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Abstract

We consider the problem of reducing the
dimensionality of labeled data for classi-
fication. Unfortunately, the optimal ap-
proach of finding the low-dimensional pro-
jection with minimal Bayes classification er-
ror is intractable, so most standard algo-
rithms optimize a tractable heuristic func-
tion in the projected subspace. Here, we
investigate a physics-based model where we
consider the labeled data as interacting fluid
distributions. We derive the forces arising
in the fluids from information theoretic po-
tential functions, and consider appropriate
low rank constraints on the resulting accel-
eration and velocity flow fields. We show
how to apply the Gauss principle of least con-
straint in fluids to obtain tractable solutions
for low rank projections. Our fluid dynamic
approach is demonstrated to better approxi-
mate the Bayes optimal solution on Gaussian
systems, including infinite dimensional Gaus-
sian processes.

1 Introduction

Algorithms for discovering interesting low-dimensional
projections of data have been used by the statistics
community for many decades (Friedman & Tukey,
1974; Huber, 1985; Duda et al., 2000). Projection
pursuit is a canonical approach to find a low dimen-
sional subspace where the projected data maximizes
certain statistical properties. One example of such
an approach is Fisher Discriminant Analysis (FDA),
which has been applied in many domains due to its
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simplicity and ease of implementation. For the special
case of separating two classes of homoscedastic Gaus-
sian data, it can be shown that the simple criterion
used by FDA results in an optimal projection, in that
no other subspace can better separate the data using
an optimal Bayes classifier. However, if the labeled
data is heteroscedastic, non-Gaussian, or consists of
more than two classes, standard approaches such as
FDA can easily fail.

Some recent work on discriminant analysis have fo-
cused on finding better low-dimensional projection
subspaces in these more difficult cases. These al-
gorithms optimize a modified criterion function be-
tween the projected data, rather than using the sim-
ple heuristic employed by FDA. Examples of such
algorithms have used various approximations to the
Bayes error, including criterion motivated by informa-
tion theory such as the Bhattacharyya coefficient and
mutual information (Das & Nenadic, 2008; Hamsici &
Martinez, 2008; Loog & Duin, 2004; Nenadic, 2007).
The common theme among these algorithms is that
they analyze projected data distributions, and try to
optimize a criterion that is a function of the projected
data statistics. However, with these more general non-
linear criterion, the optimization over low-dimensional
projection matrices can be very non-convex. These al-
gorithms typically rely upon gradient-based optimiza-
tion techniques which can easily get caught in local
minima in these applications.

Our approach, on the other hand, does not start by
immediately considering low-dimensional projections
of the high dimensional labeled data. Instead, we con-
sider the data as interacting fluids in the high dimen-
sional space. As shown in Fig. 1, our algorithm an-
alyzes the structure of the resulting motions between
the fluids in the high-dimensional space. In particular
for this work, we consider the fluids as interacting via a
potential function derived from the Bhattacharyya co-
efficient, which has been shown to be closely related to
the Bayes classification error. This interaction poten-
tial induces forces within the fluids, which will cause
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Figure 1: Conventional dimensionality reduction techniques measure the contrast between projected data dis-
tributions, while our approach analyzes low-rank constraints on the resulting flow fields of high dimensional
interacting fluids. The projection matrix W will be found using the flow under the potential U(ρ1, ρ2) instead
of optimizing the non-convex function J of the projected distributions.

them to flow in response. We then introduce low-rank
constraints on the induced flow fields, and consider
constrained flows that best match the fluid forces.

For optimizing over the various constrained motions,
we use the Gauss principle of least constraint, which
describes how constrained physical systems move in
response to applied forces. In this work, the Gauss
principle is used to derive a phyically-motivated crite-
rion that describes the low-rank flow field in response
to the Bhattacharyya potential energy. In particular,
we show how this optimization with low-rank affine
constraints on the acceleration and velocity fields re-
duces to an eigenvector problem even for heteroscedas-
tic Gaussian data.

Earlier studies in discriminant analysis for Gaussian
distributions presented two special cases where opti-
mal solutions exist for two-class problems. One situ-
ation arises when the covariance matrices are equal
(homoscedastic), whereas the other less well-known
solution occurs when the two means are the same.
These two extreme cases are situations where there are
known analytic solutions that minimize Bayes classi-
fication error. Standard discriminant algorithms such
as FDA do not agree with these analytic solutions in
both cases. We show that our physical fluid discrimi-
nant model approximates the optimal Bayes error cri-
terion in both of these special cases.

