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Abstract

We develop a Bayesian framework for supervised
dimension reduction using a flexible nonpara-
metric Bayesian mixture modeling approach.
Our method retrieves the dimension reduction or
d.r. subspace by utilizing a dependent Dirichlet
process that allows for natural clustering for the
data in terms of both the response and predictor
variables. Formal probabilistic models with like-
lihoods and priors are given and efficient poste-
rior sampling of the d.r. subspace can be obtained
by a Gibbs sampler. As the posterior draws are
linear subspaces which are points on a Grass-
mann manifold, we output the posterior mean d.r.
subspace with respect to geodesics on the Grass-
mannian. The utility of our approach is illus-
trated on a set of simulated and real examples.
Some Key Words: supervised dimension reduc-
tion, inverse regression, Dirichlet process, factor
models, Grassman manifold.

1 Introduction

Supervised dimension reduction (SDR) or simultaneous di-
mension reduction and regression can be formulated as
finding a low-dimensional subspace or manifold that con-
tains all the predictive information of the response variable.
This low-dimensional subspace is often called the dimen-
sion reduction (d.r.) space. Projections onto the d.r. space
can be used to replace the original predictors, without af-
fecting the prediction. This is a counterpart of unsupervised
dimension reduction such as principal components analysis
which does not take into account the response variable.

The underlying model in supervised dimension reduction
is given p-dimensional predictorsX and a responseY the
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following holds

Y = g(b′1X, · · · , b′dX, ε) (1)

where the column vectors ofB = (b1, ..., bd) are named
the d.r. directions andε is noise independent ofX . In
this framework all the predictive information is contained
in the d.r. spaceB which is the span of the columns ofB,
sinceY ⊥⊥ X | PBX , wherePB denotes the orthogonal
projection operator onto the subspaceB.

A variety of methods for SDR have been proposed. They
can be subdivided into three categories: methods based
on gradients of the regression function (Xia et al., 2002;
Mukherjee and Zhou, 2006; Mukherjee and Wu, 2006;
Mukherjee et al., 2010), methods based on forward regres-
sion that investigates the conditional distributionY | X

(Friedman and Stuetzle, 1981; Tokdar et al., 2008), and
methods based on inverse regression that focuses onX |
Y (Li, 1991; Cook, 2007; Hastie and Tibshirani, 1996b;
Sugiyama, 2007).

In this paper we develop a Bayesian methodology we call
Bayesian mixtures of inverse regression (BMI) that ex-
tends the model-based approach of Cook (2007). A semi-
parametric model will be stated. A salient point is that it
applies to data generated from distributions where the sup-
port of the predictive subspace is not a linear subspace of
the predictors but is instead a nonlinear manifold. The pro-
jection is still linear but it will contain the nonlinear mani-
fold that is relevant to prediction. A further important point
of great interest is that the d.r. subspace is on a so-called
Grassmann manifold denoted asG(d,p) which is defined as
the set of all thed dimensional linear subspaces ofR

p,
and our model allows for rich inference such as uncertainty
evaluation by drawing posterior samples (subspaces) from
this manifold rather than merely obtaining an optimal point
from this manifold as by other SDR methods.

2 Bayesian mixtures of inverse regression

The idea that the conditional distribution of the predictors
given the response can provide useful information in the re-
duction of the dimensions was introduced in sliced inverse
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regression (SIR) (Li, 1991) for the regression setting and
reduced rank linear discriminant analysis for the classifica-
tion setting. SIR proposes the semiparametric model in (1)
and claims that the conditional expectationE(X | Y = y),
called the inverse regression curve, is contained in the
(transformed) d.r. space spanned by the columns ofB. SIR
is not a model based approach in the sense that a sampling
or distributional model is not specified forX | Y . The idea
of specifying a model forX | Y is developed in principal
fitted component (PFC) models (Cook, 2007). Specifically,
the PFC model assumes the following multivariate form for
the inverse regression

Xy = µ + Aνy + ε, Xy ≡ X | Y = y,

whereµ ∈ R
p is an intercept;ε ∼ N(0, ∆) with ∆ ∈

R
p×p a random error term;A ∈ R

p×d andνy ∈ R
d im-

ply that the mean of the (centered)Xy lie in a subspace
spanned by the columns ofA with νy the coordinate (sim-
ilar to a factor model setting withA the factor loading ma-
trix and νy the factor score). Under this model formula-
tion it is important thatνy is modeled otherwise the above
model is an adaptation of principal components regression,
see sections 2.1.1 and 2.1.2 for the models used in this pa-
per. In this framework it can be shownB = ∆−1A (Cook,
2007), so that the columns of∆−1A spans the d.r. space.

