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Abstract

We develop a Bayesian framework for supervised
dimension reduction using a flexible nonpara-
metric Bayesian mixture modeling approach.
Our method retrieves the dimension reduction or
d.r. subspace by utilizing a dependent Dirichlet
process that allows for natural clustering for the
data in terms of both the response and predictor
variables. Formal probabilistic models with like-
lihoods and priors are given and efficient poste-
rior sampling of the d.r. subspace can be obtained
by a Gibbs sampler. As the posterior draws are
linear subspaces which are points on a Grass-
mann manifold, we output the posterior mean d.r.
subspace with respect to geodesics on the Grass-
mannian. The utility of our approach is illus-
trated on a set of simulated and real examples.
Some Key Words: supervised dimension reduc-
tion, inverse regression, Dirichlet process, factor
models, Grassman manifold.
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following holds

where the column vectors @ = (by,...,b4) are named
the d.r. directions and is noise independent oX. In
this framework all the predictive information is contained
in the d.r. spacé which is the span of the columns &,
sinceY 1L X | PsX, wherePs denotes the orthogonal
projection operator onto the subspate

A variety of methods for SDR have been proposed. They
can be subdivided into three categories: methods based
on gradients of the regression function (Xia et al., 2002;
Mukherjee and Zhou, 2006; Mukherjee and Wu, 2006;
Mukherjee et al., 2010), methods based on forward regres-
sion that investigates the conditional distributibn| X
(Friedman and Stuetzle, 1981; Tokdar et al., 2008), and
methods based on inverse regression that focuse¥ dn

Y (Li, 1991; Cook, 2007; Hastie and Tibshirani, 1996b;
Sugiyama, 2007).

In this paper we develop a Bayesian methodology we call
Bayesian mixtures of inverse regression (BMI) that ex-
tends the model-based approach of Cook (2007). A semi-
parametric model will be stated. A salient point is that it
applies to data generated from distributions where the sup-

Supervised dimension reduction (SDR) or simultaneous diport of the predictive subspace is not a linear subspace of
mension reduction and regression can be formulated a€e predictors butis instead a nonlinear manifold. The pro-
finding a low-dimensional subspace or manifold that con4ection is still linear but it will contain the nonlinear mian
tains all the predictive information of the response vdgab fold that is relevant to prediction. A further important poi
This low-dimensional subspace is often called the dimenof great interest is that the d.r. subspace is on a so-called
sion reduction (d.r.) space. Projections onto the d.r. spacGrassmann manifold denoted@g; ,y which is defined as
can be used to replace the original predictors, without afthe set of all thed dimensional linear subspaces &f,
fecting the prediction. This is a counterpart of unsupegis and our model allows for rich inference such as uncertainty
dimension reduction such as principal components analysigvaluation by drawing posterior samples (subspaces) from

which does not take into account the response variable.

this manifold rather than merely obtaining an optimal point
from this manifold as by other SDR methods.

The underlying model in supervised dimension reduction
is given p-dimensional predictors and a responsg the

Appearing in Proceedings of thi8!" International Conference

on Atrtificial Intelligence and Statistics (AISTATS) 2010hia@ La-

guna Resort, Sardinia, Italy. Volume 9 of JMLR: W&CP 9. Copy- given the response can provide useful information in the re-
right 2010 by the authors.

2 Bayesian mixtures of inverse regression

The idea that the conditional distribution of the predistor

duction of the dimensions was introduced in sliced inverse
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regression (SIR) (Li, 1991) for the regression setting and2.1 Model specification

reduced rank linear discriminant analysis for the classific

tion setting. SIR proposes the semiparametric model in (1YVe propose a semiparametric mixture model that general-
and claims that the conditional expectatiBX | Y =y),  1zes the PFC model

called the inverse regression curve, is contained in the X | (Y =y, fiyas A) ~ N(piye, A) )
(transformed) d.r. space spanned by the columis.&IR

is not a model based approach in the sense that a sampling Hye =+ Avys )
or distributional model is not specified féf | Y. The idea Vyz ~ Gy (4)