The remainder of the paper is organized as follows.
Section 2 reviews discriminant analysis using the
Bhattacharyya coefficient and other optimization ap-
proaches. Section 3 derives our fluid dynamical algo-
rithm for optimizing constrained low-rank fluid flows
under an interaction potential, and compares our re-
sulting solutions with known analytic solutions in spe-
cial cases. We compare results on machine learning

datasets in Section 4, and an application to Gaussian
processes in Section 5. Finally, we conclude with a
discussion in Section 6.

2 Discriminant Analysis for
Classification

The goal of dimensionality reduction with labeled data
is to find a low dimensional subspace where classifica-
tion is better than other subspaces, so that the classifi-
cation error is minimal. We consider the Bayes classifi-
cation error within the subspace to be the fundamental
criterion for subspace search. It is

J1 =
1
2

∫
min[p1(x), p2(x)]dx (1)

for two classes having projected distributions p1(x)
and p2(x), and equal priors. The projected distribu-
tions are considered as Gaussians with means WTµ1

and WTµ2, and covariance matrices WTΣ1W and
WTΣ2W for projection matrix W ∈ RD×d where D
and d are the dimensions of the original space and the
projected space (D > d). Unfortunately, minimizing
J1 is intractable due to the non-analytic behavior of
the min[·, ·] function.

In this work, we focus on an alternative crite-
rion which is the Bhattacharyya distance (nega-
tive log of the Bhattacharyya coefficient), J2 =
− ln

∫ √
p1(x)p2(x)dx. For Gaussians, its integrated

form is the sum of two simple terms:

J2(W ) =
1
8
tr[(WTSwW )−1WTSbW ] +

1
2

ln
| 12 (WTΣ1W +WTΣ2W )|
|WTΣ1W |1/2|WTΣ2W |1/2

(2)
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where Sw and Sb are defined as Sw = Σ1+Σ2
2 and

Sb = ∆µ∆µT for ∆µ = µ1 − µ2, and | · | is the
matrix determinant. Maximizing this distance also
reduces the J1 error criterion due to the inequal-
ity min[p1(x), p2(x)] ≤

√
p1(x)p2(x). However, an-

alytic solutions are intractable for general cases, and
gradient-based optimization techniques for this crite-
rion (Choi & Lee, 2003) may suffer from many local
optima.

Fukunaga previously showed two special cases where
this criterion is exactly solved as a generalized eigen-
vector problem (Fukunaga, 1990). The first case is
the homoscedastic case (Σ1 = Σ2) and the second
case is the equal mean case (µ1 = µ2). When the
two covariances are the same, the optimal solution re-
duces to finding W which maximizes the first term
tr[(WTSwW )−1WTSbW ]. This is the criterion used
in FDA, whose solution are the eigenvectors of the
generalized eigenvector problem,

SbW = SwWΛ (3)

for diagonal eigenvalue matrix Λ. Dimensionality re-
duction is then performed by projecting the data onto
the principal eigenvectors of the FDA solution.

On the other hand, when the two means are the same,
the first term disappears, and we can maximize solely
the second term ln | 12 (WT Σ1W+WT Σ2W )|

|WT Σ1W |1/2|WT Σ2W |1/2 . This can
again be expressed as an eigenvector problem:

(Σ−1
1 Σ2 + Σ−1

2 Σ1 + 2I)W = WΛ. (4)

To solve this, Fukunaga noted that Σ−1
1 Σ2 and Σ−1

2 Σ1

share the same eigenvectors because they are inverses.
The optimal basis W can easily be obtained by solving
the eigenvector problem Σ2W = Σ1WΛ′ and choosing
eigenvectors according to the order of the values λ′i +
1
λ′i

+ 2, where λ′i is the corresponding eigenvalue in Λ′.