SIR and PFC both suffer from the problem that the d.r.
space is degenerate when the regression function is sym-
metric along certain directions ofX , in this case important
directions might be lost. The primary reason for this is that
Xy for certain values ofy may not be unimodal: there may
be two clusters or components in the conditional distribu-
tion X | Y = y. An additional drawback of SIR is that
the slicing procedure on the response variable is rigid and
not based on a distributional model. Intuitively, data points
with similar responses tend to have dependence yet because
of the rigid nature of the slicing procedure these data points
may belong to different bins and are treated independently.

A direct approach to address the first problem is to de-
velop a mixture model, that is, to assume a normal mix-
ture model rather than a simple normal model forXy.
This is the approach taken in mixture discriminant analy-
sis (MDA) (Hastie and Tibshirani, 1994) which utilizes in
the classification setting a finite Gaussian mixture model
for each class. However MDA can only be applied when
the response is discrete rather than continuous, and the pre-
specification of the (generally unknown) number of mix-
ture components is an issue.

2.1 Model specification

We propose a semiparametric mixture model that general-
izes the PFC model

X | (Y = y, µyx, ∆) ∼ N(µyx, ∆) (2)

µyx = µ + Aνyx (3)

νyx ∼ Gy (4)

whereµ ∈ R
p, ∆ ∈ R

p×p, A ∈ R
p×d have the same in-

terpretations as in the PFC model andνyx ∈ R
d is analo-

gous toνy in the PFC model except it depends ony and the
marginal distribution ofX , and it follows a distributionGy

that depends ony. Note that the PFC model can be recov-
ered by assumingGy = δνy

which is a point mass atνy,
and in this caseνyx ≡ νy.

However by consideringGy as a random process hence
specifying flexible nonparametric models forX | Y we
can greatly generalize the PFC model. For example a
Dirichlet process prior (DP) (Ferguson, 1973, 1974; Sethu-
raman, 1994) onGy leads to a mixture model forX | Y

due to its discrete property and alleviates the need to pre-
specify the number of mixture components forX | Y .
For continuous responses the dependent Dirichlet process
(DDP) (MacEachern, 1999) or kernel stick-breaking pro-
cess (Dunson and Park, 2008) is used to modelGy.

Proposition 1. For this model the d.r. space is the span of
B = ∆−1A

Y | X = Y | (∆−1A)′X.

Proof. Assume in the followingA and∆ are given. As-
sume in (3)µ = 0 w.o.l.g. so thatµyx = Aνyx. Let p(y|x)
be the distribution ofY givenX . Then

p(y | x) =
p(x | y)p(y)

p(x)
=

p(y)

p(x)

∫

N(x; µyx, ∆)dπ(µyx)

∝ p(y)

∫

exp
(

−
1

2
(x − µyx)′∆−1(x − µyx)

)

dπ(µyx)

∝ p(y) exp
(

−
1

2
(x − PAx)′∆−1(x − PAx)

)

∫

exp
(

−
1

2
(PAx − µyx)′∆−1(PAx − µyx)

)

exp
(

− (PAx − µyx)′∆−1(x − PAx)
)

dπ(µyx)

wherePAx denotes the projection of x onto the column
space ofA under the∆−1 inner product, i.e.,

PAx = A(A′∆−1A)−1A′∆−1x.

Since µyx is in the column space ofA, the cross term
(PAx − µyx)′∆−1(x − PAx) = 0, which could also be
derived by checking thatµyx = PAµyx andP ′

A∆−1(x −
PAx) = 0. So that

p(y | x) ∝ p(y) ·
∫

exp
(

−
1

2
(PAx − µyx)′∆−1(PAx − µyx)

)

dπ(µyx)
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thusx comes into play only throughA′∆−1x.

