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Abstract

This paper addresses multidimensional tun-
ing parameter selection in the context of
“train-validate-test” and K-fold cross valida-
tion. A coarse grid search over tuning pa-
rameter space is used to initialize a descent
method which then jointly optimizes over
variables and tuning parameters. We study
four regularized regression methods and de-
velop the update equations for the corre-
sponding descent algorithms. Experiments
on both simulated and real-world datasets
show that the method results in significant
tuning parameter refinement.

1 INTRODUCTION

We consider the problem of fitting a model from given
data consisting of instances and corresponding re-
sponses (or labels). Our goal is to minimize the loss in
mapping a general instance to a response. The stan-
dard approach to avoid over-fitting the data is to in-
corporate regularization. For example, in linear re-
gression we are given a design matrix X ∈ R

n×p with
corresponding response vector y ∈ R

n and we seek a
vector, β ∈ R

p, that minimizes

(1/n)‖y −Xβ‖22 + λJ(β) . (1)

The first term is the average loss and the second term
regularizes β via the function J(·) and the nonnega-
tive tuning parameter λ. In general, by choice of J
and for fixed λ, minimizing (1) is a convex problem.
For example, in ridge regression (Hoerl & Kennard
1970b,a), J(β) = ‖β‖22 and for the Lasso (Tibshirani
1996), J(β) = ‖β‖11. Of greater interest here is a
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vector of tuning parameters, λ, associated with an ar-
ray of regularization functions. For example, in Elastic
Net (EN) (Zou & Hastie 2005) regularization takes the
form J(β) = λ1‖β‖11 + λ2‖β‖22.

Much attention has been given to the minimization
of (1) for fixed λ (e.g., (Hastie et al. 2009)). How-
ever, the real problem of interest is to jointly select
optimal λ and β. Unfortunately, this problem is usu-
ally not convex, making it difficult to solve because of
the presence of local minima. In some special cases
the optimal value of the tuning parameter λ can be
characterized in terms of an implicit equation. For
example, generalized cross validation (GCV) for ridge
regression provides a closed-form function to minimize,
thereby producing the optimal λ (Golub et al. 1979).
Wood (2000) extended this result for generalized ridge
regression and Fu (2005) proposed a “quasi-GCV” ap-
proach for nonlinear estimators. However, these are
special cases. Obtaining closed form, or implicit equa-
tions for the optimal λ is extremely difficult for general
regularization.

A prevalent approach to selecting a suitable λ is to
generate a set of β’s for various values of λ using a
training set and then pick the optimal β by assess-
ing loss over a validation set (for other methods see
(Hastie et al. 2009)). This is the basic idea behind the
“train-validate-test” approach and its natural exten-
sion to K-fold cross validation (CV). In the simplest
case, we partition the data into three subsets, denoted
the training, validation, and testing sets. The training
set is used to generate model parameters (β) under
fixed tuning parameters (λ). Using these model pa-
rameters we compute the average loss over the valida-
tion set without regularization. Iterating in a coordi-
nated manner over values of tuning parameters allows
us to select an estimate for the optimal β and λ. The
interaction between testing and validating is analogous
to a system with feedback. The training set produces
candidate β’s while the validation set (implicitly) pro-
duces candidate λ’s. Finally, we use the testing set to
produce an estimate of the expected loss. The testing
set is “off limits” during the process of estimating the
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optimal β and λ. Once the testing set is used, changes
to β and λ are not allowed.

Recently, coordinate descent (CD) algorithms have
been shown to yield fast estimates of the optimal β
with λ fixed (Friedman et al. 2007). In a regres-
sion setting, coordinate descent has the advantage of
not requiring complicated matrix inversions or eigen-
decompositions, making it computationally efficient
when there are a large number of features. Essen-
tially, the algorithm cyclically updates the elements of
β until convergence (within a tolerance) is reached. As
currently employed, this technique naturally resides in
the training stage due to the fixed λ.