The intuitive interpretation of Eq. (4) leads to the con-
clusion that they correspond to the optimal subspace
in terms of Bayes error. When Σ1 and Σ2 are simul-
taneously diagonalized by matrix W , the columns of
W can be scaled to satisfy WT (Σ1 + Σ2)W = I, while
keeping WTΣ1W = D1 and WTΣ2W = D2 to be
diagonal. In this case, the ith diagonal elements of
D1 and D2 satisfy d1i ≥ 0 and d2i ≥ 0, and the
sum of two elements always satisfies d1i + d2i = 1.
The solution of Fukunaga’s equal mean solution are
the leading columns of W having maximum values
of d1i

d2i
+ d2i

d1i
+ 2 = d1i+d2i

d2i
+ d1i+d2i

d1i
= 1

d1i
+ 1

d2i
.

The problem of maximizing 1
d1i

+ 1
d2i

with constraints
d1i + d2i = 1, d1i ≥ 0, and d2i ≥ 0 is equivalent to
finding d1i and d2i that differ the most. So Fuku-
naga’s equal mean analysis is equivalent to finding a
basis having maximal difference in variances, resulting

in the optimal subspace in terms of minimizing Bayes
error.

Thus, in these two special cases, we know exactly
which projections are the optimal subspace for Bayes
classification, and the objective J2 reduces to a gener-
alized eigenvector problem. In the following, we com-
pare our dimensionality reduction model in these spe-
cial cases to these analytic solutions.

3 Derivation of the Equation of
Motion

In this section, we construct an analogous fluid model
for dimensionality reduction. We derive equations for
fluid flow in high dimensional data spaces, and see how
the solution can be appropriately constrained so that
it can be used for discriminant analysis.

3.1 Fluid densities and equation of continuity

Our basic idea is to consider the class data as high
dimensional mass distributions and analyze their re-
sulting motion under interaction forces. In particular,
we consider high dimensional fluids so that every point
x moves according to a velocity field v(x) that mini-
mizes a potential energy corresponding to the overlap
of the different class densities. The overall structure
of the resulting motion is approximated by constrained
velocity and acceleration fields, and these constraints
correspond to dominant projections for discriminant
analysis.

We first consider a Gaussian mass distribution for each
class c ∈ {1, 2, . . . , C} having mean µc and covariance
matrix Σc.

ρc(x) =
1

√
2π

D|Σc|1/2
e−

1
2 (x−µc)T Σ−1

c (x−µc) (5)

Mass conservation gives rise to the equation of conti-
nuity:

∂ρc
∂t

+∇ · (ρcv) = 0. (6)

which restricts the divergence of velocities v around
a point x at time t. We next use this equation to
derive the resulting force field corresponding to a given
potential function.

3.2 Force for class separation

The Bhattacharyya coefficient is an information theo-
retic measure that can be used as a potential function
U to describe the overlap between two fluid distribu-
tions:

U(ρ1, ρ2) =
∫
√
ρ1ρ2dx. (7)
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This potential induces a local force at every spatial
position that acts to minimize the interaction energy.
This force field can be derived using the equation of
continuity (6), and the relation dU = −

∫
(F · ds) dx,

where ds is an infinitesimal displacement of fluid and
dx is the integration measure. By analyzing how in-
finitesimal changes of the distribution ρ2(x) affect the
potential U with fixed ρ1(x), the force field F2 exerted
on the class 2 is obtained:

F2(x) = −1
2
ρ2∇

√
ρ1

ρ2

=
1
4
C1e

− 1
4 (x−µ′+)T (Σ−1

1 +Σ−1
2 )(x−µ′+)

·(Σ−1
1 − Σ−1

2 )(x− µ′−) (8)

with the constants:

C1 =
e−

1
4 ∆µT (Σ1+Σ2)−1∆µ

(2π)d/2|Σ1|1/4|Σ2|1/4
(9)

µ′+ =
(
Σ−1

1 + Σ−1
2

)−1
(Σ−1

1 µ1 + Σ−1
2 µ2) (10)

µ′− =
(
Σ−1

1 − Σ−1
2

)−1
(Σ−1

1 µ1 − Σ−1
2 µ2). (11)

The same derivation can be used to obtain the forces
F1 on class 1, and we see F1(x) = −F2(x), in ac-
cordance with Newton’s third law. The resulting force
fields for some example density distributions are shown
in Fig. 2.