of specifying a model foX | Y is developed in principal whereu € RP, A € RP*P, A ¢ RP* have the same in-

fitted component (PFC) models (Cook, 2007). Spec'f'callyterpretations as in the PFC model ang € R? is analo-

the PFC model assumes the following multivariate form forgous tov, in the PFC model except it dependspand the
Yy S

the inverse regression B marginal distribution ofX, and it follows a distributiort,,
Xy=p+Avy+e, X,=X|Y =y, that depends op. Note that the PFC model can be recov-

wherey € RP is an interceptg ~ {iV(O,A) W'thﬁ € ered by assuming/, = ,, which is a point mass at,,
RP*P g random error termA € RP*“ andv, € R*im- - qinthis case.. = ..
yz = Vy-

ply that the mean of the (centered), lie in a subspace
spanned by the columns df with v, the coordinate (sim- However by considering, as a random process hence
ilar to a factor model setting withl the factor loading ma-  specifying flexible nonparametric models far | ¥ we

trix and v, the factor score). Under this model formula- can greatly generalize the PFC model. For example a
tion it is important thav,, is modeled otherwise the above Dirichlet process prior (DP) (Ferguson, 1973, 1974; Sethu-
model is an adaptation of principal components regressiorfaman, 1994) or@z, leads to a mixture model fok' | Y

see sections 2.1.1 and 2.1.2 for the models used in this p&lue to its discrete property and alleviates the need to pre-
per. In this framework it can be show® = A~ A4 (Cook,  specify the number of mixture components f&r | Y.

2007), so that the columns &f—! A spans the d.r. space. For continuous responses the dependent Dirichlet process

(DDP) (MacEachern, 1999) or kernel stick-breaking pro-
SIR and PFC both suffer from the problem that the d.r..,¢g (Dunson and Park, 2008) is used to métjel

space is degenerate when the regression function is sym- . . .
metric along certain directions df, in this case important nll’roposltion 1. For this mode! the d.r. spaceis the span of

directions might be lost. The primary reason for this is thatB =A74

X, for certain values off may not be unimodal: there may Y|IX=Y|(AA)X.

be two clusters or components in the conditional distribu-

tion X | Y = y. An additional drawback of SIR is that Proof. Assume in the followingd and A are given. As-
the slicing procedure on the response variable is rigid angume in (3)z = 0 w.0.l.g. so thafi,, = Av,,. Letp(y|r)

not based on a distributional model. Intuitively, data p®in be the distribution ot” given X. Then

with similar responses tend to have dependence yet because

of the rigid nature of the slicing procedure these data gointp(y | ) = P | y)p(y) = ig% /N(:v; Poya, D) (pye)

may belong to different bins and are treated independently. p() ]

A direct approach to address the first problem is to de- o p(y) /GXP (- Jlz— fye) AT = pya) ) dm(ya)
velop a mixture model, that is, to assume a normal mix- 1

ture model rather than a simple normal model fgy,. x p(y)exp (— E(I — Pyz)' A7 (z — Pax))

This is the approach taken in mixture discriminant analy- 1

sis (MDA) (Hastie and Tibshirani, 1994) which utilizes in /exp (- 5(PA;E — ) ATHPaz — p1yz))

the classification setting a finite Gaussian mixture model

for each class. However MDA can only be applied when exp (— (Paz — fryz) A7z — Paz)) dr(iya)

the response is discrete rather than continuous, and the prghere P42 denotes the projection of x onto the column
specification of the (generally unknown) number of mix- gpace of4 under theA = inner product, i.e.,

ture components is an issue.
Pjx = A(A'A_lA)_lA'A_lx.