Given data{(xi, yi)}
n
i=1 the following sampling distribu-

tion is specified from (2) - (4)

xi | (yi, µ, νi, A, ∆) ∼ N(µ + Aνi, ∆)

νi ∼ Gyi

whereνi := νyixi
and the likelihood is

Lik(data| A, ∆, ν, µ) ∝ det(∆−1)
n
2 ·

exp

[

−
1

2

n
∑

i=1

(xi − µ − Aνi)
′∆−1(xi − µ − Aνi)

]

(5)

whereν = (ν1, · · · , νn). To fully specify the model we
need to specify the distributionsGyi

. The categorical re-
sponse case is specified in subsection 2.1.1 and the contin-
uous response case is specified in subsection 2.1.2.

2.1.1 Categorical response

When the response is categorical,y = {1, · · · , C}, we can
specify the following model forνi

νi | (yi = c) ∼ Gc for c = 1, ..., C, (6)

where eachGc is an unknown distribution independent
with each other. It is natural to use a Dirichlet process as a
prior for eachGc

Gc ∼ DP(α0, G0) (7)

with α0 is a concentration parameter andG0 the base mea-
sure. The discrete nature of the DP will ensure a mixture
representation forGc and induce a mixture of normal dis-
tributions forX | Y . This allows for multiple clusters in
each class.

2.1.2 Continuous response

In the case of a continuous response variable it is natural to
expectGy1 andGy2 to be dependent ify1 is close toy2, that
is, we would like to borrow information across the response
variables. A natural way of doing this is to use a depen-
dent Dirichlet Process (DDP) prior. The DDP was first in-
troduced in MacEachern (1999) to generate DP to settings
where covariates need to be incorporated when modeling a
unknown distributionG. Consider the stick breaking con-
struction (Sethuraman, 1994) forG ∼ DP(α0, G0)

G =
∞
∑

h=1

πhδν∗

h
, ν∗

h ∼ G0

whereπh’s are weights constructed in a “stick breaking”
manner andν∗

h’s are called “atoms” drawna prior from
G0. Now if G depends on some covariatesy and one
wants to induce dependence among different suchG’s

through the dependence among differenty’s one could ef-
fectively achieve this by allowing theπh’s, or the ν∗

h’s,
or both, to depend ony. For example, one could have
Gy =

∑∞
h=1 πhyδν∗

h
in which now the subscripty is added

to G andπh to show their explicit dependence ony. There
are multiple ways to construct such dependentGy ’s leading
to different DDP (Dunson and Park, 2008; Gelfand et al.,
2005; Griffin and Steel, 2006; Iorio et al., 2004; Dunson
et al., 2008). In this paper we utilize the kernel stick break-
ing process (Dunson and Park, 2008) due to its nice proper-
ties and computational efficiency. The kernel stick break-
ing process constructsGy in such as way that

Gy =

∞
∑

h=1

U(y; Vh, Lh)
∏

ℓ<h

(1 − U(y; Vℓ, Lℓ))δν∗

h
(8)

U(y; Vh, Lh) = VhK(y, Lh) (9)

whereLh is a random location in the domain ofy, Vh ∼
Be(va, vb) a prior is a probability weight,ν∗

h is an atom,
andK(y, Lh) is a kernel function that measures the simi-
larity betweeny andLh. Examples ofK are

K(y, Lh) = 1|y−Lh|<φ or K(y, Lh) = exp(−φ|y−Lh|
2).

(10)
Dependence on the weightsU(y; Vh, Lh) in (8) will result
in dependence betweenGy1 andGy2 wheny1 andy2 are
close.

2.2 Inference on the Model Parameters

Given data{(xi, yi)}
n
i=1 we would like to infer the model

paramatersA, ∆, ν ≡ (ν1, · · · , νn). From A and∆ we
can compute the d.r. which is the span ofB = ∆−1A.
The inference will be based on Markov chain Monte Carlo
(MCMC) samples from the posterior distribution given the
likelihood function in (5) and suitable prior specifications.
The inference procedure is a Gibbs sampling scheme which
can be broken into four sampling steps: samplingµ, sam-
pling A, sampling∆−1, and samplingν. The fourth step
will differ based on whether the response variable is con-
tinuous or categorical.

Samplingµ and ∆−1

The likelihood function (5) implies a normal distribution
in µ and Wishart in∆−1, so that a noninformative prior on
the intercept parameterµ, i.e.,µ ∝ 1 leads to a normal con-
ditional posterior distribution forµ and a Wishart prior for
∆−1 results in a Wishart conditional posterior distribution.