3.3 Gauss principle of least constraint

Given the force fields derived in the previous section,
the equations of motion can be derived. In general,
without constraints on the system, the resulting mo-
tions will be high-dimensional. For our purposes, we
constrain the resulting motion so that the fluids can
only flow along certain directions. The optimal fluid
flow directions will then correspond to a low dimen-
sional space for discriminant analysis.

When constraints are applied to a system of many in-
teracting particles, the Gauss principle of least con-
straint is a useful method to derive the equation of
motion for each particle. The principle states that the
motion follows the trajectory having the least amount
of constraint force. When the force and constraints are
given, this results in an optimization problem minimiz-
ing the objective function 1

2

∑
imi(ẍi− Fi

mi
)2, where ẍi

is the acceleration of mass mi satisfying the imposed
constraints.

The constraint force is the difference between the ap-
plied force and the force governing the actual move-
ment, F −mẍ, and the objective is a weighted linear
combination of these constraint forces. For continuous
fluids, the objective becomes an integral of constraint

forces over space, where the mass density function ρ(x)
is used in place of point masses:

L =
1
2

∫
ρ(x)

(
ẍ− F (x)

ρ(x)

)2

dx (12)

We will see how various constraints on the fluid flow
can be analyzed using (12). In particular, a very re-
strictive constraint that only allows uniform transla-
tional motion will result in global fluid flow along a
single direction. On the other hand, less restrictive
constraints that allow local differences in flow veloci-
ties can capture more of the fine structure of fluid flow
motion. Next we show how to tractably obtain the
optimal low dimensional subspace from these types of
constraints for discriminant analysis.

3.4 Constraint on motion: uniform
translational movement

We first assume very hard constraints so that the fluid
is a rigid body having only translational motion. In
this case, the flow acceleration field is constant over
the entire space, ẍ = w. Minimizing the objection
function

L(w) =
1
2

∫
ρc(x)

(
w − Fc(x)

ρc(x)

)2

dx (13)

with respect to the direction of the uniform accelera-
tion field w yields the FDA direction:

w =
∫
Fdx = C2

(
Σ1 + Σ2

2

)−1

∆µ (14)

for class 2, and the opposite direction
C2(Σ1+Σ2

2 )−1(−∆µ) for class 1. Here, the constant

C2 is C2 = 1
4

(
|Σ1|

1
2 |Σ2|

1
2

|Σ1+Σ2
2 |

) 1
2

e−
1
4 ∆µT (Σ1+Σ2)−1∆µ.

From this example, we see that the optimal rigid
body translational motion under the Bhattacharyya
coefficient interaction is equivalent to motion along
the direction of the FDA solution.

3.5 Constraint on motion: low rank affine
acceleration

We relax the constraint so that the fluid acceleration
is described by an affine function in a low dimensional
space. First, we define a low rank acceleration field as
ẍ = Wa(x) where W ∈ RD×d for d < D is a low rank
tall rectangular matrix. The acceleration field ac(x)
of class c ∈ {1, 2} is an affine function that can be
expressed by ac(x) = UTc xe where xe = [xT 1]T and
Uc ∈ R(D+1)×d. This constrains the transformation
matrix WUT to be a low rank affine transformation.
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Figure 2: Two Gaussian distributions of different classes are represented as ellipses (standard deviation from
the mean). The left two panels show the force field on class 2 from class 1. The force is a repulsive force (first
panel) to minimize the overlap between classes; but if the distributions are overlapped (second panel), it tries
to minimize U(ρ1, ρ2) by squeezing one class rather than pushing it. The right two panels show the resulting
acceleration field when the low rank affine constraint is applied.

In our setting, W is shared by different classes. The
Gauss principle then yields the objective function

L =
1
2

2∑
c=1

∫
ρc

(
WUTc xe −

Fc
ρc

)2

dx. (15)

With the force field defined in (8), the low rank matrix
W that optimizes the objective function L is given by
the span of the leading eigenvectors of the following
symmetric matrix:

2∑
c=1

〈FcxTe 〉〈xexTe 〉−1
ρc
〈xeFTc 〉. (16)

The sufficient statistics for this computation are
〈xexTe 〉ρc

=
∫
ρcxexTe dx and 〈xeFTc 〉 =

∫
xeFTc dx.