The main objective of this paper is to explore the use
of similar descent methods to refine a candidate set
of tuning parameters that yield minimal loss. To this
end, for several standard regression problems we de-
sign descent algorithms for tuning parameters based
on both train-validate (TV) and K-fold cross valida-
tion. The approach allows the selection of multiple
tuning parameters simultaneously. Although the prob-
lem is not convex, we posit that the ability to rapidly
compute a local minimum can improve existing grid
search methods. A coarse grid search is used to ini-
tialize the descent algorithm. When the dimension of
λ is small, a coarse grid search is fast and can usually
find a promising initial value for the descent method.

The motivation for our study stems from the selection
of EN tuning parameters. When λ is a scalar, com-
puting the optimal (β, λ) involves a line search and
this does not impose a great difficulty. In contrast,
when λ is two-dimensional the problem becomes more
difficult. For EN, LARS-EN (Zou & Hastie 2005) may
be used as follows: fix λ2, find optimal λ1 with LARS
(Efron et al. 2004), iterate over λ2. Alternatively, one
can consider various ratios of λ1/λ2 and solve for the
correct scaling. Ultimately, however, a λ found with
these techniques may not be the global minimum or
even a local one. Moreover, if the size of λ is greater
than 2, these methods break down. For example, con-
sider:

(1/n)‖y −Xβ‖22 +
∑p

k=1 λkβ
2
k . (2)

To find the optimal tuning parameters for this prob-
lem by exhaustive grid search is a costly computation.
Moreover, the addition of `1 penalties would add to the
computational burden. However, a coarse grid search
followed by our descent algorithm readily yields an ac-
ceptable set of tuning parameter values.

The remainder of the paper is organized as follows:
§2 formulates the general problem of tuning parame-
ter selection. In §3 four cases of penalized regression
are analyzed for the TV technique, which naturally

extends itself to K-fold cross validation, described in
§3.5. §4 presents results from experiments involving a
simulated dataset and 3 real-world datasets.

2 JOINT DESCENT ON (β,λ)

Throughout the paper, a bold symbol refers to a col-
umn vector or a matrix, e.g., x = [x1, . . . , xn]

T and
X = [X1, . . . ,Xp] = [Xij ] with Xj ∈ R

n. Let X and
Y denote the instance space and feature space, respec-
tively. We are given a data set, D = {(xi, yi)}

n
i=1,

with xi ∈ X and yi ∈ Y. Without loss of generality,
we partition D into a training set, U = {(xi, yi)}

nu

i=1,
and a validation set, V = {(xi, yi)}ni=nu+1, with |V| =
nv = n− nu.

Given a loss function, L : Y × Y → R we seek to
minimize the empirical loss

Lu(β) = (1/nu)
∑

U

L(f(xi;β), yi) (3)

where the function f belongs to a function space F
parameterized by β ∈ R

pb . Lu : Rpb → R evaluates
the average loss over the training set for a fixed β. To
add regularization in the training stage, bring in the
regularization penalty

λTJ(β) =
∑p`

k=1 λkJk(β) (4)

where the Jk(·) are given regularization functions,
λ ∈ R

p` is a vector of tuning parameters and J(β) =

[J1(β), . . . , Jp`
(β)]

T
. The unknowns in (3) and (4) are

the optimal β and λ.

Given λ, one can find the optimal β over the training
set. This defines a function hu : Rp` → R

pb that maps
λ to the optimal β over the training set:

hu(λ) = argminβ Lu(β) + λTJ(β). (5)

Once β is obtained, generalization performance can be
evaluated on the validation set. This defines a function
Lv : Rpb → R:

Lv(β) = (1/nv)
∑

V

L(f(xi;β), yi) (6)

Additionally, for some forms of regularization it is con-
venient to have a calibration function hc : R

pb → R
pb .

Before evaluating the loss over the validation set, the
β obtained is calibrated according to hc(·). The func-
tion hc(·) is assumed to be given a priori and in many
situations we have hc(β) = β.

In this framework, tuning parameter selection involves
finding:

λopt = argminλ(Lv ◦ hc ◦ hu)(λ). (7)
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Let Z denote the domain of λ. The conventional val-
idation process is given by the following routine: We
fix a λ ∈ Z and find β̂ = hu(λ). We then calibrate

by setting β∗ = hc(β̂). Finally, we evaluate Lv(β
∗).