Since i, is in the column space afl, the cross term
(Pam — pyz) A~z — Pax) = 0, which could also be
derived by checking that,, = Pau,, and PJA~! (z —
Psx) = 0. So that

p(y | z) < p(y) -

/exp ( - %(PAQ7 - Nym)/Ail(PAI - Nym))dﬂ-(,uyz)
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thusz comes into play only through/ A—'«. 0  through the dependence among differgistone could ef-
fectively achieve this by allowing the;’s, or thev}’s,
Given data{(z;, y;)}™, the following sampling distribu- or both, to depend op. For example, one could have

tion is specified from (2) - (4) Gy = Y_p_1 Thydy: in which now the subscripj is added
to G andm;, to show their explicit dependence gnThere
i | (Yis o viy A, A) ~ N(p+ Avy, A) are multiple ways to construct such dependgjis leading

vi ~ Gy, to different DDP (Dunson and Park, 2008; Gelfand et al.,

2005; Griffin and Steel, 2006; lorio et al., 2004; Dunson

wherev; := vy, and the likelihood is etal., 2008). In this paper we utilize the kernel stick break

ing process (Dunson and Park, 2008) due to its nice proper-

Lik (data| A, A, v, p) oc det(A™7)= - ties and computational efficiency. The kernel stick break-

1 ing process constructs, in such as way that
exp |—= Z(Il — = Av)) A7 x; — p— Avy) | (5) Y
2 =1 [e’e}
Gy=) Uly;Vi,Ln) | | (1 = U(y; Ve, Le))bu;  (8)
wherev = (vq,---,vy,). To fully specify the model we ! ,;1 g "
need to specify the distributions,,. The categorical re- Uly; Vi, Ln) = Vi K (y, Lp,) (9)
sponse case is specified in subsection 2.1.1 and the contin- T ’
uous response case is specified in subsection 2.1.2. whereL,, is a random location in the domain gf V;, ~
_ Be(vq, vp) a prior is a probability weighty;: is an atom,
2.1.1 Categorical response and K (y, Ly) is a kernel function that measures the simi-
. . larity bet dL;,. E les ofX
When the response is categorieak- {1,--- ,C}, we can arty betweery andLy. =xamples ot are
specify the following model for; K(y,Ln) = 1jy—r,j<¢ OF K(y,Ln) = exp(_¢|y_Lh|2)_
vi|(yi=¢)~G, forc=1,..,C, (6) (10)

Dependence on the weightgy; Vi, Ly,) in (8) will result

where eachG, is an unknown distribution independent N dependence between,, andG,, wheny; andy, are
with each other. It is natural to use a Dirichlet process as &/0Se-
prior for eachG..

2.2 Inference on the Model Parameters

G. ~ DP(a, Go) (7)

Given data{ (x;, y;)}?_, we would like to infer the model
with ap is a concentration parameter af¥d the base mea- paramatersd, A, v = (vi,---,vn). FromA andA we
sure. The discrete nature of the DP will ensure a mixturecan compute the d.r. which is the spanBf= A~!A.

representation fo€. and induce a mixture of normal dis- The inference will be based on Markov chain Monte Carlo
tributions for X' | Y. This allows for multiple clusters in  (MCMC) samples from the posterior distribution given the

each class. likelihood function in (5) and suitable prior specificat®n
The inference procedure is a Gibbs sampling scheme which
2.1.2 Continuous response can be broken into four sampling steps: samplingam-

ling A, samplingA~1, and sampling.. The fourth step

In the case of a continuous response variable it is natural t ill differ based on whether the response variable is con-
expect,, andGy, to be dependentif, is close tay,, that .\ 0 . categorical

is, we would like to borrow information across the response
variables. A natural way of doing this is to use a depen'Sampling and A-1
dent Dirichlet Process (DDP) prior. The DDP was first in- #

troduced in MacEachern (1999) to generate DP to settingghe likelihood function (5) implies a normal distribution
where covariates need to be incorporated when modeling @ ;, and Wishart inA—!, so that a noninformative prior on
unknown distribution. Consider the stick breaking Con- the intercept parametﬁr i_e_’ﬂ ~ 1 leads to a normal con-

struction (Sethuraman, 1994) fof ~ DP(«a, Go) ditional posterior distribution fop. and a Wishart prior for
A~ results in a Wishart conditional posterior distribution.

