Contextual Multi-Armed Bandits - Appendix

Tyler Lu
tl@cs.toronto.edu
Department of Computer Science
University of Toronto
10 King's College Road, M5S 3G4 Toronto, ON, Canada

Dávid Pál
dpal@cs.ualberta.ca
Department of Computing Science
University of Alberta
T6G 2E8 Edmonton, AB, Canada

Martin Pál
mpal@google.com
Google, Inc.
76 9th Avenue, 4th Floor
New York, NY 10011, USA

A Proof of Lemma 7

Think of $v\left(x_{0}\right)$ being uniformly randomly chosen from Y_{0} and let \mathbf{E} denote the expectation with respect to both the random choice of $v\left(x_{0}\right)$ and the payoffs $\hat{\mu}_{1}, \hat{\mu}_{2}, \ldots, \hat{\mu}_{M}$. Clearly, the Bayes optimal payoff is

$$
\begin{aligned}
\mathbf{E}\left[\sum_{t=1}^{M} \sup _{y_{t}^{\prime} \in Y} \mu_{v}\left(x_{0}, y_{t}^{\prime}\right)\right] & =M \mathbf{E}\left[\sup _{y \in Y} \mu_{v}\left(x_{0}, y\right)\right] \\
& =M \mathbf{E}\left[\mu_{v}\left(x_{0}, v\left(x_{0}\right)\right)\right] \\
& =M(1 / 2+r) .
\end{aligned}
$$

The non-trivial part is to upper bound the payoff of A. First, we partition the ads space Y by forming a Voronoi diagram with sites in Y_{0}. That is, we consider the partition $P=$ $\left\{S_{y}: y \in Y_{0}\right\}$ where $S_{y} \subseteq Y$ is the set of ads which are closer to $y \in Y_{0}$ than to any other $y^{\prime} \in Y_{0}$. We break ties arbitrarily, but we ensure that P is a partition of Y. Note that since Y_{0} is $2 r$-separated S_{y} contains an open ball of radius r centered at y. Also note that for any $y^{\prime} \in S_{y}$ the highest payoff $\mu_{v}\left(x_{0}, y\right)$ is achieved at the Voronoi site y regardless of v. For $y \in Y_{0}$ let n_{y} be the random variable denoting the number of times the algorithm displays an ad from S_{y}.

Now, let for $y \in Y_{0}$ denote by \mathbf{E}_{y} the conditional expectation $\mathbf{E}\left[\cdot \mid v\left(x_{0}\right)=y\right]$. The expected payoff of A can be bounded as

$$
\begin{aligned}
\mathbf{E}\left[\sum_{t=1}^{M} \mu_{v}\left(x_{0}, y_{t}\right)\right] & =\frac{1}{\left|Y_{0}\right|} \sum_{y \in Y_{0}} \mathbf{E}_{y}\left[\sum_{t=1}^{M} \mu_{v}\left(x_{0}, y_{t}\right)\right] \\
& \leq \frac{1}{\left|Y_{0}\right|} \sum_{y \in Y_{0}} \mathbf{E}_{y}\left[\sum_{y^{\prime} \in Y_{0}} n_{y^{\prime}}\right] \\
& =\frac{1}{\left|Y_{0}\right|} \sum_{y \in Y_{0}} \mathbf{E}_{y}\left[M / 2+r n_{y}\right] \\
& =M / 2+\frac{r}{\left|Y_{0}\right|} \sum_{y \in Y_{0}} \mathbf{E}_{y} n_{y}
\end{aligned}
$$

Hence,

$$
\begin{equation*}
\mathcal{R}_{x_{0}} \geq r\left(M-\frac{1}{\left|Y_{0}\right|} \sum_{y \in Y_{0}} \mathbf{E}_{y} n_{y}\right) \tag{1}
\end{equation*}
$$

and the proof reduces to bounding $\mathbf{E}_{y} n_{y}$ from above. We do this by comparing the behavior of A on an "completely noisy" independent instance μ^{\prime} for which $\mu^{\prime}\left(x_{0}, y\right)=1 / 2$ and the payoffs $\hat{\mu}_{1}^{\prime}, \hat{\mu}_{2}^{\prime}, \ldots, \hat{\mu}_{M}^{\prime}$ are i.i.d. Bernoulli random variables with parameter $1 / 2$ and are independent from $\hat{\mu}_{1}, \hat{\mu}_{2}, \ldots, \hat{\mu}_{M}, y_{1}, y_{2}, \ldots, y_{M}$ and $v\left(x_{0}\right)$. We denote by $y_{1}^{\prime}, y_{2}^{\prime}, \ldots, y_{M}$ the random variables denoting the ads displayed on μ^{\prime}. For $y \in Y_{0}$ let n_{y}^{\prime} be a random variable denoting the number of times algorithm A displays an ad from S_{y} for the noisy instance μ^{\prime}.