This process is then repeated for a new λ ∈ Z and
repetition continues until a stopping criterion is met.
We then set the estimated λopt based on the minimum
Lv(β

∗) found. In this approach, to find λopt requires
evaluating hu(λ) for each candidate λ. Primarily, this
approach is followed because hu(λ) is generally a con-
vex optimization problem, whereas (7) is not. Thus,
we partition (7) via hu(·), hc(·), and Lv(·), to find λopt.

Even though (7) is a non-convex minimization prob-
lem, we may ask if local minima are difficult to com-
pute. If we can find local minima in an efficient man-
ner, then seeking a set of local minima may yield the
global minimum or a local minimum that is adequate
for the accuracy desired.

In (Friedman et al. 2007) an elegant coordinate de-
scent method is given for several popular estimators.
In these schemes each coordinate βi is updated cycli-
cally. As in all coordinate descent schemes, after it-
erating the updates, the βi may converge to the op-
timal solution. Arguably, the primary benefit of this
method is the absence of matrix inversions and eigen-
decompositions in inner loops of the algorithm.

Our proposal is to use a similar cyclical coordinate de-
scent method to optimize β and perform the validation
process to find λ directly in one iteration: after updat-
ing all the βi we update the λi in an attempt to tune
λ as the optimization of β proceeds. The main ad-
vantage of the proposal is its potential efficiency. We
can update the λi cyclically using coordinate descent
(update(λ1|·)→update(λ2|·)→ . . .), or all at once us-
ing the gradient (update(λ|·)). This general CD with
validation (CD-V) is given by Algorithm 1. Rather

than computing β̂ for many fixed λ, we attempt to
find a local minimum of (Lv ◦ hc ◦ hu)(λ) using a de-
scent method starting from a good initial guess. If
this can be done efficiently, then computing a local
minimum from a promising initialization may allow us
to find an adequate minimum of (7), with the opti-
mal β also provided. Related to gradient descent, we
can implement a rudimentary forward line search by
leveraging warm starts from prior, nearby β’s. Then,
using cubic interpolation from 3 points and a gradient,
we can obtain the next λ (Dennis & Schnabel 1996).
Alternatively, we need not rely on the gradient for a
search direction. For λ ∈ R

p` we can use a simplex
method, which also leverages warm starts (Nelder &
Mead 1965).

The βi-update equations are derived from the KKT

Algorithm 1 CD-V

1: Initialize variables
2: while All Stopping Criteria == False do
3: for j = 1 to burnin do
4: for i = 1 to pb do
5: update(βi|U ,β,λ)
6: end for
7: end for
8: for i = 1 to p` do
9: update(λi|V,β,λ)

10: end for
11: {or update(λ|V,β,λ)}
12: end while

Algorithm 2 update(λi|Dλi
Lv)

1: if δi ×DδiLv < 0 then
2: log λi ← log λi + δi
3: else if δi ×DδiLv > 0 then
4: δi ← −δi × δ
5: log λi ← log λi + δi
6: end if

equations associated with hu(·):

Dβhu = DβLu + λTDβJ = 0. (8)

When possible, we express βi in terms of the other el-
ements of β (denoted β−i ∈ R

pb−1) and λ. Then, to
update βi we use the current β−i and λ. Initially, we
set β = 0, which encourages sparse solutions. For up-
dating λi we use the gradient, ∇λLv, evaluated from:

DλLv = Dβ∗Lv ×D
β̂
β∗ ×Dλβ̂. (9)

We decrease λi when Dλi
Lv is positive and increase

it when the derivative is negative. In general, the λi

are restricted to the nonnegative reals so we increase
or decrease log λi by a variable step size. We can up-
date λi based on the sign of Dλi

Lv (coordinate de-
scent) or based on the direction of the gradient ∇λLv.
Empirically, we have found that Lv consists of many
almost-flat regions, so using the direction of the gradi-
ent, rather than the gradient itself, is sufficient. Simi-
lar to a line search, for coordinate descent we initialize
p` + 1 scalar parameters, denoted δ, δ1, . . . , δp`