G = ﬂ-hdll*a V* ~ GO
hz:; e Sampling A

wherer;,’s are weights constructed in a “stick breaking” The matrix A € RP*¢ represents the transformed e.d.r.
manner and/;’s are called “atoms” drawm prior from  space and the likelihood (5) implies a normal formAn
Go. Now if G depends on some covariatgsand one  We will use the Bayesian factor modeling framework de-
wants to induce dependence among different sGth  veloped in Lopes and West (2004) in whidhis viewed as

503



Supervised Dimension Reduction Using Bayesian Mixture Moeling

a factor loading matrix. The key idea is to impose special;; = v;. To facilitate sampling/;, we introduce latent

structure on4 to ensure identifiability variables@;, ~ Ber(V}) andR;, ~ Ber(K (y;, Ly)) for
i = 1,.,nandh = 1,..,K;. Then the iterative sam-

a0 0 pling procedure among;, v;;, Vi, Qin, Rin, Ly provides
: 0 samples ofy;. Note that priors were previously implied

A= agir .- Gdd (12) asvy, ~ N(0,1a), Vi ~ N(Uaavb): Qin ~ Ber(Vy)

and R;;, ~ Ber(K(y;, L)) and the conditional posteri-
: : ors are easy to compute due to conjugacy. Egrwe
Gp1  --- Gpd need a Metropolis-Hastings (M-H) sampling step with non-
informative prior L;, o< 1 and independent uniform pro-
We specify normal and independent priors for the elementposal. The kernel precision parametein K(y,L;,) =
of A exp(—¢|y — Ly|?) can be pre-specified or sampled. In case
agj ~ N0, ¢ 1), >34, £=1,...p of sampling the scheme can be a M-H step with log-normal

the h e i ifiad to tak Il value t prior and random walk proposal. For details see Dunson
e hyper-parameter, is specified to take a small value to and Park (2008).

reflect the vagueness of the prior information. Then conju-
gacy of the likelihood and the prior leads to a normal con-

ditional posterior for each row of which we will sequen- 2-3 Posterior Inference on the d.r. subspace

tially update. Given posterior samples of the parametdrand A—! we
S i f ical obtain posterior samples of the d.r. subspace, denoted as
ampling v for categorical responses {B1, -+, B}, wherem is the number of the posterior

Inference for DP mixture models has been extensivelyp@mples. If we fix the dimensiahthen each subspace is a

developed in the literature (Escobar and West, 1995P0inton the Grassman manifold denotediag,), which is
MacEachern and Miiller, 1998). We utilize the sam- the set of all thel dimensional linear subspacesRf. This

pling scheme in Escobar and West (1995) which adopténanifold has a natural Riemannian metric and families of
a marginal approach in sampling from the DP priors.probability distributions can be defined on the Grassmann

Marginalizing in (6) the unknown distributio6, leads to ~ manifold.

the poly-urn representation of the prior fer The Riemannian metric on the manifold implies the Bayes
estimate of the posterior mean should be with respect to
vi | (i = ¢,vi) Z Oy, + a0Go(vi), the geodesic. This means given subspdd®s: - - , B}
JF#LY;=c the posterior summary should be a subspBgg.. that

is equidistant to then posterior samples with respect to
the geodesic distance. Given two subspadgsand W,
spanned by orthonormal bas@g, and W, respectively,

the geodesic distance between the subspaces is given by
the following computation (Karcher, 1977; Kendall, 1990)

whereGy is the base distribution and, is the base con-
centration parameter. The fact thatsshould be constrained
to have unit variance to ensure identifiability implies that
natural choice of7 is N(0,1,). Since the likelihood (5)
implies a normal form in;, the conditional posterior for

v; is easy to compute again due to conjugacy (Escobar and ; / —1yp / -1 _ /

West, 1995). QI Wi (WiWh) = W) Wa (Wi TW2) o n Utzr‘(/z)
= ata

Sampling v for continuous responses distWy, Wa) = /Tr(62),

We follow the sampling scheme for the kernel stick- where the first equation is a singular value decomposition
breaking process developed in Dunson and Park (2008)svD), Tr(-) is the matrix trace and atéf is the matrix
where sampling details can be referred to. Inference folrctangent. Given the above geodesic distance the mean of
the DDP is based on a truncation of (8) the subspace§B, - - - , B,,} is the unique subspace with
the smallest geodesic distance to the posterior samples

