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Abstract

Selecting conveniently the proposal kernel
and the adjustment multiplier weights of the
auxiliary particle filter may increase signif-
icantly the accuracy and computational ef-
ficiency of the method. However, in prac-
tice the optimal proposal kernel and multi-
plier weights are seldom known. In this pa-
per we present a simulation-based method
for constructing offline an approximation of
these quantities that makes the filter close to
fully adapted at a reasonable computational
cost. The approximation is constructed as
a mixture of experts optimised through an
efficient stochastic approximation algorithm.
The method is illustrated on two simulated
examples.

1 Introduction

Sequential Monte Carlo (SMC) methods (see e.g.
Doucet et al. (2001)) has emerged as a powerful tool
for handling nonlinear filtering problems. The interest
in these techniques has increased dramatically over re-
cent years and several significant improvements of the
plain bootstrap particle filter have been proposed. The
perhaps most versatile of the SMC algorithms is the
auxiliary particle filter (APF) introduced in Pitt and
Shephard (1999) and analysed theoretically in Douc
et al. (2008) and Johansen and Doucet (2008). The
APF allows for more flexibility in the way the particles
are evolved by introducing a set of adjustment multi-
plier weights. These weights are used at the resam-
pling operation as a tool for eliminating/duplicating
particles having presumably small/large importance
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weights at the subsequent mutation operation. In this
way computational efficiency is gained. When the par-
ticles are mutated according to the so-called optimal
proposal kernel, being the distribution of a next state
conditional on the current state as well as the next
observation, and the adjustment multipliers are pro-
portional to the density of the next observation given
the current state, the inherent instrumental and tar-
get distributions of the particle filter coincide and the
filter is referred to as fully adapted.

Unfortunately, the optimal proposal kernel and adjust-
ment multipliers are available on closed-form only for
simple models, such as Gaussian models with linear
measurement equation. Various approximations of the
optimal proposal kernel has thus been suggested in
the literature; see e.g. Doucet et al. (2000) a meth-
ods based on extended Kalman filters and Chan et al.
(2003) for an approach similar in spirit to our ap-
proach. Cornebise et al. (2009) suggest to approximate
the optimal proposal kernel at each step by a mixture
of experts, giving a very well adapted proposal kernel
at a reasonable computational cost. However, none of
the mentioned works addresses the optimal adjustment
multiplier weights which have seen limited interest in
the literature.

Thus we focus on the joint transition density of the
measurements and the hidden states, an idea that is
also suggested in Johansen and Doucet (2008). The
proposed method, which adopts some of the techniques
proposed in Cornebise et al. (2009), produces a global
parametric approximation of the joint transition den-
sity under the assumption that the hidden chain has a
stationary distribution. An interesting feature of the
algorithm is that it does not require any expression of
the transition kernel of the hidden chain as long as its
transitions can be simulated. Through the approxi-
mation of the joint transition density of the bivariate
process provided by the algorithm, both the optimal
adjustment multiplier weights and the optimal pro-
posal kernel are readily available. The approximation
is calculated offline and expressed as a state depen-
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dent mixture model, where the weights and the means
depend on the previous state, similar to so-called hi-
erarchical mixture of experts, see Jordan and Jacobs
(1994). The proposal kernel and adjustment multiplier
function obtained through marginalisation are there-
fore global functions, available for any value of the pre-
vious state and the measurement. Since the estimation
is performed offline, the resulting APF incurs almost
no additional computational cost. As a byproduct an
approximation of the transition density of the latent
process is also provided. This is relevant for models for
which simulation from the transition density is possi-
ble but where the transition densities lack closed-form
expressions. For many models used in practice, for
instance most partially observed diffusion and Lévy
processes, this is in fact the case. Since only simula-
tion is required, the linearised dynamics simulated on
a dense grid (such as the Euler scheme) suffices to be
able to produce good density approximation.

The article is organized as follows. In Section 2 we
introduce some notation and basic concepts. In Sec-
tion 3 we discuss optimal filtering in general and de-
scribe briefly the APF. The optimal proposal kernel
and the optimal adjustment multiplier weights are in-
troduced. Our proposed algorithm is introduced in
Section 4 and in the implementation part, Section 5,
the algorithm is demonstrated on two examples.