. With
δ selected from the interval [0.5, 1), we choose initial
values for δi and our λi-update function is given by
Algorithm 2. The if statement tests if we are heading
toward a local minimum, indicated by opposite signs
or a negative product. Conversely, the else if clause
tests if we are moving away from a local minimum, in
which case we scale δi by shrinking it and inverting its
sign. For gradient descent, we normalize the gradient
of Lv with respect to the log of the tuning parameters
and update accordingly by standard methods.
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We use standard stopping criteria. First, we consider
the main loop having itermax iterations, typically in
the 1K-10K range. We analyze consecutive values of β
and λ to assess convergence. Convergence of λ is not
as straight-forward because log λk may tend to ±∞.
Therefore, we look at consecutive values of τ where
τk = sgn(log λk)min(C, | log λk|) and C is selected to
be in a range corresponding to large | log λk| (e.g., 50).

In updating λ we make use of Dλβ̂. This assumes
that we have the actual β̂ one would attain at conver-
gence. If we were to simply update the βi once and
then evaluate this derivative we would obtain a noisy
estimate. Therefore, we “burn in” β after updating λ.
In practice, we set burnin to be in the tens range.

3 PENALIZED REGRESSION

We now specialize these ideas to specific forms of the
regression problem. We assume that we are given data
in the form of a full rank design matrix, X ∈ R

n×p,
and a response vector, y ∈ R

n. We partition our data
as follows:

X =

(

Xu

Xv

)

y =

(

yu

yv

)

(10)

where Xu ∈ R
nu×p and yu ∈ R

nu correspond to train-
ing data and Xv ∈ R

nv×p and yv ∈ R
nv correspond to

validation data. When isolating any particular subset
of the data we center the sub-design matrix and corre-
sponding sub-response vector. Our function space, F ,
is the set of linear functions parameterized by β ∈ R

p,
i.e., pb = p and f(x;β) = xTβ. Our loss function
is L(y1, y2) = (y1 − y2)

2. Putting these components
together yields

Lu(β) = (1/nu)(yu −Xuβ)
T (yu −Xuβ) (11)

= βTRβ − 2rTβ + yT
uyu/nu (12)

Lv(β) = (1/nv)(yv −Xvβ)
T (yv −Xvβ) (13)

= βTGβ − 2gTβ + yT
v yv/nv (14)

where R = XT
uXu/nu, r = XT

uyu/nu, G =
XT

v Xv/nv, and g = XT
v yv/nv. It follows that

DβLu = 2βTR− 2rT (15)

DβLv = 2βTG− 2gT . (16)

3.1 RIDGE

In ridge regression p` = 1, J1(β) = βTβ, and β∗ =
hc(β) = β. Therefore, DβJ(β) = 2λ1β

T and Dββ
∗ =

I. For updating βi we use (8), which yields

0 = 2βTR− 2rT + 2λ1β
T (17)

β = (R+ λ1I)
−1r (18)

βi ← (Riiβi −RT
i β + ri)/(Rii + λ1) . (19)

Algorithm 3 Ridge CD-V

1: Initialize variables
2: Compute SVD n

−1/2
u X = UΣVT .

3: while All Stopping Criteria == False do
4: for j = 1 to burnin do
5: for i = 1 to p do
6: βi ← (Riiβi −RT

i β + ri)/(Rii + λ1)
7: end for
8: end for
9: Dλ1

Lv ← −2(β
TG− gT )V(Σ2 + λ1I)

−2VT r
10: update(λ1|Dλ1

Lv)
11: end while

Although βi appears on the right hand side of the up-
date, this is for ease of representation. The numerator
contains a “+Riiβi” and a “−Riiβi”. Assuming con-
vergence yields the fixed point equations

β = (Λ+ λ1I)
−1(Λβ −Rβ + r) (20)

= (Λ+ λ1I)
−1(Mβ + r)

where Λ = diag{R11, . . . , Rpp} and M = Λ −R. We
can use (18) or (20) to find Dλ1

β. Here, we use (18)
and obtain

Dλ1
β = −(R+ λ1I)

−2r = −(R+ λ1I)
−1β (21)

The ridge case has the nice property of allowing us to
compute Dλβ directly from the KKT equation. Let

n
−1/2
u X have SVD UΣVT . Then R = VΣ2VT and

Dλ1
β = −V(Σ2 + λ1I)

−2VT r. (22)

This requires one SVD but saves considerable compu-
tation time. Putting the above together, the CD-V
method for ridge regression is given in Algorithm 3.

