Contextual Multi-Armed Bandits — Appendix

Tyler Lu tl@cs.toronto.edu Department of Computer Science University of Toronto 10 King's College Road, M5S 3G4 Toronto, ON, Canada Dávid Pál dpal@cs.ualberta.ca Department of Computing Science University of Alberta T6G 2E8 Edmonton, AB, Canada

Martin Pál

mpal@google.com Google, Inc. 76 9th Avenue, 4th Floor New York, NY 10011, USA

A Proof of Lemma 7

Think of $v(x_0)$ being uniformly randomly chosen from Y_0 and let **E** denote the expectation with respect to both the random choice of $v(x_0)$ and the payoffs $\hat{\mu}_1, \hat{\mu}_2, \dots, \hat{\mu}_M$. Clearly, the Bayes optimal payoff is

$$\mathbf{E}\left[\sum_{t=1}^{M} \sup_{y'_t \in Y} \mu_v(x_0, y'_t)\right] = M \mathbf{E}\left[\sup_{y \in Y} \mu_v(x_0, y)\right]$$
$$= M \mathbf{E}\left[\mu_v(x_0, v(x_0))\right]$$
$$= M(1/2 + r).$$

The non-trivial part is to upper bound the payoff of A. First, we partition the ads space Y by forming a Voronoi diagram with sites in Y_0 . That is, we consider the partition $P = \{S_y : y \in Y_0\}$ where $S_y \subseteq Y$ is the set of ads which are closer to $y \in Y_0$ than to any other $y' \in Y_0$. We break ties arbitrarily, but we ensure that P is a partition of Y. Note that since Y_0 is 2r-separated S_y contains an open ball of radius r centered at y. Also note that for any $y' \in S_y$ the highest payoff $\mu_v(x_0, y)$ is achieved at the Voronoi site yregardless of v. For $y \in Y_0$ let n_y be the random variable denoting the number of times the algorithm displays an ad from S_y .

Now, let for $y \in Y_0$ denote by \mathbf{E}_y the conditional expectation $\mathbf{E}[\cdot | v(x_0) = y]$. The expected payoff of A can be bounded as

$$\mathbf{E}\left[\sum_{t=1}^{M} \mu_{v}(x_{0}, y_{t})\right] = \frac{1}{|Y_{0}|} \sum_{y \in Y_{0}} \mathbf{E}_{y} \left[\sum_{t=1}^{M} \mu_{v}(x_{0}, y_{t})\right]$$
$$\leq \frac{1}{|Y_{0}|} \sum_{y \in Y_{0}} \mathbf{E}_{y} \left[\sum_{y' \in Y_{0}} n_{y'}\right]$$
$$= \frac{1}{|Y_{0}|} \sum_{y \in Y_{0}} \mathbf{E}_{y} \left[M/2 + rn_{y}\right]$$
$$= M/2 + \frac{r}{|Y_{0}|} \sum_{y \in Y_{0}} \mathbf{E}_{y} n_{y}$$

Hence,

$$\mathcal{R}_{x_0} \ge r \left(M - \frac{1}{|Y_0|} \sum_{y \in Y_0} \mathbf{E}_y \, n_y \right) \tag{1}$$

and the proof reduces to bounding $\mathbf{E}_y n_y$ from above. We do this by comparing the behavior of A on an "completely noisy" independent instance μ' for which $\mu'(x_0, y) = 1/2$ and the payoffs $\hat{\mu}'_1, \hat{\mu}'_2, \ldots, \hat{\mu}'_M$ are i.i.d. Bernoulli random variables with parameter 1/2 and are independent from $\hat{\mu}_1, \hat{\mu}_2, \ldots, \hat{\mu}_M, y_1, y_2, \ldots, y_M$ and $v(x_0)$. We denote by y'_1, y'_2, \ldots, y_M the random variables denoting the ads displayed on μ' . For $y \in Y_0$ let n'_y be a random variable denoting the number of times algorithm A displays an ad from S_y for the noisy instance μ' .

For fixed $y \in Y_0$ we define two probability distributions, q and q', over $\{0,1\}^M$ as follows. For any $B = (b_1, b_2, \ldots, b_M) \in \{0,1\}^M$ let

$$q'(B) = 2^{-M} =$$

 $\Pr[\hat{\mu}'_1 = b_1, \hat{\mu}'_2 = b_2, \dots, \hat{\mu}'_M = b_M \mid v(x_0) = y]$

and

$$q(B) = \Pr[\hat{\mu}_1 = b_1, \hat{\mu}_2 = b_2, \dots, \hat{\mu}_M = b_M \mid v(x_0) = y]$$