2 Preliminaries

A hidden Markov model (HMM) is a stochastic model
on two levels, where a non-observable Markov chain
of the bottom level is partially observed through an
observation sequence of the top level. More specifi-
cally, let Q be Markov kernel on some space X ⊆ RdX
equipped with the associated Borel σ-field B(X) and
let G be a Markov kernel from X to some other state
space Y ⊆ RdY equipped with the associated Borel
σ-field B(Y). Now, define the Markov kernel

H(x, y,A)
def
=

∫∫
A

Q(x, dx′)G(x′,dy′)

on the product space (X×Y,B(X)⊗B(Y)). For any ini-
tial distribution χ on B(X) we denote by Pχ and Eχ the
probability distribution and associated expectation of
the time homogenous Markov chain with initial distri-
bution

∫∫
A
G(x, dy)χ(dx) and transition kernel H on

the canonical space (X×Y)N equipped with the σ-field

(B(X) ⊗ B(Y))⊗N. We denote by Z
def
= {(Xk, Yk)}k≥0

the associated process, where X
def
= {Xk}k≥0 are the

hidden states and Y
def
= {Yk}k≥0 are the observa-

tions. As a consequence of our definition, the ob-
served values of Y are, conditionally on the latent
states X, independent with conditional distribution

Yk|X ∼ G(Xk, ·). We will throughout this paper as-
sume that the Markov kernel Q is φ-irreducible, posi-
tive recurrent, and strongly aperiodic, and we denote

by π its stationary distribution. Set P̄ def
= Pπ and

Ē def
= Eπ. It is easily seen that under P̄, also the bivari-

ate process Z is stationary with stationary distribution

π̄(A)
def
=
∫∫
A
G(x,dy)π(dx).

Throughout this paper we will assume that the mea-
sures Q(x, ·) and G(x, ·) are, for any x ∈ X, abso-
lutely continuous with respect to the Lebesgue mea-
sure λ, and we denote, respectively, by q and g the
corresponding densities. Under this assumption, each
measure H(x, y, ·) has, for any (x, y) ∈ X × Y, a den-
sity function with respect to the Lebesgue measure as
well, and we denote this density by p(·|x, y). For any
set A ∈ B(X) ⊗ B(Y), the function (x, y) 7→ p(A|x, y)
does not depend on y, and the restriction, which we
denote by the same symbol, of this mapping to X is
thus well defined. As described in the introduction,
the aim of the present paper is to approximate the
transition density p by a mixture of experts under the
assumption that the bivariate process Z can be simu-
lated. Denote by

p(yk+1|xk)
def
=

∫
p(xk+1, yk+1|xk)λ(dxk+1) ,

p(xk+1|xk, yk+1)
def
= p(xk+1, yk+1|xk)/p(yk+1|xk)

(2.1)

the densities of the conditional distribution of Yk+1

given Xk and the conditional distribution of Xk+1

given Xk as well as Yk+1, respectively. The latter dis-
tribution is usually referred to as the optimal kernel.

Finally, as a measure of closeness of two distributions
we use the Kullback-Leibler divergence (KLD): Let
(Z,B(Z)) be some state space and let µ1 and µ2 be
two probability measures on B(Z) such that µ1 � µ2;
then the KLD dKL(µ1‖µ2) between µ1 and µ2 is de-
fined by

dKL(µ1‖µ2)
def
=

∫
log

dµ1

dµ2
(z)µ1(dz) .

Other measures, such as the χ2-distance, of closeness
are of course possible, but the KLD turns out to be
very convenient in conjunction with the exponential
families used in this paper, since this makes it possi-
ble to optimise most parameters on closed-form; see
Section 4.

