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A Proof of Lemma 7

Think of v(x0) being uniformly randomly chosen from Y0
and let E denote the expectation with respect to both the
random choice of v(x0) and the payoffs µ̂1, µ̂2, . . . , µ̂M .
Clearly, the Bayes optimal payoff is

E

[
M∑
t=1

sup
y′t∈Y

µv(x0, y
′
t)

]
=M E

[
sup
y∈Y

µv(x0, y)

]
=M E [µv(x0, v(x0))]

=M(1/2 + r).

The non-trivial part is to upper bound the payoff ofA. First,
we partition the ads space Y by forming a Voronoi diagram
with sites in Y0. That is, we consider the partition P =
{Sy : y ∈ Y0} where Sy ⊆ Y is the set of ads which are
closer to y ∈ Y0 than to any other y′ ∈ Y0. We break ties
arbitrarily, but we ensure that P is a partition of Y . Note
that since Y0 is 2r-separated Sy contains an open ball of
radius r centered at y. Also note that for any y′ ∈ Sy the
highest payoff µv(x0, y) is achieved at the Voronoi site y
regardless of v. For y ∈ Y0 let ny be the random variable
denoting the number of times the algorithm displays an ad
from Sy .

Now, let for y ∈ Y0 denote by Ey the conditional expec-
tation E[· | v(x0) = y]. The expected payoff of A can be
bounded as

E

[
M∑
t=1

µv(x0, yt)

]
=

1

|Y0|
∑
y∈Y0

Ey

[
M∑
t=1

µv(x0, yt)

]

≤ 1

|Y0|
∑
y∈Y0

Ey

 ∑
y′∈Y0

ny′


=

1

|Y0|
∑
y∈Y0

Ey [M/2 + rny]

=M/2 +
r

|Y0|
∑
y∈Y0

Ey ny

Hence,

Rx0
≥ r

M − 1

|Y0|
∑
y∈Y0

Ey ny

 (1)

and the proof reduces to bounding Ey ny from above. We
do this by comparing the behavior of A on an “completely
noisy” independent instance µ′ for which µ′(x0, y) = 1/2
and the payoffs µ̂′1, µ̂

′
2, . . . , µ̂

′
M are i.i.d. Bernoulli random

variables with parameter 1/2 and are independent from
µ̂1, µ̂2, . . . , µ̂M , y1, y2, . . . , yM and v(x0). We denote by
y′1, y

′
2, . . . , yM the random variables denoting the ads dis-

played on µ′. For y ∈ Y0 let n′y be a random variable
denoting the number of times algorithm A displays an ad
from Sy for the noisy instance µ′.

For fixed y ∈ Y0 we define two probability distribu-
tions, q and q′, over {0, 1}M as follows. For any B =
(b1, b2, . . . , bM ) ∈ {0, 1}M let

q′(B) = 2−M =

Pr[µ̂′1 = b1, µ̂
′
2 = b2, . . . , µ̂

′
M = bM | v(x0) = y]

and

q(B) = Pr[µ̂1 = b1, µ̂2 = b2, . . . , µ̂M = bM | v(x0) = y].

Note that the sequence of payoffs received by the algorithm
uniquely determines its behavior and hence for any y ∈ Y0,

Ey[ny | µ̂1 = b1, µ̂2 = b2, . . . , µ̂M = bM ]

= E[n′y | µ̂′1 = b1, µ̂
′
2 = b2, . . . , µ̂

′
M = bM ]
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Consider, for any y ∈ Y0,

En′y −Ey ny =∑
B∈{0,1}M

q(B)Ey[ny | µ̂1 = b1, . . . , µ̂M = bM ]

−
∑

B∈{0,1}M
q′(B)E[n′y | µ̂′1 = b1, . . . , µ̂

′
M = bM ]

=
∑

B∈{0,1}M
(q(B)− q′(B))Ey[ny |

µ̂1 = b1, . . . , µ̂M = bM ]

≤
∑

B∈{0,1}M
q(B)>q′(B)

(q(B)− q′(B))Ey[ny |

µ̂1 = b1, . . . , µ̂M = bM ]

≤M
∑

B∈{0,1}M
q(B)>q′(B)

(q(B)− q′(B))

=
M

2

∑
B∈{0,1}M

|q(B)− q′(B)| (2)

where the last inequality follows from that ny ≤ M . The
last expression is M/2 times the so-called total variation
(or L1) distance between the distributions q, q′. It may be
bounded by Pinsker’s inequality [Cover and Thomas, 2006,
Lemma 11.6.1] which states that∑

B∈{0,1}M
|q(B)− q′(B)| ≤

√
2D(q′‖q) , (3)

where

D(q′‖q) =
∑

B∈{0,1}m
q′(B) ln

(
q′(B)

q(B)

)

is the Kullback-Leibler divergence of the distributions q′

and q.