For multiway classification with c = {1, 2, . . . , C}, we
simply extend the previous analysis to every pair of
classes to see that the optimal W is given by the
principal eigenvectors of

∑C
c=1〈FcxTe 〉〈xexTe 〉−1

ρc
〈xeFTc 〉

where Fc is the sum of forces from all other classes
to class c. Fig. 2 shows an example force field and
the acceleration field constrained by a rank one affine
transformation for two class Gaussians.

Previously, we noted two scenarios where we know
analytic solutions minimizing the Bayes classification
error. These cases are when the data are two ho-
moschedastic Gaussians, and when the Gaussians have
the same mean. Now, we check how our fluid dynamic
solution Eq. (16) approximates the known analytic so-
lutions in these two special cases.

3.6 Validity analysis of the low rank affine
approximation

The matrix (16) is given from µ1, µ2, Σ1, and Σ2 using
the sufficient statistics:

〈xexTe 〉−1
ρc

=
(

Σc + µcµ
T
c µc

µTc 1

)−1

, c ∈ {1, 2} (17)

〈xeFT2 〉 = −〈xeFT1 〉 = (18)

2C2


Σ2 − Σ1 + {Σ2(Σ1 + Σ2)−1µ1+

Σ1(Σ1 + Σ2)−1µ2}(−∆µ)T

(−∆µ)T

 (Σ1 + Σ2)−1

where the constant C2 is the same as in Eq. (14).

When the two covariance matrices Σ1 and Σ2 are the
same, the matrix (16) becomes the rank one symmetric
matrix

4C2
2 (Σ1 + Σ2)−1∆µ∆µT (Σ1 + Σ2)−1

[
2I +

∆µ∆µT (Σ1 + Σ2)−1
]
, (19)

and the only eigenvector with nonzero eigenvalue of
this matrix is w = (Σ1 +Σ2)−1∆µ, which is equivalent
to the FDA solution.

Otherwise, when µ1 = µ2, all terms including ∆µ dis-
appear, and the matrix becomes

4C2
2 (Σ1 + Σ2)−1

[
(Σ1 − Σ2)Σ−1

2 (Σ1 − Σ2) +

(Σ2 − Σ1)Σ−1
1 (Σ2 − Σ1)

]
(Σ1 + Σ2)−1 (20)

The eigenvector equation using this symmetric matrix
can be rearranged as

(Σ1Σ−1
2 + Σ2Σ−1

1 − 2I)W = (Σ1 + Σ2)WΛ, (21)

which has a similar form to the eigenvector equation
for Fukunaga’s equal mean case. If we compare this to
(4), we can see the solutions are equivalent if Σ1 and
Σ2 commute and the sum of Σ1 and Σ2 is isotropic:
Σ1 + Σ2 = αI. If symmetric matrices Σ1 and Σ2

commute, there is an orthonormal matrix W (satis-
fying WTW = I) that can diagonalize both Σ1 and
Σ2. Therefore, we can write WTΣ1W = D1 and
WTΣ2W = D2 for two diagonal matrices D1 and
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D2. Solving Eq. (21) becomes the problem of find-
ing wis that are the columns of W with eigenvalues

1
d1i+d2i

(
d1i

d2i
+ d2i

d1i
− 2
)

, where d1i and d2i are the ith

elements of D1 and D2. It will be 1
d2i

+ 1
d2i

when
d1i + d2i = α, or wT

i (Σ1 + Σ2)wi = α, giving the
same solution as Fukunaga’s equal mean solution in
Section 2.

To show the validity of our model on a simple 2-
dimensional example, Fig. 3 shows the results ob-
tained by directly optimizing the Bayes error J1,
the Bhattacharrya criterion J2, along with our fluid
model approximation. In this simple example, find-
ing the optimal projection angle for J1 and J2 is per-
formed by numerically scanning over all possible an-
gles. On the other hand, the fluid model yields a
tractable 2-dimensional eigenvector problem that per-
forms quite well compared with the optimal solutions
as in Fig. 3(a). In terms of the expected performance
in Fig. 3(b), the fluid model achieves the optimal Bayes
performance over the entire distance between means.
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Figure 3: (a) This panel shows the optimal discrimi-
nating direction for two 2-D Gaussians as we increase
the distance between means. The Bayes optimal di-
rection, the Bhattacharyya optimal direction, and the
fluid approximation are presented. (b) The expected
classification performances for the same distributions
as (a) are presented using the Bayes optimal direction,
fluid solution, FDA solution, and Fukunaga’s equal
mean solution.