3 Particle filters

3.1 Optimal filtering

To motivate why approximation of the density p is im-
portant we discuss the use of particle filters for filter-



         575

Jimmy Olsson, Jonas Ströjby

ing in HMMs. Let Y0:n = (Y0, Y1, . . . , Yn) be a given
record (similar vector notation will be used also for
other quantites) of observations. Then the filtering
distribution at time n is defined by the conditional
probability

φn(A)
def
= Pχ(Xn ∈ A|Y0:n) =∫

1A(xn)
∏n−1
k=0 Q(xk,dxk+1)g(xk+1, Yk+1) g(x0, Y0)χ(dx0)∫ ∏n−1

k=0 Q(x′k,dx
′
k+1)g(x′k+1, Yk+1) g(x′0, Y0)χ(dx′0)

for A belonging to B(X). Computing the filtering dis-
tribution is essential when estimating the hidden states
or performing any inference on unknown model pa-
rameters. Under the assumptions above, φn has a
well defined density with respect to the Lebesgue mea-
sure. By inspecting the definition above, we conclude
that the flow {φn}n≥0 of filter distributions can be ex-
pressed recursively according to

φn+1(A) =∫∫
1A(xn+1)Q(xn,dxn+1)g(xn+1, Yn+1)φn(dxn)∫∫

Q(x′n,dx
′
n+1)g(x′n+1, Yn+1)φn(dx′n)

=∫
p(Yn+1|xn)

∫
A
p(xn+1|xn, Yn+1)λ(dxn+1)φn(dxn)∫
p(Yn+1|x′n)φn(dx′n)

,

(3.1)

where the densities p(yn+1|xn) and p(xn+1|xn, yn+1)
are defined in (2.1). Equation (3.1), usually referred to
as the filtering recursion, is however only deceptively
simple since closed-form solutions to this recursion can
be obtain in only in two cases, i.e., when the HMM
is linear/Gaussian or when X is a finite set. In the
general case we are thus referred to simulation-based
techniques producing Monte Carlo approximations of
these posterior distributions.

3.2 Particle filters

Assume that we have at hand a sample {(ξin, ωin)}Ni=1

of particles {ξin}Ni=1 and associated importance weights
{ωin}Ni=1 targeting the measure φn in the sense that

N∑
i=1

ωin∑N
`=1 ω

`
n

f(ξin) ≈
∫
X

f(x)φn(dx) . (3.2)

for a large class of target functions f on X. We wish
to transform {(ξin, ωin)}Ni=1 into a new weighted parti-
cle sample {(ξin+1, ω

i
n+1)}Ni=1 approximating the filter

φn+1 at the next time step. We hence plug the particle
approximation (3.2) into the filtering recursion (3.1),
yielding the approximation

φNn+1(A)
def
=

N∑
i=1

ωinp(Yn+1|ξin)∑N
`=1 ω

`
np(Yn+1|ξ`n)

∫
A

p(xn+1|Yn+1, ξ
i
n)

of φn+1(A). Here p(Yn+1|ξin)
def
= p(Yn+1|xn)|xn=ξin

and

similarly for p(xn+1|Yn+1, ξ
i
n). Note that φNn+1 has a

well defined density, which we denote by the same sym-
bol, with respect to the Lebesgue measure; this density
is proportional to the function

xn+1 7→
N∑
i=1

ωinq(ξ
i
n, xn+1)g(xn+1, Yn+1) .

Simulating N draws from the mixture φNn+1 would
yield the desired set of particles. However, simulat-
ing from φNn+1 is in general not easily performed and
requires expensive accept-reject techniques. Thus we
apply instead importance sampling using the instru-
mental distribution

πNn+1(A)
def
=

N∑
i=1

ωinψ
i
n∑N

`=1 ω
`
nψ

`
n

Rn(ξin, A) , (3.3)

where A is in B(X), and associate each drawn particle
ξin+1 with an importance weight ωin+1 proportional to
φNn+1(xn+1)/πNn+1(xn+1)|xn+1=ξin+1

. Here {ψin}Ni=1 are

nonnegative numbers referred to as adjustment mul-
tiplier weights and Rn is a Markovian kernel having
transition density rn with respect to the Lebesgue
measure. Hence the density

πNn+1(xn+1) ∝
N∑
i=1

ωinψ
i
nrn(ξin, xn+1)

is well defined. It is assumed that Rn dominates
the optimal kernel. The instrumental kernel Rn as
well as the adjustment multipliers may depend on
the new observation Yk+1, and ideally one would take
rn(xn, xn+1) ≡ p(xn+1|Yn+1, xn) and ψin = p(Yn+1|ξin)
for all i, in which case the target distribution φNn+1 and
the instrumental distribution πNn+1 of the particle fil-
ter coincide. In this case the particle filter is usually
referred to as fully adapted. This shows clearly the im-
portance of being able to approximate p (and thus the
marginals (2.1)) with good precision. A problem with
the described approach is that computing any weight
ωin+1 requires the evaluation of a sum of N terms,
yielding an algorithm of O(N2) computational com-
plexity. To cope with this problem, we follow Pitt and
Shephard (1999) and introduce an auxiliary variable I
corresponding to the selected mixture component and
target instead the auxiliary distribution