SamplingA

The matrixA ∈ R
p×d represents the transformed e.d.r.

space and the likelihood (5) implies a normal form inA.
We will use the Bayesian factor modeling framework de-
veloped in Lopes and West (2004) in whichA is viewed as
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a factor loading matrix. The key idea is to impose special
structure onA to ensure identifiability

A =

















a11 0 0
...

. . . 0
ad1 . . . add

...
. . .

...
ap1 . . . apd

















(11)

We specify normal and independent priors for the elements
of A

aℓj ∼ N(0, φ−1
a ), ℓ ≥ j, ℓ = 1, ..., p

the hyper-parameterφa is specified to take a small value to
reflect the vagueness of the prior information. Then conju-
gacy of the likelihood and the prior leads to a normal con-
ditional posterior for each row ofA which we will sequen-
tially update.

Samplingν for categorical responses

Inference for DP mixture models has been extensively
developed in the literature (Escobar and West, 1995;
MacEachern and Müller, 1998). We utilize the sam-
pling scheme in Escobar and West (1995) which adopts
a marginal approach in sampling from the DP priors.
Marginalizing in (6) the unknown distributionGc leads to
the poly-urn representation of the prior forνi

νi | (yi = c, ν−i) ∝
∑

j 6=i,yj=c

δνj
+ α0G0(νi),

whereG0 is the base distribution andα0 is the base con-
centration parameter. The fact thatνi should be constrained
to have unit variance to ensure identifiability implies thata
natural choice ofG0 is N(0, Id). Since the likelihood (5)
implies a normal form inνi, the conditional posterior for
νi is easy to compute again due to conjugacy (Escobar and
West, 1995).

Samplingν for continuous responses

We follow the sampling scheme for the kernel stick-
breaking process developed in Dunson and Park (2008)
where sampling details can be referred to. Inference for
the DDP is based on a truncation of (8)

Gy =

H
∑

h=1

U(y; Vh, Lh)
∏

l<h

(1 − U(y; Vl, Ll))δν∗

h

where H some pre-specified value large integer and
U(y; Vh, Lh) = VhK(y, Lh) = Vh exp(−φ|y − Lh|

2)
for h = 1, ..., H − 1 and U(y; VH , LH) = 1 to en-
sure that

∑H

h=1 U(y; Vh, Lh)
∏

l<h(1−U(y; Vl, Ll)) = 1.
We denote byKi the cluster label for samplei, that is,
Ki = h means that samplei is assigned to clusterh, i.e.

νi = ν∗
h. To facilitate samplingVh we introduce latent

variablesQih ∼ Ber(Vh) andRih ∼ Ber(K(yi, Lh)) for
i = 1, .., n and h = 1, .., Ki. Then the iterative sam-
pling procedure amongKi, ν

∗
h, Vh, Qih, Rih, Lh provides

samples ofνi. Note that priors were previously implied
as ν∗

h ∼ N(0, Id), Vh ∼ N(va, vb), Qih ∼ Ber(Vh)
and Rih ∼ Ber(K(yi, Lh)) and the conditional posteri-
ors are easy to compute due to conjugacy. ForLh we
need a Metropolis-Hastings (M-H) sampling step with non-
informative priorLh ∝ 1 and independent uniform pro-
posal. The kernel precision parameterφ in K(y, Lh) =
exp(−φ|y−Lh|

2) can be pre-specified or sampled. In case
of sampling the scheme can be a M-H step with log-normal
prior and random walk proposal. For details see Dunson
and Park (2008).

2.3 Posterior Inference on the d.r. subspace

Given posterior samples of the parametersA and∆−1 we
obtain posterior samples of the d.r. subspace, denoted as
{B1, · · · ,Bm}, wherem is the number of the posterior
samples. If we fix the dimensiond then each subspace is a
point on the Grassman manifold denoted asG(d,p), which is
the set of all thed dimensional linear subspaces ofR

p. This
manifold has a natural Riemannian metric and families of
probability distributions can be defined on the Grassmann
manifold.