Note that the sequence of payoffs received by the algorithm uniquely determines its behavior and hence for any $y \in Y_0$,

$$\mathbf{E}_{y}[n_{y} \mid \hat{\mu}_{1} = b_{1}, \hat{\mu}_{2} = b_{2}, \dots, \hat{\mu}_{M} = b_{M}] \\ = \mathbf{E}[n'_{y} \mid \hat{\mu}'_{1} = b_{1}, \hat{\mu}'_{2} = b_{2}, \dots, \hat{\mu}'_{M} = b_{M}]$$

Consider, for any $y \in Y_0$,

$$\begin{split} \mathbf{E} \, n'_{y} - \mathbf{E}_{y} \, n_{y} &= \\ \sum_{B \in \{0,1\}^{M}} q(B) \, \mathbf{E}_{y}[n_{y} \mid \hat{\mu}_{1} = b_{1}, \dots, \hat{\mu}_{M} = b_{M}] \\ &- \sum_{B \in \{0,1\}^{M}} q'(B) \, \mathbf{E}[n'_{y} \mid \hat{\mu}'_{1} = b_{1}, \dots, \hat{\mu}'_{M} = b_{M}] \\ &= \sum_{B \in \{0,1\}^{M}} (q(B) - q'(B)) \, \mathbf{E}_{y}[n_{y} \mid \\ & \hat{\mu}_{1} = b_{1}, \dots, \hat{\mu}_{M} = b_{M}] \\ &\leq \sum_{\substack{B \in \{0,1\}^{M} \\ q(B) > q'(B)}} (q(B) - q'(B)) \, \mathbf{E}_{y}[n_{y} \mid \\ & \hat{\mu}_{1} = b_{1}, \dots, \hat{\mu}_{M} = b_{M}] \\ &\leq M \sum_{\substack{B \in \{0,1\}^{M} \\ q(B) > q'(B)}} (q(B) - q'(B)) \\ &= \frac{M}{2} \sum_{B \in \{0,1\}^{M}} |q(B) - q'(B)| \end{split}$$

$$(2)$$

where the last inequality follows from that $n_y \leq M$. The last expression is M/2 times the so-called *total variation* (or L_1) distance between the distributions q, q'. It may be bounded by Pinsker's inequality [Cover and Thomas, 2006, Lemma 11.6.1] which states that

$$\sum_{B \in \{0,1\}^M} |q(B) - q'(B)| \le \sqrt{2D(q'||q)} , \qquad (3)$$

where

$$D(q'||q) = \sum_{B \in \{0,1\}^m} q'(B) \ln\left(\frac{q'(B)}{q(B)}\right)$$

is the Kullback-Leibler divergence of the distributions q' and q.

We use the chain rule to compute D(q'||q). First, for a sequence $B = (b_1, b_2, \ldots, b_{t-1}) \in \{0, 1\}^{t-1}, 1 \le t \le M$, and $b \in \{0, 1\}$ we denote by

$$q_t(b|B) = \Pr[\hat{\mu}_t = b \mid \\ \hat{\mu}_1 = b_1, \dots, \hat{\mu}_{t-1} = b_{t-1}, v(x_0) = y]$$

and

$$q'_t(b|B) = \Pr[\hat{\mu}'_t = b \mid \\ \hat{\mu}'_1 = b_1, \dots, \hat{\mu}'_{t-1} = b_{t-1}, v(x_0) = y]$$

the conditional distributions of t-th payoffs $\hat{\mu}_t$ and $\hat{\mu}'_t$. Note that the event $\hat{\mu}_1 = b_1, \hat{\mu}_2 = b_2, \dots, \hat{\mu}_{t-1} = b_{t-1}$ on which we are conditioning, is determined by B and in turn this event determines the ad y_t that A displays in t-round

on the instances μ_v . We write y_t as $y_t(B)$ to stress this dependence. Hence, by the chain rule

$$D(q'||q) = \sum_{t=1}^{M} \frac{1}{2^{t-1}} \sum_{\substack{B \in \{0,1\}^{t-1} \\ y_t(B) \in S_{v(x_0)}}} D(q'_t(\cdot|B)||q_t(\cdot|B))} \\ = \sum_{t=1}^{M} \frac{1}{2^{t-1}} \left(\sum_{\substack{B \in \{0,1\}^{t-1} \\ y_t(B) \in S_{v(x_0)}}} D(q'_t(\cdot|B)||q_t(\cdot|B))} + \sum_{\substack{B \in \{0,1\}^{t-1} \\ y_t(B) \notin S_y}} D(q'_t(\cdot|B)||q_t(\cdot|B))} \right)$$

where we have split the inner sum into two cases: (i) the ad $y_t(B)$ lies near the "correct" ad y, that is, $y_t(B) \in S_y$ and (ii) the ad y_t does not lie near the "correct" ad, that is, $y_t(B) \notin S_y$.

