): First two (in rows) local PCs resulted in the first itera-
tion; (b): PCs in the trained mixture model. The images of
the PCs show that three local SePCA models in the mixture
are fit to digits2, 3 and4, respectively.

Figure 6: Generated samples for hand-written digits
Each row of the images are randomly drawn following the
generative process of one local SePCA in the trained mix-
ture model. The generated images visually verify that local
models are duly fitted to three digits.

because PCA finds PCs in the sample space, and Gaus-
sian isnot a distribution in such sample spaces. However,
the exponential family distributions provide a link between
general type observations and continuous latent variables,
on which an ARD prior can be imposed. Therefore, based
on this link, we reach a principled method of determining
the intrinsic dimension of general distributions regardless
of the type of observations.
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