The Riemannian metric on the manifold implies the Bayes
estimate of the posterior mean should be with respect to
the geodesic. This means given subspaces{B1, · · · ,Bm}
the posterior summary should be a subspaceBBayes that
is equidistant to them posterior samples with respect to
the geodesic distance. Given two subspacesW1 andW2

spanned by orthonormal basesW1 and W2 respectively,
the geodesic distance between the subspaces is given by
the following computation (Karcher, 1977; Kendall, 1990)

(I − W1(W
′
1W1)

−1W ′
1)W2(W

′
1W2)

−1 = UΣV ′

Θ = atan(Σ)

dist(W1,W2) =
√

Tr(Θ2),

where the first equation is a singular value decomposition
(SVD), Tr(·) is the matrix trace and atan(·) is the matrix
arctangent. Given the above geodesic distance the mean of
the subspaces{B1, · · · ,Bm} is the unique subspace with
the smallest geodesic distance to the posterior samples

BBayes= arg min
B∈G(d,p)

m
∑

i=1

dist2(Bi,B) (12)

which is called the Karcher mean (Karcher, 1977). We use
the algorithm introduced in Absil et al. (2004) to compute
the Karcher mean. Given the geodesic distance we can fur-
ther evaluate the uncertainty of the d.r. subspace by cal-
culating the distances between the mean subspace and the
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posterior samples. We obtain a standard deviation estimate
of the posterior subspace as

std({B1, · · · ,Bm}) =

√

√

√

√

1

m

m
∑

i=1

dist2(Bi,BBayes) (13)

The posterior distribution on the d.r. subspace is a distri-
bution on the Grassmann manifoldG(d,p). It is of great
interest to parameterize and characterize the posterior dis-
tribution on this manifold. This is currently beyond the
scope of our work.

2.4 Thep ≫ n setting

When the number of predictors is much larger than the
sample size,p ≫ n, the above procedure is problematic
due to the curse of dimensionality. Clustering high dimen-
sional data would be prohibitive due to the lack of samples.
This problem can be addressed by slightly adapting com-
putational aspects of the model specification.

Note in our mixture inverse regression model (2) and (3),
µyx is a mean parameter forX | (Y = y), and if p ≫ n

then it is reasonable to assume thatµyx lies in the sub-
space spanned by the sample vectorsx1, . . . , xn – given
the limited sample size constraining the e.d.r. subspace to
this subspace is reasonable. By this assumption,µyx − µ

andAνyx, due to equation (3), will also be contained in the
subspace spanned by the centered sample vectors. Denote
X̃ as then × p centered predictor matrix, then a singular
value decomposition oñX yields X̃ = UXDXV ′

X with
the left eigenvectorsUX ∈ R

n×p∗

and right eigenvectors
VX ∈ R

p×p∗

wherep∗ ≤ n ≪ p. In practice one can se-
lect p∗ by the decay of the singular values. By the above
argument for constraints, we can assumeA = VXÃ with
Ã ∈ R

p∗×d. We can also assume that∆ = VX∆̃V ′
X with

∆̃ ∈ R
p∗×p∗

. The effective number of parameters is thus
hugely reduced.

2.5 Selectingd

In our analysis the dimension of the d.r. subspaced needs
to be determined. In a Bayesian paradigm this is formally a
model comparison problem involving calculating the Bayes
factor which is the ratio of the marginal likelihoods under
competing models. The marginal likelihood for a candidate
valued is p(data| d) =

∫

θ
p(data| d, θ)pprior(θ)dθ where

θ denotes all the relevant model parameters.

The marginal likelihood in our case is obviously not analyt-
ically available. Various approximation methods are listed
in Lopes and West (2004) yet none of them prove to be
computationally efficient in our case. We instead adopted
out-of-sample validation to selectd. For each candidate
valued, we obtain a point estimate (the posterior mean)
of the e.d.r. subspace, project out-of-sample test data onto

this subspace, and then use the cross-validation error of a
predictive model (a classification or regression model) to
selectd. Empirically this procedure is effective which will
be shown in the data analysis.

3 Application to simulated and real data

To illustrate the efficacy of BMI we apply it to simu-
lated and real data. The first simulation illustrates how the
method captures information on nonlinear manifolds. The
second data set is used to compare it to a variety other su-
pervised dimension reduction methods in the classification
setting. The third data set illustrates that the method can be
used in high-dimensional data.