The second inner sum in the last expression evaluates to zero, since when $y_t(B) \notin S_y$, $q_t(\cdot|B) = q'_t(\cdot|B) = 1/2$ are the same Bernoulli distribution and thus we have $D(q'_t(\cdot|B)||q_t(\cdot|B)) = 0$. The terms of the first inner sum can be bounded if we realize that $q_t(\cdot|B)$ is a Bernoulli distribution with parameter 1/2 + s where $s = \max\{0, r - L_Y(y_t, y)\} \leq r$ and $q'_t(\cdot|B)$ is a Bernoulli distribution with parameter 1/2. Hence, for *B* for which $y_t \in S_y$

$$D(q'_t(\cdot|B)||q_t(\cdot|B)) = \frac{1}{2}\ln\frac{1/2}{1/2+s} + \frac{1}{2}\ln\frac{1/2}{1/2-s}$$
$$= -\frac{1}{2}\ln(1-4s^2)$$
$$\leq 8\ln(4/3)s^2$$
$$\leq 8\ln(4/3)r^2,$$

where used the inequality $-\ln(1-x) \le 4\ln(4/3)x$ for $x \in [0, 1/4]$ which can be proved by checking it for the left and the right end point of the interval and using the convexity of logarithm. We can guarantee that $r \in [0, 1/4]$ by picking T_0 big enough.

$$D(q'||q) \le 8r^2 \ln\left(\frac{4}{3}\right) \sum_{t=1}^{M} \frac{1}{2^{t-1}} \sum_{B \in \{0,1\}^{t-1}} \mathbf{1}\{y_t(B) \in S_y\}$$
(4)

where $\mathbf{1}\{\cdot\}$ is an indicator function.

We combine (2), Pinsker's inequality (3) and the inequality

(4) we have just obtained, and we have

$$\begin{split} &\left(\frac{1}{|Y_0|}\sum_{y\in Y_0}\mathbf{E}_y n_y\right) - \frac{M}{|Y_0|} \\ &= \frac{1}{|Y_0|}\sum_{y\in Y_0}\left(\mathbf{E}_y n_y - \mathbf{E} n'_y\right) \\ &\leq \frac{M}{2}\frac{1}{|Y_0|}\sum_{y\in Y_0}\sqrt{2D(q||q')} \\ &\leq \frac{M}{2}\frac{1}{|Y_0|}\sum_{y\in Y_0} \\ &\sqrt{16\ln\left(\frac{4}{3}\right)r^2\sum_{t=1}^M \frac{1}{2^{t-1}}\sum_{B\in\{0,1\}^{t-1}}\mathbf{1}\{y_t(B)\in S_y\}} \\ &\leq \frac{M}{2} \\ &\sqrt{\frac{16\ln\left(\frac{4}{3}\right)r^2}{|Y_0|}\sum_{\substack{t=1\\y\in Y_0}}^M \frac{1}{2^{t-1}}\sum_{B\in\{0,1\}^{t-1}}\mathbf{1}\{y_t(B)\in S_y\}} \end{split}$$

(by the arithmetic and quadratic mean inequality)

$$= Mr \sqrt{\frac{4\ln(4/3)}{|Y_0|}} \sum_{\substack{t=1\\B \in \{0,1\}^{t-1}\\y \in Y_0}}^{M} \frac{1\{y_t(B) \in S_y\}}{2^{t-1}}$$
$$= Mr \sqrt{\frac{4\ln(4/3)}{|Y_0|M}}$$

where the last equality follows since

Г

$$\sum_{\substack{y \in Y_0\\B \in \{0,1\}^{t-1}}} \mathbf{1}\{y_t(B) \in S_y\} = 2^{t-1}.$$

Therefore, combining with (1) we have

$$\mathcal{R}_{x_0} \ge r\left(M\left(1-\frac{1}{|Y_0|}\right) - M^{3/2}r\sqrt{\frac{4\ln(4/3)}{|Y_0|}}\right).$$

It can be easily verified that $r = \alpha C \sqrt{|Y_0|/M}$ for some constant C lying in the interval $I = [1/(2\sqrt{cd}), 2/\sqrt{cd}]$ provided T_0 is big enough. Substituting that for r leads to

$$\mathcal{R}_{x_0} \ge \left(\left(1 - \frac{1}{|Y_0|} \right) C\alpha - C^2 \alpha^2 \sqrt{4\ln(4/3)} \right) \sqrt{M|Y_0|}$$

If $\alpha > 0$ is chosen small enough, $|Y_0| \ge 2$ and $\beta = \min_{C \in I} \left(1 - \frac{1}{|Y_0|}\right) C\alpha - C^2 \alpha^2 \sqrt{4 \ln(4/3)}$ is positive. This finishes the proof.

References

Thomas M. Cover and Joy A. Thomas. *Elements of Information Theory*. John Willey & Sons, 2nd edition edition, 2006.