H
Gy = Uly; Vi, Ln) [ (1 = Uy; Vi L1))do:

h=1 I<h Baayes = arg  mmin ; dist (B;, B) (12)
where H some pre-specified value large integer and =
U(y; Vi, Ln) = ViK(y,Ln) = Vihexp(—¢ly — Ln|?)  which is called the Karcher mean (Karcher, 1977). We use
forh = 1,..,H — 1 andU(y; Va,Lg) = 1 to en-  the algorithm introduced in Absil et al. (2004) to compute
sure thachH:1 U(y; Vi, Lu) [ [,,(1 =U(y; Vi, Ly)) = 1. the Karcher mean. Given the geodesic distance we can fur-
We denote byK; the cluster label for samplé that is, ther evaluate the uncertainty of the d.r. subspace by cal-
K; = h means that sampleis assigned to clustér, i.e.  culating the distances between the mean subspace and the
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posterior samples. We obtain a standard deviation estimatihis subspace, and then use the cross-validation error of a
of the posterior subspace as predictive model (a classification or regression model) to
selectd. Empirically this procedure is effective which will

be shown in the data analysis.

Std({Bl, cee ,Bm}) = % i d|ST-2 (Bla BBayes) (13)
i=1

3 Application to simulated and real data

The posterior distribution on the d.r. subspace is a distri- . ] )
bution on the Grassmann manifolll, . It is of great To illustrate the efficacy of BMI we apply it to simu-

interest to parameterize and characterize the postesser di lated and real data. The first simulation illustrates how the
tribution on this manifold. This is currently beyond the method captures information on nonlinear manifolds. The

scope of our work. second data set is used to compare it to a variety other su-
pervised dimension reduction methods in the classification
setting. The third data set illustrates that the method ean b
used in high-dimensional data.

When the number of predictors is much larger than the

sample sizep > n, the above procedure is problematic 3.1 Regression on a nonlinear manifold

due to the curse of dimensionality. Clustering high dimen-

sional data would be prohibitive due to the lack of samplesA popular data set used in the manifold learning literature
This pr0b|em can be addressed by S||ght|y adapting ComiS the Swiss roll data. We used the foIIowing generative
putational aspects of the model specification. model

2.4 Thep > n setting

Note in our mixture inverse regression model (2) and (3),x, = ¢ cos(t), X5 = h, X3 = tsin(t), X4...10 id N(0,1)
lys 1S @ mean parameter fot | (Y = y), and ifp > n

then it is reasonable to assume thgt, lies in the sub- wheret = 37”(1 +26), 6 ~ Unif(0,1), h ~ Unif(0,1) and
space spanned by the sample vectors. . ., x,, — given

the limited sample size constraining the e.d.r. subspace to Y =sin(570) + h* +¢, &~ N(0,0.01).

this subspace is reasonable. By this assumpfign,—

andAv,,, due to equation (3), will also be contained in the X; and X3 form an interesting “Swiss roll” shape as il-
subspace spanned by the centered sample vectors. Dendtstrated in Figure 1. In this case an efficient dimension
X as then x p centered predictor matrix, then a singular reduction method should be able to find the fistimen-
value decomposition oX yields X = UxDxV with  sions.
the left eigenvector&’y € R™*?" and right eigenvectors

Vx € RP*P" wherep* < n < p. In practice one can se-

lect p* by the decay of the singular values. By the above
argument for constraints, we can assurhe= Vy A with

A € RP" >4 We can also assume thAt= Vy AV with

A e RP"*P"_ The effective number of parameters is thus
hugely reduced.