3.2 DIAGONAL TIKHONOV

We now look at a more interesting problem. Along the
lines of ridge regression, we set p` = p, Jk(β) = β2

k,
and hc(β) = β. It follows that λTJ(β) = βTΓβ where
Γ = diag(λ). The regularization term, βTΓβ, is a spe-
cial case of Tikhonov regression where Γ is diagonal.
Whereas ridge assigns a global penalty over βi, i.e.,
λ1‖β‖

2
2, Diagonal Tikhonov Regression (DTR) regu-

larizes each βi individually. Consequently, the issue of
sparsity comes into play. A λk of approximately zero
implies that βk is best determined by OLS, whereas a
very large λk would result in βk = 0.

Using the conventional approach for finding λopt is
simply not practical. Without prior knowledge, if we
restrict λk to be one ofm values then we would need to
search over a set of mp elements. Even for small values
of m and p, computation time would be enormous.
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Algorithm 4 DTR CD-V

1: Initialize variables
2: Set W = (R+ diagλ0)

−1

3: while All Stopping Criteria == False do
4: for j = 1 to burnin do
5: for i = 1 to p do
6: βi ← (Riiβ −RT

i β + ri)/(Rii + λi)
7: end for
8: end for
9: for k = 1 to p do

10: Dλk
Lv ← −2(β

TG− gT )(βkWk)
11: update(λk|Dλk

Lv)
12: γk = λk − λprev

k

13: W←W − γk

1+γkWkk

WkW
T
k

14: end for
15: end while

This case is covered by Wood (2000) using Newton’s
method for GCV. We posit that our joint coordinated
search method is well suited for this problem.

We proceed as before: the update equations for βi are
given by

βi ← (Riiβ −RT
i β + ri)/(Rii + λi). (23)

Similarly, we obtain

Dλk
β = −βk(R+ diag(λ))−1ek (24)

where ek is the k-th standard basis vector. Starting
with an initial positive λ0, we compute W = (R +
diag(λ0))

−1 (the inverse exists). From here all future
updates can be done without inversion via the update

W← (W + γkeke
T
k )

−1 (25)

(W + γkeke
T
k )

−1 = W −
γk

1 + γkWkk
WkW

T
k (26)

where γk is the change in λk. The above is derived
from the matrix inversion lemma. Here, we see that
cycling through λ and performing one-at-a-time up-
dates facilitates the expression (25). The CD-V for
DTR is given by Algorithm 4.

3.3 LASSO

The Lasso regression problem has p` = 1 with J1(β) =
‖β‖11 and hc(β) = β. Let 〈x〉 denote the vector-valued
hinge function of the vector x, i.e., 〈x〉i = xi1{xi > 0}.
A sub-gradient of 〈x〉 is given by the vector-valued
function, JxK, with JxKi = 1{xi > 0}. Using the hinge
function, we define the soft-thresholding function as

S(x,b) = 〈x− b〉 − 〈−x− b〉 (27)

Algorithm 5 Lasso CD-V

1: Initialize variables
2: while All Stopping Criteria == False do
3: for j = 1 to burnin do
4: for i = 1 to p do
5: βi ← S(Riiβi −RT

i β + ri, (λ1/2)1)/Rii

6: end for
7: end for
8: a1/2 ← J±Mβ ± r− (λ1/2)1K
9: A← diag(a1 + a2)

10: Dλ1
β ← 1

2 ((I−A)Λ+AR)†(a2 − a1)
11: Dλ1

Lv ← 2(βTG− gT )Dλ1
β

12: update(λ1|Dλ1
Lv)