For fixed $y \in Y_{0}$ we define two probability distributions, q and q^{\prime}, over $\{0,1\}^{M}$ as follows. For any $B=$ $\left(b_{1}, b_{2}, \ldots, b_{M}\right) \in\{0,1\}^{M}$ let

$$
\begin{aligned}
& q^{\prime}(B)=2^{-M}= \\
& \quad \operatorname{Pr}\left[\hat{\mu}_{1}^{\prime}=b_{1}, \hat{\mu}_{2}^{\prime}=b_{2}, \ldots, \hat{\mu}_{M}^{\prime}=b_{M} \mid v\left(x_{0}\right)=y\right]
\end{aligned}
$$

and
$q(B)=\operatorname{Pr}\left[\hat{\mu}_{1}=b_{1}, \hat{\mu}_{2}=b_{2}, \ldots, \hat{\mu}_{M}=b_{M} \mid v\left(x_{0}\right)=y\right]$.

Note that the sequence of payoffs received by the algorithm uniquely determines its behavior and hence for any $y \in Y_{0}$,

$$
\begin{aligned}
& \mathbf{E}_{y}\left[n_{y} \mid \hat{\mu}_{1}=b_{1}, \hat{\mu}_{2}=b_{2}, \ldots, \hat{\mu}_{M}=b_{M}\right] \\
& \quad=\mathbf{E}\left[n_{y}^{\prime} \mid \hat{\mu}_{1}^{\prime}=b_{1}, \hat{\mu}_{2}^{\prime}=b_{2}, \ldots, \hat{\mu}_{M}^{\prime}=b_{M}\right]
\end{aligned}
$$

Consider, for any $y \in Y_{0}$,

$$
\begin{align*}
& \mathbf{E} n_{y}^{\prime}-\mathbf{E}_{y} n_{y}= \\
& \sum_{B \in\{0,1\}^{M}} q(B) \mathbf{E}_{y}\left[n_{y} \mid \hat{\mu}_{1}=b_{1}, \ldots, \hat{\mu}_{M}=b_{M}\right] \\
& \quad-\sum_{B \in\{0,1\}^{M}} q^{\prime}(B) \mathbf{E}\left[n_{y}^{\prime} \mid \hat{\mu}_{1}^{\prime}=b_{1}, \ldots, \hat{\mu}_{M}^{\prime}=b_{M}\right] \\
& =\sum_{B \in\{0,1\}^{M}}\left(q(B)-q^{\prime}(B)\right) \mathbf{E}_{y}\left[n_{y} \mid\right. \\
& \leq \sum_{\left.\hat{\mu}_{1}=b_{1}, \ldots, \hat{\mu}_{M}=b_{M}\right]}^{\sum_{q \in\{0,1\}^{M}}\left(q(B)-q^{\prime}(B)\right) \mathbf{E}_{y}\left[n_{y} \mid\right.} \\
& \left.\leq \sum_{q(B)>q^{\prime}(B)}^{\hat{\mu}_{1}}=b_{1}, \ldots, \hat{\mu}_{M}=b_{M}\right] \\
& \leq \sum_{B \in\{0,1\}^{M}}^{B(B)>q^{\prime}(B)} \\
& = \\
& \left.\left.=\frac{M}{2} \sum_{B \in\{0,1\}^{M}} \right\rvert\, q(B)-q^{\prime}(B)\right) \tag{2}
\end{align*}
$$

where the last inequality follows from that $n_{y} \leq M$. The last expression is $M / 2$ times the so-called total variation (or L_{1}) distance between the distributions q, q^{\prime}. It may be bounded by Pinsker's inequality [Cover and Thomas, 2006. Lemma 11.6.1] which states that

$$
\begin{equation*}
\sum_{B \in\{0,1\}^{M}}\left|q(B)-q^{\prime}(B)\right| \leq \sqrt{2 D\left(q^{\prime} \| q\right)} \tag{3}
\end{equation*}
$$

