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A Proof of Lemma 7

Think of v(z() being uniformly randomly chosen from Yj
and let E denote the expectation with respect to both the
random choice of v(xzg) and the payoffs [i1, fia, ..., fias-
Clearly, the Bayes optimal payoft is

E

M

3 s =1 [t
= M E [1,(0, v(20))]
= M(1/2+7).

The non-trivial part is to upper bound the payoff of A. First,
we partition the ads space Y by forming a Voronoi diagram
with sites in Yy. That is, we consider the partition P =
{Sy : y € Yo} where S, C Y is the set of ads which are
closer to iy € Yj than to any other 3/ € Y. We break ties
arbitrarily, but we ensure that P is a partition of Y. Note
that since Yj is 2r-separated S, contains an open ball of
radius r centered at y. Also note that for any ' € S, the
highest payoff u,(zo,y) is achieved at the Voronoi site y
regardless of v. For y € Yj let n, be the random variable
denoting the number of times the algorithm displays an ad
from S,,.

Now, let for y € Y| denote by E, the conditional expec-
tation E[- | v(zo) = y]. The expected payoff of A can be
bounded as
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Hence,
1
Raug > 7 M—jZEyny (1)

and the proof reduces to bounding E, n, from above. We
do this by comparing the behavior of A on an “completely
noisy” independent instance p' for which p/'(xg,y) = 1/2
and the payoffs i}, i5, . .., it are i.i.d. Bernoulli random
variables with parameter 1/2 and are independent from
f1, f2y oy fings Y1, Y2, - - -, Y and v(zg). We denote by
Y1, Yh, -« -, yar the random variables denoting the ads dis-
played on y/. For y € Y let n be a random variable
denoting the number of times algorithm A displays an ad
from S, for the noisy instance 1.

For fixed y € Y, we define two probability distribu-
tions, ¢ and ¢’, over {0, 1} as follows. For any B =
(bl, bay. ., bM) S {0, I}JVI let

¢(B)=2""=

Prlfiy = b1, iy = b, ..., fihy = bar | v(z0) = Y]

and
q(B)

= Prljiy = by, fiz = bo, ..., fing = bas | v(20) = ¥

Note that the sequence of payoffs received by the algorithm
uniquely determines its behavior and hence for any y € Yj,
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Consider, for any y € Y,
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where the last inequality follows from that n, < M. The
last expression is M /2 times the so-called rotal variation
(or L) distance between the distributions ¢, ¢’. It may be
bounded by Pinsker’s inequality [[Cover and Thomas},|2006,
Lemma 11.6.1] which states that

> laB)-d(B)<V2D(llg), 3
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where

it~ > (LD

Be{0,1}™

is the Kullback-Leibler divergence of the distributions ¢’
and q.

We use the chain rule to compute D(q'||q). First, for a
sequence B = (by,b,...,bi_1) € {0,1}171,1 <t < M,
and b € {0, 1} we denote by

q:(b|B) = Prlii, = b

ﬂl = bl,---7ﬂt—1 = bt—l,’U(%o) = y]

and

q;(b| B) = Prljiy = b |

ﬂll = blw"aﬂgfl = bt717v(m0) = y]

the conditional distributions of ¢-th payoffs fi; and /i}. Note
that the event ji;, = by, fis = ba,...,[l4_1 = b;_1 on
which we are conditioning, is determined by B and in turn
this event determines the ad y; that A displays in ¢-round

on the instances (i, We write y; as y:(B) to stress this
dependence. Hence, by the chain rule
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where we have split the inner sum into two cases: (i) the
ad y¢(B) lies near the “correct” ad y, that is, y;(B) € Sy
and (ii) the ad y; does not lie near the “correct” ad, that is,
y(B) € Sy.

The second inner sum in the last expression evaluates to
zero, since when y,(B) ¢ Sy, ¢(:|B) = ¢(:|B) =
1/2 are the same Bernoulli distribution and thus we have
D(q;(-|B)|lq:(-|B)) = 0. The terms of the first inner sum
can be bounded if we realize that ¢;(-|B) is a Bernoulli dis-
tribution with parameter 1/2 4+ s where s = max{0,r —
Ly (y¢,y)} < rand q;(-|B) is a Bernoulli distribution with
parameter 1/2. Hence, for B for which y; € Sy
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< 81In(4/3)s*

< 8In(4/3)r?,

where used the inequality —In(1 — x) < 41In(4/3)x for
x € [0,1/4] which can be proved by checking it for the
left and the right end point of the interval and using the
convexity of logarithm. We can guarantee that r € [0, 1/4]
by picking Tj big enough.
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where 1{-} is an indicator function.

We combine (2)), Pinsker’s inequality (3) and the inequality
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@) we have just obtained, and we have
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(by the arithmetic and quadratic mean inequality)
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where the last equality follows since
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Therefore, combining with () we have
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It can be easily verified that r = aC'\/|Yy|/M for some

constant C' lying in the interval I = [1/(2V/cd),2/V/cd]
provided Tj is big enough. Substituting that for r leads to

Ry > ((1 I; |> Ca — C%a*\/41n(4/3) ) VMIYo! .
0

If & > 0 is chosen small enough, |Yo| > 2 and 5 =

minger (1 \Yl) Ca — C?a?/41n(4/3) is positive.
This finishes the proof.
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