3.1 Regression on a nonlinear manifold

A popular data set used in the manifold learning literature
is the Swiss roll data. We used the following generative
model

X1 = t cos(t), X2 = h, X3 = t sin(t), X4,...,10
iid
∼ N(0, 1)

wheret = 3π
2 (1 + 2θ), θ ∼ Unif(0, 1), h ∼ Unif(0, 1) and

Y = sin(5πθ) + h2 + ε, ε ∼ N(0, 0.01).

X1 and X3 form an interesting “Swiss roll” shape as il-
lustrated in Figure 1. In this case an efficient dimension
reduction method should be able to find the first3 dimen-
sions.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

1

1.5

2

X1

X
3

Figure 1: Swiss Roll data. The scatter plot forX3 v.s.X1.

For the purpose of comparing methods we used the follow-
ing metric proposed in Wu et al. (2008) to measure the ac-
curacy in estimating the d.r. space. Let the orthogonal ma-
trix B̂ = (β̂1, · · · , β̂d) denote a point estimate ofB (which
is the first 3 columns of the 10 dimensional identity matrix
here), then the accuracy can be measure by

1

d

d
∑

i=1

||PB β̂i||
2 =

1

d

d
∑

i=1

||(BB′)β̂i||
2

wherePB denotes the orthogonal projection onto the col-
umn space ofB. For BMI B̂ is the posterior Karcher mean
as proposed in section 2.3
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We did five experiments corresponding to sample sizen =
100, 200, 300, 400, 500 from the generative model. In each
experiment we applied BMI on10 randomly drawn datasets
with sample sizen and averaged the accuracies measured
as stated above. For BMI we ran10000 MCMC itera-
tions and used a burn-in of5000 and setd = 3 and used
the Gaussian kernel in (10). Figure 2 shows the perfor-
mance of BMI as well as that by a variety of SDR methods:
SIR (Li, 1991), local sliced inverse regression LSIR (Wu
et al., 2008), sliced average variance estimation (SAVE)
(Cook and Weisberg, 1991) and principal Hessian direc-
tions (pHd) (Li, 1992). The accuracies for SIR, LSIR,
SAVE and PHd are copied from Wu et al. (2008) except for
the scenario ofn = 100. It is clear that BMI consistently
has the best accuracy. LSIR is the most competitive of the
other methods as one would expect since it shares with BMI
the idea of localizing the inverse regression around a mix-
ture or partition.

100 200 300 400 500
0.4

0.5

0.6

0.7

0.8

0.9

1

Sample size

Ac
cu

ra
cy

 

 

BMI
SIR
LSIR
PHD
SAVE

Figure 2: Accuracy for different methods.

Of particular interest is the estimate uncertainty. As stated
in section 2.3 the Karcher mean (12) of the posterior sam-
ples is taken as a point estimate, and a natural uncertainty
measure is simply the standard deviation as defined in (13).
For illustration we applied our method on a data set with
sample size400. Figure 3 shows a boxplot for the distances
between the posterior sampled subspaces and the posterior
Karcher mean subspace and the standard deviation is cal-
culated to be0.2162. It is also calculated that the distance
between the Karcher mean and the true d.r. subspace is
0.2799. It is interesting the see that the true d.r. subspace
lies “not far” (compared with the standard deviation) from
our point estimate.

We utilized cross-validation to select the number of d.r. di-
rectionsd in a case of sample size200. For each value of
d ∈ {1, · · · , 10}, we project out-of-sample data onto thed-
dimensional space and a nonparametric kernel regression
model to predict the response. The error reported is the
mean square prediction error. The error v.s. different can-
didate values ofd is depicted in Figure 4. The smallest error
corresponds tod = 3, the true number of d.r. directions.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

1

Boxplot for the Distances

Figure 3: The boxplot for the distances between the poste-
rior samples and their Karcher mean.

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

err
or

number of d.r. directions

Figure 4: Swiss Roll data: Error v.s. number of d.r direc-
tions kept. The minimum one corresponds tod = 3, the
true value.