13: end while

for vector x and nonnegative vector b. The KKT and
update equations for Lasso are given by

Dβi
Lu = 2βTRi − 2ri + λ1 sgnβi = 0 (28)

βi ← S(Riiβi −RT
i β + ri, (λ1/2)1)/Rii . (29)

At convergence, (29) can be written as

β = Λ−1S (Mβ + r, (λ1/2)1)

= Λ−1〈Mβ + r− (λ1/2)1〉 (30)

−Λ−1〈−Mβ − r− (λ1/2)1〉

From (30) we obtain

((I−A)Λ+AR)Dλ1
β = (a2 − a1)/2 (31)

a1/2 = J±Mβ ± r− (λ1/2)1K (32)

A = diag(a1 + a2) (33)

The matrix A is an idempotent diagonal matrix with
0/1 entries along the main diagonal. Therefore,
((I − A)Λ + AR) has rank at least min (nu, p) and
solving (31) for the derivative will require evaluating
the Moore-Penrose pseudoinverse (symbolized by “†”).
This agrees with Lasso being a convex problem, but
not strictly convex. If R is full rank, i.e., n ≥ p, then
we can develop inverse updates similar to the one for
DTR. However, in the general case, efficient updates
are not easily derived (see (Meyer 1973)). The CD-V
for Lasso is given by Algorithm 5.

3.4 ELASTIC NET

The Elastic Net (EN) problem formulation has p` = 2,
J1(β) = ‖β‖11, J2(β) = ‖β‖22, and hc(β) = (I +
λ2Λ

−1)β. In this example, we need to account for
calibration, i.e., we must incorporate D

β̂
β∗ = (I +

λ2Λ
−1). For positive λ2 the problem is strictly con-

vex in all cases, so there is no concern about pseu-
doinverses of rank-deficient matrices. The KKT and
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Algorithm 6 Elastic Net CD-V

1: Initialize variables
2: while All Stopping Criteria == False do
3: for j = 1 to burnin do
4: for i = 1 to p do
5: βi ← S(Riiβi−RT

i β+ ri,
1
2λ11)/(Rii+λ2)

6: end for
7: end for
8: a1/2 ← J±Mβ ± r− 1

2λ11K
9: A← diag(a1 + a2)

10: W← (Λ+ λ2I−AM)−1

11: β∗ = (I+ λ2Λ
−1)β

12: Dλ1
Lv ← (β∗TG− gT )(I+ λ2Λ

−1)W(a2 − a1)
13: Dλ2

Lv ← −2(β
∗TG− gT )(I+ λ2Λ

−1)Wβ

14: update(λ|DλLv)
15: end while

update equations for EN are given by

Dβi
Lu = 2βTRi − 2ri + λ1 sgnβi + 2λ2βi = 0

(34)

βi ← S(Riiβi −RT
i β + ri, (λ1/2)1)/(Rii + λ2) .

(35)

At convergence, (35) can be written as

β = (Λ+ λ2I)
−1S (Mβ + r, (λ1/2)1)

= (Λ+ λ2I)
−1〈Mβ + r− (λ1/2)1〉 (36)

− (Λ+ λ2I)
−1〈−Mβ − r− (λ1/2)1〉

Using (36) we evaluate two derivatives:

Dλ1
β = (1/2)(Λ+ λ2I−AM)−1(a2 − a1) (37)

Dλ2
β = −(Λ+ λ2I−AM)−1β (38)

where a1, a2, and A are defined as in the case of
Lasso. For sparse β and non-zero λ2, the two deriva-
tives obtained can be computed efficiently with the
matrix inversion lemma. This is accomplished by set-
ting W = (Λ + λ2I)

−1 and updating W ← W +
1

1−MT

k
Wk

(WkM
T
k )W for all k with Akk = 1. The

CD-V for EN is given by Algorithm 6.