φ̄Nn+1({i}×A)
def
=

ωinp(Yn+1|ξin)∑N
`=1 ω

`
np(Yn+1|ξ`n)

∫
A

p(xn+1|Yn+1, ξ
i
n)

on the product space {1, . . . N} × X. The auxil-
iary distribution φ̄Nn+1 has a density function propor-
tional to ωinq(ξ

i
n, xn+1)g(xn+1, Yn+1). Note that φ̄Nn+1
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has φNn+1 as marginal distribution, i.e., φNn+1(A) =∑N
i=1 φ̄

N
n+1({i} × A). As auxiliary instrumental dis-

tribution we take

π̄Nn+1({i} ×A)
def
=

ωiψik∑N
`=1 ω

`
nψ

`
n

Rn(ξin, A)

and sample pairs {(Iin+1, ξ
i
n+1)}Ni=1 of indices and par-

ticle positions from π̄Nn+1 and assign each draw the
importance weight

ωin+1
def
=

q(ξ
Iin+1
n , ξin+1)g(ξin+1, Yn+1)

ψ
Iin+1
n rn(ξ

Iin+1
n , ξin+1)

. (3.4)

Finally we take {(ξin+1, ω
i
n+1)}Ni=1 as an approxima-

tion of φn+1 and discard the indices. Note that no
sum appears in the expression (3.4) of the importance
weights; by introducing the auxiliary variable we have
hence, satisfactorily, obtained an algorithm of linear
(in the number of particles) computational cost. Ob-
viously, the efficiency of the algorithm depends heavily
on how we choose the adjustment multiplier weights
and the proposal kernel, and in the next section we
discuss how to obtain a close to fully adapted particle
filter by means of approximating offline the transition
density p (and thus all its marginals) by a mixture of
experts.

4 Approximation of H by a mixture of
experts

We turn to the problem of approximating the opti-
mal proposal kernel and the optimal adjustment mul-
tiplier weights given by (2.1). Naturally, we propose to
construct a parametric approximation of these via the
joint distribution p of the state and measurements. In-
spired by Cornebise et al. (2009) we approximate this
joint density by a mixture of experts, which is fitted to
simulated data by means of an online EM algorithm.
More specifically, we represent the density p(z|x) by a
mixture of form

pθ(z|x) =

M∑
j=1

αj(x; γ)ρ(z;x, λj) , (4.1)

where γ = (γT1 , . . . , γ
T
M )T and θ

def
= (γT , λT1 , . . . , λ

T
M )T

is a vector of parameters, {αj}Mj=1 are weighting func-
tions, and each ρ(·, λj) is Markovian transition kernel
from X to X × Y. We denote by Θ ⊆ Rdθ the set of
possible parameters. The weighting functions {αj}Mj=1

are required to sum to one to ensure that (4.1) is a den-
sity. For the theoretical exposition, assume that the
weighting functions are constant, i.e., αj(x; γ) ≡ αj
with

∑M
j=1 αj = 1. In this case the model is often

referred to as a mixture of regressions. More general
weighting functions will be considered later on.

Assumption 4.1. The mixture kernels ρ(·, λj) are of
form

ρ(z;x, λj) = h(x, z) exp (−ψ(λj) + 〈U(x̄, z), φ(λj)〉) ,
(4.2)

where U is a vector of sufficient statistics that do not
depend on any parameters, 〈·, ·〉 denotes the scalar
product, x̄ the extended vector (1, x)T , ψ and φ are
functions of the parameters only, and h is a function
independent of the parameters.

In the implementation part (Section 5) we will make
use of the Gaussian densities with mean βj x̄ and

covariance matrix Σj = (Σ1
j , . . . ,Σ

dZ
j ) and denote

jointly λj = (βTj , (Σ
1
j )
T , . . . , (ΣdZj )T )T . In addition,

U(x̄, z) = (1, zzT , x̄x̄T , zx̄T ) in the Gaussian case.
It is however worth to notice that all results ob-
tained in this paper hold for the more general fam-
ily of integrated curved exponentials such as student’s
t-distribution.