4 Experiments on Standard Datasets

The proposed method is evaluated on several bench-
mark datasets. The data are projected onto the sub-
spaces found by FDA, Fukunaga’s equal mean anal-
ysis, and the fluid model, then Bayes classification is
performed in the subspace assuming Gaussian distri-
butions. The results are presented in Table 1, and
they show our fluid approach generally outperforms
or is similar to the other two analyses. We also note
that Fukunaga’s equal mean analysis often beats FDA,
even though it is less well-known.

The experimental datasets are the USPS handwrit-

ten digit dataset and six UC Irvine datasets. For the
USPS set, the original images of 16 × 16 pixels are
first resized to 10 × 10 to reduce the sparsity of pix-
els. Non-overlapping training and testing data are ran-
domly sampled from the data, and the sampling num-
bers are balanced over all classes. The experimental
results are the averages over 100 realizations for UC
Irvine datasets, and 20 realizations for USPS dataset.
The number of extracted dimensions is C − 1 which
is the maximum number of dimensions standard FDA
can extract with C number of classes. The empirical
covariance matrices are regularized by adding a small
multiple of the identity matrix, which is determined
by cross validation for each algorithm.

Table 1: Performance on benchmark datasets (%). For
each dataset, the number of classes (C), and perfor-
mance of Fukunaga’s equal mean solution, FDA, and
our fluid model are presented.

Dataset C Fukunaga FDA Fluid

SpectF 2 78.50 80.20 81.70
Ionosphere 2 86.83 85.96 87.54
Parkinsons 2 86.83 82.33 89.33
Ozone 2 71.27 84.54 84.20
Breast Cancer 2 93.83 97.87 97.92
Glass 6 · 52.53 55.67
USPS 10 · 90.38 91.48

5 Application to Gaussian Processes

We also extend our fluid model to the problem of treat-
ing data in an infinite dimensional space using Gaus-
sian processes. The problem of optimally discriminat-
ing two Gaussian processes is intractable, similar to
the problems of analyzing finite dimensional problems
mentioned in Section 2. In this section, we introduce
our method for low rank discrimination of two differ-
ent stochastic dynamical systems that can be modeled
by Gaussian processes.

The dynamical systems are expressed by the follow-
ing linear state equation, resulting in a Gaussian pro-
cess. We consider an infinite length sequence X =
[. . . , xm−1, xm, xm+1, . . .] along with the following re-
cursive update rule,

xm = αxm−1 + bm + εm, 0 < α < 1 (22)

where each εm ∈ R follows a Gaussian distribution
N(0, σ2), and bm, a input value at time m. Then
the sequence X is a Gaussian process which has a
mean function µ(m) = 〈xm〉 and a covariance function
f(m,n) = 〈xmxn〉 − 〈xm〉〈xn〉 which is translationally
invariant.
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To obtain µ(m) and f(m,n), we use the recursive
equation (22) to obtain a general expression for xm,

xm =
∞∑
i=1

αi−1(bm−i + εm−i). (23)

This equation leads to the mean and the covariance
function below:

µ(m) = 〈xm〉 =
∞∑
i=1

αi−1bm−i (24)

f(m,n) = 〈xmxTn 〉 − 〈xm〉〈xn〉T

=
σ2α|m−n|

1− α2
(25)

We now consider two different systems having different
αc and bcm, for c ∈ {1, 2}, and see how our methods
can be applied to finding a low dimensional projection
for discriminating different dynamical systems.

5.1 Finding low dimensional filters

The one dimensional projection vector for infinite se-
quence data can be considered as a filter whose in-
ner product with the sequence yields a scalar output.
Thus, the projection vector can be expressed as a fil-
ter function w(m), and we seek the best filter that can
be used to discriminate two dynamical systems. If we
use the mean functions and the covariance functions of
Gaussian processes, Fukunaga’s two special cases can
be equivalently analyzed. We show how our tractable
fluid model can well approximate this optimal filter
w(m).

We first look at a simple example where the FDA solu-
tion is optimal to get the intuition about how Gaussian
process covariances are applied, then we extend the
analysis for more general cases using our fluid model.