where

$$
D\left(q^{\prime} \| q\right)=\sum_{B \in\{0,1\}^{m}} q^{\prime}(B) \ln \left(\frac{q^{\prime}(B)}{q(B)}\right)
$$

is the Kullback-Leibler divergence of the distributions q^{\prime} and q.
We use the chain rule to compute $D\left(q^{\prime} \| q\right)$. First, for a sequence $B=\left(b_{1}, b_{2}, \ldots, b_{t-1}\right) \in\{0,1\}^{t-1}, 1 \leq t \leq M$, and $b \in\{0,1\}$ we denote by

$$
\begin{aligned}
& q_{t}(b \mid B)=\operatorname{Pr}\left[\hat{\mu}_{t}=b \mid\right. \\
& \left.\qquad \hat{\mu}_{1}=b_{1}, \ldots, \hat{\mu}_{t-1}=b_{t-1}, v\left(x_{0}\right)=y\right]
\end{aligned}
$$

and

$$
\begin{aligned}
& q_{t}^{\prime}(b \mid B)=\operatorname{Pr}\left[\hat{\mu}_{t}^{\prime}=b \mid\right. \\
& \left.\quad \hat{\mu}_{1}^{\prime}=b_{1}, \ldots, \hat{\mu}_{t-1}^{\prime}=b_{t-1}, v\left(x_{0}\right)=y\right]
\end{aligned}
$$

the conditional distributions of t-th payoffs $\hat{\mu}_{t}$ and $\hat{\mu}_{t}^{\prime}$. Note that the event $\hat{\mu}_{1}=b_{1}, \hat{\mu}_{2}=b_{2}, \ldots, \hat{\mu}_{t-1}=b_{t-1}$ on which we are conditioning, is determined by B and in turn this event determines the ad y_{t} that A displays in t-round
on the instances μ_{v}. We write y_{t} as $y_{t}(B)$ to stress this dependence. Hence, by the chain rule

$$
\begin{aligned}
D\left(q^{\prime} \| q\right)= & \sum_{t=1}^{M} \frac{1}{2^{t-1}} \sum_{B \in\{0,1\}^{t-1}} D\left(q_{t}^{\prime}(\cdot \mid B) \| q_{t}(\cdot \mid B)\right) \\
= & \sum_{t=1}^{M} \frac{1}{2^{t-1}}\left(\sum_{\substack{B \in\{0,1\}^{t-1} \\
y_{t}(B) \in S_{v\left(x_{0}\right)}}} D\left(q_{t}^{\prime}(\cdot \mid B) \| q_{t}(\cdot \mid B)\right)\right. \\
& \left.+\sum_{\substack{B \in\{0,1\}^{t-1} \\
y_{t}(B) \notin S_{y}}} D\left(q_{t}^{\prime}(\cdot \mid B) \| q_{t}(\cdot \mid B)\right)\right)
\end{aligned}
$$

where we have split the inner sum into two cases: (i) the ad $y_{t}(B)$ lies near the "correct" ad y, that is, $y_{t}(B) \in S_{y}$ and (ii) the ad y_{t} does not lie near the "correct" ad, that is, $y_{t}(B) \notin S_{y}$.
The second inner sum in the last expression evaluates to zero, since when $y_{t}(B) \notin S_{y}, q_{t}(\cdot \mid B)=q_{t}^{\prime}(\cdot \mid B)=$ $1 / 2$ are the same Bernoulli distribution and thus we have $D\left(q_{t}^{\prime}(\cdot \mid B) \| q_{t}(\cdot \mid B)\right)=0$. The terms of the first inner sum can be bounded if we realize that $q_{t}(\cdot \mid B)$ is a Bernoulli distribution with parameter $1 / 2+s$ where $s=\max \{0, r-$ $\left.L_{Y}\left(y_{t}, y\right)\right\} \leq r$ and $q_{t}^{\prime}(\cdot \mid B)$ is a Bernoulli distribution with parameter $1 / 2$. Hence, for B for which $y_{t} \in S_{y}$

$$
\begin{aligned}
D\left(q_{t}^{\prime}(\cdot \mid B) \| q_{t}(\cdot \mid B)\right) & =\frac{1}{2} \ln \frac{1 / 2}{1 / 2+s}+\frac{1}{2} \ln \frac{1 / 2}{1 / 2-s} \\
& =-\frac{1}{2} \ln \left(1-4 s^{2}\right) \\
& \leq 8 \ln (4 / 3) s^{2} \\
& \leq 8 \ln (4 / 3) r^{2}
\end{aligned}
$$