In order to be able to perform quick optimisation we
augment the state space with the index J of the mix-
ture component, resulting in the auxiliary density

p̄θ(z, j|x) = αj(x; γ)ρ(z;x, λj) . (4.3)

Also we define the conditional mixture weights, or re-
sponsibilities, as

p̄θ(j|x, z) =
αj(x; γ)ρ(z;x, λj)∑M
i=1 αi(x; γ)ρ(z;x, λi)

. (4.4)

Now, let family H be a family of Markovian kernels
from X to X×Y where each H̃ ∈ H is such that H̃(x, ·)
dominates H(x, ·) for all x ∈ X. We say that a kernel
H̃∗ belonging to H is H-optimal if it holds that

H̃∗ = arg min
H̃∈H

Ē
[
dKL(H(X0, ·)‖H̃(X0, ·))

]
= arg min

H̃∈H

∫∫
log

(
dH(x, ·)
dH̃(x, ·)

(z)

)
H(x, dz)π(dx) ,

(4.5)

i.e. the expected value of the KLD under the stationary
distribution of the hidden Markov chain. Now assume
that each kernel H̃ in H has a transition density h with
respect to the Lebesgue measure. Then

arg min
H̃∈H

Ē
[
dKL(H(X0, ·)‖H̃(X0, ·))

]
= arg min

H̃∈H

∫∫
log

p(z|x)

h(z|x)
H(x, dz)π(dx)

= arg min
H̃∈H

{∫∫
log p(z|x)H(x,dz)π(dx)

−
∫∫

log h(z|x)H(x, dz)π(dx)

}
,



         577

Jimmy Olsson, Jonas Ströjby

where the first term on the right hand side does not
depend on h. In the following we let H be the family
of mixtures pθ of form (4.1), and thus the optimisation
problem (4.5) can be alternatively expressed as

arg max
θ∈Θ

∫∫
log pθ(z|x)H(x, dz)π(dx) . (4.6)

Calculating exactly expectations under the measures
π and H is in general not possible, since the station-
ary distribution is not known on closed-form. In the
following we discuss how the intricate maximisation
problem (4.6) can be handled within the framework of
missing data problems by means of stochastic approx-
imation methods. Thus, in the following we assume
that the function

Q(θ; θ`)
def
=

∫ M∑
j=1

log p̄θ(z, j|x)p̄θ`(j|x, z)H(x, dz)π(dx)

∼=
M∑
j=1

logαj

∫
p̄θ`(j|x, z)H(x, dz)π(dx)

−
M∑
j=1

ψ(λj)

∫
p̄θ`(j|x, z)H(x, dz)π(dx)

+

M∑
j=1

〈∫
p̄θ`(j|x, z)U(x̄, z)H(x,dz)π(dx), φ(λj)

〉
,

where ∼= means equality up constant that is indepen-
dent of the parameter θ, has a unique global maximum
over Θ for any value of the sufficient statistics

si,j(θ
`)

def
=

∫
p̄θ`(j|x, z)ui(x̄, z)H(x, dz)π(dx) ,

where ui denotes the ith submatrix of U . In addition,

we set s0,j(θ
`)

def
=
∫
p̄θ`(j|x, z)H(x, dz)π(dx). We col-

lect all these statistics in a structure which we denote
by s(θ`) and denote this maximum by θ̄(s). In the
Gaussian case the maxima are given by αj = s1,j(θ

`),
βj = s4,j(θ

`)s−1
3,j(θ

`) and

Σj =
s2,j(θ

`)− s4,j(θ
`)s−1

3,j(θ
`)sT4,j(θ

`)

s1,j(θ`)
.

The following result is instrumental for the method we
use for solving (4.6). In order to keep the arguments
lucid we skip some of the technical details, and refer
the interested reader to a companion paper. Define
the so-called mean field s 7→ H(s) as a structure con-
taining all the mappings

Hi,j(s)
def
=

∫
p̄θ̄(s)(j|x, z)ui(x̄, z)H(x,dz)π(dx)− s

(4.7)
on the space of all possible values of the sufficient
statistics. We then have the next result.