2.5 Selectingd
Figure 1: Swiss Roll data. The scatter plot fo5 v.s. X .
In our analysis the dimension of the d.r. subspéceeds

to be determined. In a Bayesian paradigm this is formally &g the purpose of comparing methods we used the follow-
model comparison problem involving calculating the Bayesing metric proposed in Wu et al. (2008) to measure the ac-

factor which is the ratio of the marginal likelihoods under curacy in estimating the d.r. space. Let the orthogonal ma-
competing models. The marginal likelihood for a candidate,;, 5 — (51 o Gd) denote a point estimate & (which

valued is p(data| d) = [, p(data| d,0)pprior(6)df where i the first 3 columns of the 10 dimensional identity matrix

¢ denotes all the relevant model parameters. here), then the accuracy can be measure by
The marginal likelihood in our case is obviously not analyt- 4 4

ically available. Various approximation methods are tiste 1 Prill? = 1 BB)G: 12
in Lopes and West (2004) yet none of them prove to be d ; el d ; (BB

computationally efficient in our case. We instead adopted

out-of-sample validation to seledt For each candidate where Pg denotes the orthogonal projection onto the col-
value d, we obtain a point estimate (the posterior mean)umn space of3. For BMI B is the posterior Karcher mean
of the e.d.r. subspace, project out-of-sample test data ontas proposed in section 2.3
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Boxplot for the Distances

We did five experiments corresponding to sample size
100, 200, 300, 400, 500 from the generative model. In each
experimentwe applied BMI ot randomly drawn datasets
with sample size» and averaged the accuracies measure( o koo I e s -
as stated above. For BMI we rar)000 MCMC itera-
tions and used a burn-in 6000 and setd = 3 and used
the Gaussian kernel in (10). Figure 2 shows the perfor: oos o1 ©ois o2 o 65 o658 o7
mance of BMI as well as that by a variety of SDR methods:

SIR (Li, 1991), local sliced inverse regression LSIR (WU Figyre 3: The boxplot for the distances between the poste-
et al., 2008), sliced average variance estimation (SAVE}jor samples and their Karcher mean.

(Cook and Weisberg, 1991) and principal Hessian direc-
tions (pHd) (Li, 1992). The accuracies for SIR, LSIR,
SAVE and PHd are copied from Wu et al. (2008) except for
the scenario ofi = 100. It is clear that BMI consistently
has the best accuracy. LSIR is the most competitive of thi
other methods as one would expect since it shares with BM
the idea of localizing the inverse regression around a mix:
ture or partition.

eror

Figure 4. Swiss Roll data: Error v.s. number of d.r direc-

' . L tions kept. The minimum one correspondsite= 3, the
0o e ] true value.
__-= — 8- LSIR
g, o DG 3.2 Classification

0.6 o In Sugiyama (2007) a variety of SDR methods were com-
osl o st Tl o pared on the lIris data set available from the UCI machine
oo =777 ) learning repository, originally from Fisher (1936). The

oal— oo o5 s o data consists of 3 classes wiih instances of each class.

Sample size

Each class refers to a type of Iris plant (“Setosa”, “Vir-
ginica” and “Versicolour”), and has 4 predictors describ-
ing the length and width of the sepal and petal. The meth-
ods compared in Sugiyama (2007) were Fisher’s linear dis-

. . . . . criminant analysis (FDA), local Fisher discriminant analy
Qf part.lcular interest is the estimate uncertainty. A_seziat sis (LFDA) (Sugiyama, 2007), locality preserving projec-
in section 2.3 the Karcher mean (12) of the posterior samg; s ) pp) (He and Niyogi, 2004), LDI (Hastie and Tib-
ples is taken as a point estimate, and a natural uncertalng/hiram’ 1996a), neighbourhood component analysis (NCA)

measure is simply the standard deviation as defined in (131(30Idbergeret al., 2005), and metric learning by collagsin
For illustration we applied our method on a data set WithClasses (MCML) (’Glober’son and Roweis, 2006)
sample size00. Figure 3 shows a boxplot for the distances ’ '

between the posterior sampled subspaces and the posterite demonstrate that BMI can find multiple clusters we
Karcher mean subspace and the standard deviation is caherge “Setosa”, “Virginica” into a single class and exam-
culated to bd).2162. Itis also calculated that the distance ine whether we are able to separate them.