3.5 K-FOLD CROSS VALIDATION

We briefly outline what an analogous algorithm would
look like for K-fold cross validation (CV). Without
loss of generality, we partition our design matrix into
K sub-matrices X[1], . . . ,X[K] where X[i] ∈ R

ni×p and
n1+ . . .+nK = n. We partition the response vector in
the same way to generate y[1], . . . ,y[K]. Let X[−i] ∈

R
(n−ni)×p denote the design matrix with X[i] removed

(the same notation applies for the response vector as

Figure 1: Flow Diagram of CD-CV.

well). In CV we have

β̂i = argminβ βTR[i]β − 2rT[i]β + λTJ(β) (39)

β∗
i = hc[i](β̂i) (40)

Lv(λ) =
∑K

i=1(β
∗TG[i]β

∗ − 2gT
[i]β

∗) (41)

where

R[i] =
1

n− ni
XT

[−i]X[−i] G[i] =
1

n
XT

[i]X[i] (42)

r[i] =
1

n− ni
XT

[−i]y[−i] g[i] =
1

n
XT

[i]y[i] . (43)

The CD-CV algorithm runs K CD-V processes in par-
allel for cyclical updates of each βi (Fig. 1). After K
calibrations, this parallel implementation would yield
K β∗

i ’s, which are inserted into

DλLv = 2

K
∑

i=1

(β∗T
i G[i] − gT

[i])(Dβ̂i
β∗
i )(Dλβ̂i) , (44)

which is used for updating λ.

4 EXPERIMENTS

We now investigate the application of the specified
algorithms, starting from the result of a coarse grid
search, to several example datasets. The coarse search
is implemented by evaluating the estimated loss at ev-
ery point on a predefined grid. For EN, we employ
a raster scan search over the λ1-λ2 grid as depicted
in Fig. 2. Starting from the top-right point, i.e., the
point with the greatest values for λ1 and λ2, we solve
for the corresponding β̂, denoted β̂(1). We start from
this point because the CD rate of convergence is gen-
erally faster for larger tuning parameters as there is
more shrinkage. Then, keeping λ2 fixed, as done in
LARS-EN, we advance λ1 in the appropriate direc-
tion and use β̂(1) for the next initialization in finding
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Figure 2: Grid Traversal with a Raster Scan.

β̂(2). This process repeats itself until the whole grid
has been covered. As described in (Friedman et al.
2007), this path-wise approach results in fewer main-
loop iterations because neighboring (λ1, λ2) pairs will

generally yield β̂’s that are near one another. Cer-
tainly, different search paths are possible, e.g., zig-zag
or spiral. When λ is a scalar we employ the same
technique described, but in one dimension. For com-
putational reasons, when p` is large the coarse search
only considers points on the line λ1 = λ2 = . . . = λp`

.

For both validation and K-fold CV, we analyzed 4
datasets. The first data set, denoted Dn,p

sim, was sim-
ulated. Each row of the design matrix, X ∈ R

n×p, is
drawn from N (0,Σ) where Σij = ρ|i−j| (ρ = 0.8).
The actual weight vector, denoted βa, was set to
[2, 1, 4,−4, 3, 6, 0, . . . , 0]T and the response vector was
computed according to y = Xβa + ε where εi ∼

N (0, 8) iid. To assess performance in the situation
where n < p we chose n = 50 and p = 500. The second
dataset is the prostate dataset of (Stamey et al. 1989)
with X ∈ R

97×8; the third dataset is the [white] wine
dataset of (Cortez et al. 2009) with X ∈ R

4898×11, and
the fourth dataset is the voting dataset of (Schlim-
mer 1987) with X ∈ R

435×16. For TV and K-fold
CV we analyzed 100 random permutations of each
dataset. All experiments were conducted in Matlab R©

on an Intel R© CoreTM i7-920 processor running 64-bit
Linux R©.

We want to study if the proposed descent methods
decrease the minimum estimated expected loss. How-
ever, this minimum is usually located in an almost-flat
region, in which case a small decrease in loss can re-
quire a significant change in λ. Therefore, it will be
useful to look at how λ changes in a log-scale distance:

d(λ1,λ2) = 10
(
∑p`

i=1(log10 λ1i − log10 λ2i)
2
)1/2

.
(45)

We can think of this as distance in orders-of-
magnitude. As an illustration, d(0.1, 0.2) = d(1, 2) ≈ 3
and d(0.2, 0.3) = d(2, 3) ≈ 1.76.