We use the chain rule to compute D(q′‖q). First, for a
sequence B = (b1, b2, . . . , bt−1) ∈ {0, 1}t−1, 1 ≤ t ≤M ,
and b ∈ {0, 1} we denote by

qt(b|B) = Pr[µ̂t = b |
µ̂1 = b1, . . . , µ̂t−1 = bt−1, v(x0) = y]

and

q′t(b|B) = Pr[µ̂′t = b |
µ̂′1 = b1, . . . , µ̂

′
t−1 = bt−1, v(x0) = y]

the conditional distributions of t-th payoffs µ̂t and µ̂′t. Note
that the event µ̂1 = b1, µ̂2 = b2, . . . , µ̂t−1 = bt−1 on
which we are conditioning, is determined by B and in turn
this event determines the ad yt that A displays in t-round

on the instances µv . We write yt as yt(B) to stress this
dependence. Hence, by the chain rule

D(q′‖q) =
M∑
t=1

1

2t−1

∑
B∈{0,1}t−1

D(q′t(·|B)‖qt(·|B))

=

M∑
t=1

1

2t−1

 ∑
B∈{0,1}t−1

yt(B)∈Sv(x0)

D(q′t(·|B)‖qt(·|B))

+
∑

B∈{0,1}t−1

yt(B) 6∈Sy

D(q′t(·|B)‖qt(·|B))



where we have split the inner sum into two cases: (i) the
ad yt(B) lies near the “correct” ad y, that is, yt(B) ∈ Sy

and (ii) the ad yt does not lie near the “correct” ad, that is,
yt(B) 6∈ Sy .

The second inner sum in the last expression evaluates to
zero, since when yt(B) 6∈ Sy , qt(·|B) = q′t(·|B) =
1/2 are the same Bernoulli distribution and thus we have
D(q′t(·|B)‖qt(·|B)) = 0. The terms of the first inner sum
can be bounded if we realize that qt(·|B) is a Bernoulli dis-
tribution with parameter 1/2 + s where s = max{0, r −
LY (yt, y)} ≤ r and q′t(·|B) is a Bernoulli distribution with
parameter 1/2. Hence, for B for which yt ∈ Sy

D(q′t(·|B)‖qt(·|B)) =
1

2
ln

1/2

1/2 + s
+

1

2
ln

1/2

1/2− s

= −1

2
ln(1− 4s2)

≤ 8 ln(4/3)s2

≤ 8 ln(4/3)r2 ,

where used the inequality − ln(1 − x) ≤ 4 ln(4/3)x for
x ∈ [0, 1/4] which can be proved by checking it for the
left and the right end point of the interval and using the
convexity of logarithm. We can guarantee that r ∈ [0, 1/4]
by picking T0 big enough.

D(q′‖q) ≤ 8r2 ln

(
4

3

) M∑
t=1

1

2t−1

∑
B∈{0,1}t−1

1{yt(B) ∈ Sy}

(4)
where 1{·} is an indicator function.

We combine (2), Pinsker’s inequality (3) and the inequality
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(4) we have just obtained, and we have 1

|Y0|
∑
y∈Y0

Ey ny

− M

|Y0|

=
1

|Y0|
∑
y∈Y0

(
Ey ny −En′y

)
≤ M

2

1

|Y0|
∑
y∈Y0

√
2D(q‖q′)

≤ M

2

1

|Y0|
∑
y∈Y0√√√√16 ln

(
4

3

)
r2

M∑
t=1

1

2t−1

∑
B∈{0,1}t−1

1{yt(B) ∈ Sy}

≤ M

2√√√√√16 ln
(
4
3

)
r2

|Y0|

M∑
t=1
y∈Y0

1

2t−1

∑
B∈{0,1}t−1

1{yt(B) ∈ Sy}

(by the arithmetic and quadratic mean inequality)

=Mr

√√√√√√√
4 ln(4/3)

|Y0|

M∑
t=1

B∈{0,1}t−1

y∈Y0

1{yt(B) ∈ Sy}
2t−1

=Mr

√
4 ln(4/3)

|Y0|M

where the last equality follows since∑
y∈Y0

B∈{0,1}t−1

1{yt(B) ∈ Sy} = 2t−1.

Therefore, combining with (1) we have

Rx0
≥ r

(
M

(
1− 1

|Y0|

)
−M3/2r

√
4 ln(4/3)

|Y0|

)
.

It can be easily verified that r = αC
√
|Y0|/M for some

constant C lying in the interval I = [1/(2
√
cd), 2/

√
cd]

provided T0 is big enough. Substituting that for r leads to

Rx0
≥
((

1− 1

|Y0|

)
Cα− C2α2

√
4 ln(4/3)

)√
M |Y0| .

If α > 0 is chosen small enough, |Y0| ≥ 2 and β =

minC∈I

(
1− 1

|Y0|

)
Cα − C2α2

√
4 ln(4/3) is positive.

This finishes the proof.
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