Proposition 4.1. Under weak assumptions the foll-
wong holds. If s∗ is a root of the mean field H in
the sense that H(s∗) = 0, then θ∗ = θ̄(s∗) satisfies
∇θĒ[dKL(H(X0, ·)‖Hθ(X0, ·))]|θ=θ∗ = 0. Conversely, if
θ∗ is a stationary point in the same sense, then the
structure s∗ contaning all

s∗0,j
def
=

∫
p̄θ∗(j|x, z)H(x, dz)π(dx) ,

s∗i,j
def
=

∫
p̄θ∗(j|x, z)ui(x̄, z)H(x, dz)π(dx)

is a root of H.

The proof follows the lines of the proof of Proposi-
tion 1 in Cappe and Moulines (2009). The dual prob-
lem of (4.6) is thus to find a root of the mean field
H, a task that is well suited for the classical Robbins-
Monroe stochastic approximation procedure

ŝ`+1 = ŝ` + γ`+1(H(ŝ`) + ξ`+1) ,

where {γ`}`≥1 is a decreasing sequence such that

lim
`→∞

γ` = 0 ,

∞∑
`=1

γ` =∞ , (4.8)

and {ξ`}`≥0 is a sequence of Markovian stochastic per-
turbations; the sum H(ŝ`)+ξ`+1 can thus be viewed as
a noisy observation of H(ŝ`). In order to obtain such
noisy observations, we use that Q`(x0, ·) approaches π
as ` increases under rather weak conditions, e.g. that
the latent chain X is Harris recurrent. The conver-
gence holds in general for any initial distribution χ.
This yields the approximation∫

p̄θ̄(s)(j|x, z)ui(x̄, z)H(x, dz)π(dx)

≈
∫
p̄θ̄(s)(j|x, z)ui(x̄, z)H(x, dz)χQ`(dx) . (4.9)

In order to approximate the right integral, assume that
we are given sets of independent draws {Xk

` }Kk=1 and
{Zk`+1}Kk=1 where Xk

` ∼ χQ` and Zk`+1 ∼ H(Xk
` , ·). We

then form the Monte Carlo estimate∫
p̄θ̄(s)(j|x, z)ui(x̄, z)H(x, dz)χQ`(dx)

≈ 1

K

K∑
k=1

p̄θ̄(s)(j|Xk
` , Z

k
`+1)ui(X̄

k
` , Z

k
`+1) .

The proposed method thus involves the simulation of
K latent chains Xk evolving independently. In addi-
tion, the Zk`+1’s are simulated independently on these
chains. In this setting, each member of noise sequence
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{ξ`}`≥1 contains elements of form

ξi,j`
def
=

1

K

K∑
k=1

p̄θ̄(ŝ`−1)(j|Xk
` , Z

k
`+1)ui(X̄

k
` , Z

k
`+1)

−
∫
p̄θ̄(ŝ`−1)(j|x, z)ui(x̄, z)H(x, dz)π(dx) .

Finally, this gives us the algorithm

ŝi,j`+1 = ŝi,j` +

γ`+1

(
1

K

K∑
k=1

p̄θ̂`(j|X
k
` , Z

k
`+1)ui(X̄`, Z

k
`+1)− ŝi,j`

)
,

θ̂`+1 = θ̄(ŝ`+1) ,

(4.10)

where ŝ` contains all the ŝi,j` ’s.

In order to discuss the convergence issues of the scheme
we assume that the chain X mixes geometrically fast,
i.e.‖χQn − π‖TV ≤ Cρn for any initial distribution χ
and constants C <∞ and 0 < ρ < 1. Such a geomet-
rical forgetting property is satisfied by a large class of
models and can be verified by checking the so-called
Foster-Lyapunov drift condition, see i.e. Cappé et al.
(2005). A detailed study of the asymptotic proper-
ties of the algorithm (4.10) is beyond the scope of this
note and can be found in a forthcoming paper; how-
ever, the main steps consist of (1) showing that s 7→
w(s)

def
= Ē[dKL(H(X0, ·)‖Hθ̄(s)(X0, ·))] is a Lyapunov

function for the mean field H, i.e.〈∇sw(s), H(s)〉 ≤ 0
with equality if and only if H(s) = 0, and (2) establish-

ing that lim supn supk≥n |
∑k
`=n γ`ξ`| vanishes almost

surely. Since the perturbations are Markovian, the-
ory presented e.g. Duflo (1997), chapter 9.2.3 can be
employed in order to show this. In practice logistic
weights α(x; γ) are used. In this case the normalized
weights are convex in the parameters and thus eas-
ily optimized. The proof will be analogous but more
involved.