For our coarse grid search, our predefined grid points
are {10−6, 10−5, . . . , 103}p` , resulting in a search over

10p` points. In the case of DTR, we only use the di-
agonal elements of this set because a coarse search
over 10p` values would only be feasible for small p`.
For the [white] wine dataset we used the methodol-
ogy outlined in the previous section. We used gradi-
ent descent with cubic interpolation for the prostate
and voting data. Lastly, a Nelder-Mead approach was
taken for the simulated data. Tables 1, 2, and 3 con-
tain 4 columns: the first column is the regularization
used, the second column records the number of tun-
ing parameters, the third column is the percentage of
refined λ’s that yielded a smaller estimated loss (i.e.,
the coarse search did not trap the descent search in
a misleading local minimum), and the fourth column
lists the average log-scale-distance between the coarse
grid λ and the refined λ when a decrease in loss was
encountered. For example, in Table 2 we would say
that for EN, in 90% of the trials the descent algorithm
yielded a better estimated loss and the refined λ was
a log-scale-distance of 4.3 away from the coarse grid
search λ. In the DTR cases, the mean distance ob-
tained was quite large and we arbitrarily limited this
at 20 (greater than 2 decades away).

In general, we note significant refinement for all four
types of regression. As expected, DTR showed the
most movement due to the unavoidable, highly-coarse
grid search. This also exhibits the scalability of
our method with respect to p`. The computed log-
scale distances indicate significant refinement from the
coarse grid search. For finer grid searches, suitable for
small p`, we would expect to see smaller changes.

Since one of our datasets was simulated, we can go a
step further and generate test data to assess whether
our results generalize well. Following 2:1 TV, we gen-
erated 200 new examples and found that the β’s pro-
duced by the refined λ’s generalized better for all cases,
albeit minuscule for ridge. This is exhibited in Table 4
along with computation times (to the nearest second).

5 CONCLUSION

We have proposed a hybrid method of tuning parame-
ter selection involving a coarse search followed by a fast
descent algorithm. Motivated by the need to tune pa-
rameters in the highly successful Elastic Net, we com-
bined both β and λ updates within the same training
loop to minimize estimated expected loss. Whereas β
updates were always performed via coordinate descent,
the λ updates were designed to accommodate the par-
ticular choice of regularization. Our algorithm design
did not make use of Hessian matrices for improving
rates of convergence. This would introduce more com-
putational cost but may be beneficial for certain diffi-
cult regularization functions.
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Table 1: Results for 2:1 TV on the Wine Dataset

Method p`
Smaller loss Mean log-scale
encountered distance

ridge 1 100% 3.5
Lasso 1 99% 2.5
EN 2 98% 3.4
DTR 11 100% > 20

Table 2: Results for 5-fold CV on the Prostate Dataset

Method p`
Smaller loss Mean log-scale
encountered distance

ridge 1 100% 3.1
Lasso 1 100% 3.2
EN 2 90% 4.3
DTR 8 100% > 20

Table 3: Results for 10-fold CV on the Voting Dataset

Method p`
Smaller loss Mean log-scale
encountered distance

ridge 1 100% 1.8
Lasso 1 100% 2.2
EN 2 99% 2.6
DTR 16 100% > 20

As demands for performance increase and new regular-
ization methods are introduced, selecting good values
for multiple regularization parameters will become in-
creasingly important. Intrinsically, these parameters
assign relative weights to different defining character-
istics of the data. Therefore, it is reasonable to expect
that performance relies heavily on both the choice of
regularization and corresponding parameter selection.
We have shown that our method scales well with the
number of tuning parameters. This is highlighted by
the successful tuning of DTR where there are many
unknown tuning parameters. Of course, the method
is attempting to solve a complex, non-convex problem
and hence has inherent limitations. The presence of
local minima hinder maximal refinement. Incorpora-
tion of effective and computationally efficient stochas-
tic methods may help in this regard.
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