where used the inequality $-\ln (1-x) \leq 4 \ln (4 / 3) x$ for $x \in[0,1 / 4]$ which can be proved by checking it for the left and the right end point of the interval and using the convexity of logarithm. We can guarantee that $r \in[0,1 / 4]$ by picking T_{0} big enough.
$D\left(q^{\prime} \| q\right) \leq 8 r^{2} \ln \left(\frac{4}{3}\right) \sum_{t=1}^{M} \frac{1}{2^{t-1}} \sum_{B \in\{0,1\}^{t-1}} \mathbf{1}\left\{y_{t}(B) \in S_{y}\right\}$
where $\mathbf{1}\{\cdot\}$ is an indicator function.
We combine (2), Pinsker's inequality (3) and the inequality
(4) we have just obtained, and we have

$$
\begin{aligned}
& \left(\frac{1}{\left|Y_{0}\right|} \sum_{y \in Y_{0}} \mathbf{E}_{y} n_{y}\right)-\frac{M}{\left|Y_{0}\right|} \\
& =\frac{1}{\left|Y_{0}\right|} \sum_{y \in Y_{0}}\left(\mathbf{E}_{y} n_{y}-\mathbf{E} n_{y}^{\prime}\right) \\
& \leq \frac{M}{2} \frac{1}{\left|Y_{0}\right|} \sum_{y \in Y_{0}} \sqrt{2 D\left(q \| q^{\prime}\right)} \\
& \leq \frac{M}{2} \frac{1}{\left|Y_{0}\right|} \sum_{y \in Y_{0}}
\end{aligned}
$$

$$
\sqrt{16 \ln \left(\frac{4}{3}\right) r^{2} \sum_{t=1}^{M} \frac{1}{2^{t-1}} \sum_{B \in\{0,1\}^{t-1}} \mathbf{1}\left\{y_{t}(B) \in S_{y}\right\}}
$$

$$
\leq \frac{M}{2}
$$

$$
\sqrt{\frac{16 \ln \left(\frac{4}{3}\right) r^{2}}{\left|Y_{0}\right|} \sum_{\substack{t=1 \\ y \in Y_{0}}}^{M} \frac{1}{2^{t-1}} \sum_{B \in\{0,1\}^{t-1}} 1\left\{y_{t}(B) \in S_{y}\right\}}
$$

(by the arithmetic and quadratic mean inequality)

$$
\begin{aligned}
& =M r \sqrt{\frac{4 \ln (4 / 3)}{\left|Y_{0}\right|} \sum_{\substack{t=1 \\
B \in\{0,1\}^{t-1} \\
y \in Y_{0}}}^{M} \frac{\mathbf{1}\left\{y_{t}(B) \in S_{y}\right\}}{2^{t-1}}} \\
& =M r \sqrt{\frac{4 \ln (4 / 3)}{\left|Y_{0}\right| M}}
\end{aligned}
$$

where the last equality follows since

$$
\sum_{\substack{y \in Y_{0} \\ B \in\{0,1\}^{t-1}}} \mathbf{1}\left\{y_{t}(B) \in S_{y}\right\}=2^{t-1}
$$

Therefore, combining with (1) we have

$$
\mathcal{R}_{x_{0}} \geq r\left(M\left(1-\frac{1}{\left|Y_{0}\right|}\right)-M^{3 / 2} r \sqrt{\frac{4 \ln (4 / 3)}{\left|Y_{0}\right|}}\right)
$$

It can be easily verified that $r=\alpha C \sqrt{\left|Y_{0}\right| / M}$ for some constant C lying in the interval $I=[1 /(2 \sqrt{c d}), 2 / \sqrt{c d}]$ provided T_{0} is big enough. Substituting that for r leads to
$\mathcal{R}_{x_{0}} \geq\left(\left(1-\frac{1}{\left|Y_{0}\right|}\right) C \alpha-C^{2} \alpha^{2} \sqrt{4 \ln (4 / 3)}\right) \sqrt{M\left|Y_{0}\right|}$.
If $\alpha>0$ is chosen small enough, $\left|Y_{0}\right| \geq 2$ and $\beta=$ $\min _{C \in I}\left(1-\frac{1}{\left|Y_{0}\right|}\right) C \alpha-C^{2} \alpha^{2} \sqrt{4 \ln (4 / 3)}$ is positive. This finishes the proof.

References

Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. John Willey \& Sons, 2nd edition edition, 2006.