between t_he_ Karch_er mean and the frue dr. subspace IR Figures 5 we plot the projection of the data ont@ a
Q.27i)9. It |s”|nterest|ng thg see that the true d_-r'_S“bSPaC%imensional d.r. subspace. We sgt = 1in (7). The

lies n(_)t far .(compared with the standard deviation) from classes are separated as are the two clusters in the merged
our point estimate. “Setosa”, “Virginica” class. Our method is able to further
We utilized cross-validation to select the number of d.+. di embed the data into & dimensional d.r. subspace while
rectionsd in a case of sample siz®0. For each value of still preserving the separation structure (Figure 6).

d e {1,---,10}, we project out-of-sample data onto e
dimensional space and a nonparametric kernel regressi
model to predict the response. The error reported is th
mean square prediction error. The error v.s. different can
didate values of is depicted in Figure 4. The smallest error
corresponds td = 3, the true number of d.r. directions.

Figure 2: Accuracy for different methods.

Figure 7 is a copy of the Figure 6 in Sugiyama (2007) and
ovides a comparison of FDA, LFDA, LPP, LDI, NCA,
nd MCML. Comparing Figure 5 and 6 with Figure 7 we

see that BMI and NCA are similar with respect to perfor-

http://archive.ics.uci.edu/ml/datasets/Iris
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dr.2
o

-1.5

dimension subspace.

Figure 6: Visualization of the embeddéds data onto a
dimensional subspace.

mance, and they both have the advantage of being able to

embed this particular data intoladimensional d.r. sub- Figure 8: The posterior mean of the top d.r. direction for
3 versus 8, shown in 388 x 28 pixel format. Difference
between digits is reflected by the red color.

space while the others cannot.

LFDA EDA LPP

0 0% a1 01 02 05 03 © =

Figure 7: Visualization of théris data for different meth-
ods. (see also Sugiyama (2007) Figure 6.)

4 Discussion

3.3 High-dimensional data: digits

The MNIST digits datais commonly used in the machine
learning literature to compare algorithms for classificati
and dimension reduction. The data set consist&00600
images of handwritten digitgp, 1, ..., 9} where each im-
age is considered as a vector2¥f x 28 = 784 gray-scale

2http://yann.lecun.com/exdb/mnist/
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pixel intensities. The utility of the digits data is that tthe.
© - directions have a visually intuitive interpretation.

We apply BMI to two binary classification tasks: digits 3
S < 1 v.s. 8, and digits 5 v.s. 8. In each task we randomly se-
—os| | lect 200 images,100 for each digit. Since the number of
predictors is far greater than the sample sjzest n), we
used the modification of BMI described in Section 2.4 and
ar.a p* = 30 eigenvectors are selected. We run BMI 160000
iterations with the first a5000 burn-in and choosé = 1.
Figure 5: Visualization of the embeddéds data onto @  The posterior means of the top d.r. direction, depicted in
a 28 x 28 pixel format, are displayed in Figures 8 and 9.
We see that the top d.r. directions precisely capture the dif
ference between digits 3 and 8, an upper left and lower left
region, and the different between digits 5 and 8, an upper
right and lower left region.

73

Figure 9: The posterior mean of the top d.r. direction for
5 versus 8, shown in 388 x 28 pixel format. Difference
between digits is reflected by the red color.

We have proposed a Bayesian framework for supervised
dimension reduction using a highly flexible nonparametric
Bayesian mixture modeling approach that allows for natu-
ral clustering for the data in terms of both the response and
predictor variables. Our model highlights a flexible gener-
alization of the PFC framework to a nonparametric setting
and addresses the issue of multiple clusters for a slice=of th
response. This idea of multiple clusters suggests that this
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