3.2 Classification

In Sugiyama (2007) a variety of SDR methods were com-
pared on the Iris data set available from the UCI machine
learning repository1, originally from Fisher (1936). The
data consists of 3 classes with50 instances of each class.
Each class refers to a type of Iris plant (“Setosa”, “Vir-
ginica” and “Versicolour”), and has 4 predictors describ-
ing the length and width of the sepal and petal. The meth-
ods compared in Sugiyama (2007) were Fisher’s linear dis-
criminant analysis (FDA), local Fisher discriminant analy-
sis (LFDA) (Sugiyama, 2007), locality preserving projec-
tions (LPP) (He and Niyogi, 2004), LDI (Hastie and Tib-
shirani, 1996a), neighbourhoodcomponent analysis (NCA)
(Goldberger et al., 2005), and metric learning by collapsing
classes (MCML) (Globerson and Roweis, 2006).

To demonstrate that BMI can find multiple clusters we
merge “Setosa”, “Virginica” into a single class and exam-
ine whether we are able to separate them.

In Figures 5 we plot the projection of the data onto a2
dimensional d.r. subspace. We setα0 = 1 in (7). The
classes are separated as are the two clusters in the merged
“Setosa”, “Virginica” class. Our method is able to further
embed the data into a1 dimensional d.r. subspace while
still preserving the separation structure (Figure 6).

Figure 7 is a copy of the Figure 6 in Sugiyama (2007) and
provides a comparison of FDA, LFDA, LPP, LDI, NCA,
and MCML. Comparing Figure 5 and 6 with Figure 7 we
see that BMI and NCA are similar with respect to perfor-

1http://archive.ics.uci.edu/ml/datasets/Iris
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Figure 5: Visualization of the embeddedIris data onto a2
dimension subspace.
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Figure 6: Visualization of the embeddedIris data onto a1
dimensional subspace.

mance, and they both have the advantage of being able to
embed this particular data into a1 dimensional d.r. sub-
space while the others cannot.

Figure 7: Visualization of theIris data for different meth-
ods. (see also Sugiyama (2007) Figure 6.)

3.3 High-dimensional data: digits

The MNIST digits data2 is commonly used in the machine
learning literature to compare algorithms for classification
and dimension reduction. The data set consists of60, 000
images of handwritten digits,{0, 1, . . . , 9} where each im-
age is considered as a vector of28 × 28 = 784 gray-scale

2http://yann.lecun.com/exdb/mnist/

pixel intensities. The utility of the digits data is that thed.r.
directions have a visually intuitive interpretation.

We apply BMI to two binary classification tasks: digits 3
v.s. 8, and digits 5 v.s. 8. In each task we randomly se-
lect 200 images,100 for each digit. Since the number of
predictors is far greater than the sample size (p ≫ n), we
used the modification of BMI described in Section 2.4 and
p∗ = 30 eigenvectors are selected. We run BMI for10000
iterations with the first as5000 burn-in and choosed = 1.
The posterior means of the top d.r. direction, depicted in
a 28 × 28 pixel format, are displayed in Figures 8 and 9.
We see that the top d.r. directions precisely capture the dif-
ference between digits 3 and 8, an upper left and lower left
region, and the different between digits 5 and 8, an upper
right and lower left region.
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Figure 8: The posterior mean of the top d.r. direction for
3 versus 8, shown in a28 × 28 pixel format. Difference
between digits is reflected by the red color.
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Figure 9: The posterior mean of the top d.r. direction for
5 versus 8, shown in a28 × 28 pixel format. Difference
between digits is reflected by the red color.

4 Discussion

We have proposed a Bayesian framework for supervised
dimension reduction using a highly flexible nonparametric
Bayesian mixture modeling approach that allows for natu-
ral clustering for the data in terms of both the response and
predictor variables. Our model highlights a flexible gener-
alization of the PFC framework to a nonparametric setting
and addresses the issue of multiple clusters for a slice of the
response. This idea of multiple clusters suggests that this
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approach is relevant even when the marginal distribution
of the predictors is not concentrated on a linear subspace.
The idea of modeling nonlinear subspaces is central in the
area of manifold learning (Roweis and Saul, 2000; Tenen-
baum et al., 2000; Donoho and Grimes, 2003; Belkin and
Niyogi, 2004). Our model is one probabilistic formulation
of a supervised manifold learning algorithm.

A fundamental issue raised by this methodology is the de-
velopment of distribution theory on the Grassmann man-
ifold. There has been work on uniform distributions on
the Grassmann manifold and we discuss the case corre-
sponding to subspaces drawn from a fixed number of cen-
tered normals. To better characterize the uncertainty of our
posterior estimates it would be of great interest to develop
richer distributions on the Grassmann manifold.
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