5.1.1 FDA analysis

Consider the special case where the two covari-
ance functions are the same, and the two mean
functions are different. In this case, the opti-
mal discriminating filter between the dynamical sys-
tems is the FDA solution, which is , w(m) =∫

(f1(m,n) + f2(m,n))−1 (µ1(n)−µ2(n))dn analogous
to the finite dimensional form (Σ1 + Σ2)−1∆µ. Here,
the subscripts indicate classes, and the inverse function
satisfies

∫
f−1(l,m)f(m,n)dm = δ(l, n) for Kronecker

delta δ. The inverse function can be obtained through
the Fourier and the inverse Fourier transforms.

An example is presented in Fig. 4 containing two dy-
namical systems satisfying Eq. (22). The two systems
have the same α and different bcm for different classes
c, so they are processes having the same covariance

and different means. The samples of different classes
in Fig. 4(a) show variations in the region where there
is an obvious difference in the mean functions. We
consider two filters given by FDA (Fig. 4(b)) and the
mean difference (Fig. 4(c)). The FDA solution mainly
uses the difference between the starting point and the
maximum point of mean differences, whereas the mean
difference averages over this region. The difference is
given by the influence of the inverse covariance func-
tion in the FDA solution that deconvolves the smear-
ing of the Gaussian process. If we look at the projected
distributions in Fig. 4(d), we see the role of this de-
convolution. The mean difference direction just tries
to maximize the distance between the means in the
projection, while the deconvolved direction considers
both the maximization of mean difference and the min-
imization of within class variance.
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Figure 4: (a) The sample signals and the mean func-
tions of two Gaussian processes, (b) FDA filter solu-
tion, (c) mean difference filter, and (d) the projected
distributions. In (d), the two colored distribution in
green are the projected distributions onto the mean
difference direction. The dotted distributions are the
projected distributions onto the FDA direction.

5.1.2 Fluid model extension

Next, we consider the general case where both
the means and covariances of the dynamical pro-
cesses show differences. As in the finite di-
mensional heteroscedastic problem, finding the op-
timal filter for discrimination is generally not
tractable. However, applying our fluid model, the
elements of 〈FxTe 〉〈xxT 〉ρ〈xeFT 〉 can be expressed
as
∫∫

eiω1me−iω2nH(ω1, ω2)dω1dω2 where H(ω1, ω2) is
composed of two matrices which are diagonal ma-
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trices whose components are F1(ω) and F2(ω), and
the Hermitian matrix M(ω1)M(ω2)† where M(ω) =∫

∆µ(t)e−iωtdt, through the Fourier transform. This
problem can be solved by the eigendecomposition of
H(ω1, ω2).

In the example in Fig. 5(a), the noise is quite large
compared to the mean difference. The FDA filter uses
just two end points in the system responses, while our
fluid model incorporates information about differences
in the process covariances. The resulting filter projec-
tions shown in Fig. 5(d) show the advantages of using
the fluid dynamics filter in this case. Quantitatively,
the average of the resulting Bhattacharyya coefficients
is 0.324 for the FDA filter, compared to 0.235 for the
fluid dynamics filter. These results are averaged over
600 multiple realization of 1000 samples of Gaussian
processes.
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Figure 5: (a) Sample signals and the mean responses of
two different dynamical Gaussian processes, (b) fluid
model solution, (c) FDA solution, and (d) the pro-
jected filter distributions. In (d), the two colored dis-
tribution in green are the projected distributions by
the FDA filter. The dotted distributions are the pro-
jected distributions using the fluid model filter.

6 Conclusions

We have presented a novel method for discriminant
analysis by making an analogy to high-dimensional
fluid dynamics. The model yields an optimal low-
dimensional subspace for separating classes by ana-
lyzing the constrained motion of fluid densities under
an information theoretic potential function. We have
shown how this model relates well to the optimal sub-
space with Gaussian data as well as on standard ma-

chine learning databases. We also showed how this
model can be applied to infinite dimensional systems,
and can be used to discriminate Gaussian processes.

Future research will include dealing with nonlinear
projections using kernel techniques, and extending the
analysis to more general exponential families and non-
parametric distributions.

Finally, we acknowledge the support provided by the
IT R&D Program of MKE/KEIT (KI002138, MARS)
and the NRF Grant of MEST (314-2008-1-D00377,
Xtran).
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