5 Simulation study

We illustrate our method on two simulated exam-
ples. In this part we consider the more general
framwork of logistic weighting functions αj(x; γ) =

exp(γTj x̄)/
∑M
i=1 exp(γTi x̄). In this case the optimum

θ̄(ŝ`) cannot be found analytically and it is thus neces-
sary to apply some convenient optimisation procedure.
We omit the details for brevity.

Example 1. For a first order (possibly nonlinear) au-
toregressive model

Xk+1 = m(Xk) + σw(Xk)Wk+1 ,

Yk = Xk + σvVk ,
(5.1)

the optimal proposal kernel and the multiplier adjust-
ment weighting function are obtainable on closed-form,
which makes the model well suited for an initial assess-
ment of our algorithm. As a special case of (5.1), we
consider here the well known ARCH model observed
in noise:

Xk+1 =
√
β0 + β1XkWk+1 ,

Yk = Xk + σvVk ,

where β0 = 1, β1 = 0.5, and σv = 0.25. In this set-
ting, we estimate H using M = 9 mixture components.
We let the learning loop (4.10) run for n = 20, 000
iterations and use K = 10 realizations of the latent
chain. The Robbins-Monroe sequence γ` = 1/`0.6 is
used, and the gradient descent stepsize is δ = 0.01.
Both the parameters and the chain are started at
random values and we use a 20 step burn-in phase
before starting to update the parameters. In Fig-
ure 1, the approximated weighting function is shown
and compared to the exact one for fixed observations
(−2.9653,−0.3891, 0.3703, 3.2077) obtained by select-
ing the center points of each quartile from a simulated
sample comprising 1, 000 values. In these graphs it
can be seen that the approximated weight functions
follow rather closely the exact ones, especially in the
support of the stationary distribution. As a second ex-
periment, filtering of the ARCH process is performed
using the APF based on approximated as well as exact
optimal proposal kernels and importance weight func-
tions. The outcome is compared to that of the vanilla
bootstrap filter. The study is performed for 200 obser-
vations using 500 particles. In Figure 2 the cumulative
sums of the sorted normalised weights are displayed,
each line representing one of the 200 time-steps; (a)
displays the weight distribution of the bootstrap filter
while (b) is the distribution of the APF based on the
mixture approximation. From this figure it is evident
that the algorithm provides a close to fully adapted
filter that drastically outperforms the bootstrap filter.
For the fully adapted optimal filter, the distribution
is of course always a straight line, indicating uniform
weights at all time-steps. Finally, note that despite the
fixed variances in the mixture components, a very ef-
ficient approximation of a stochastic volatility models
such as ARCH may be constructed.

Example 2. In this example we consider a vector val-
ued autoregressive model with nonlinear measurement
equation:

Xk+1 = A0 +A1Xk + ΣwWk+1 ,

Yk =

(
|X(1)

k |
|X(2)

k |

)
+ ΣvVk ,

where A0 = (0, 0)T , A1 = ((0.5, 0)T , (0,−0.5)T ), and
(Σw,Σv) = (1, 0.25). In this case we estimate the den-
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sity of H using M = 12 mixture components. As in
the previous example we let the online-EM loop run
for n = 20, 000 iterations and use K = 10 latent chain
trajectories. Alse here the Robbins-Monroe step size
is set to γ` = 1/`0.6 and the gradient descent step size
to δ = 0.01. Both the parameters and the chain are
started at random values and we use a 20 step burn-
in phase before the estimation algorithm is triggered.
In this case, no closed-form expressions of the opti-
mal kernel and importance weight function are avail-
able. Thus, in Figures 3–6 the mixture-approximated
proposal kernel and weighting function are shown to-
gether with estimates, obtained by means of truncated
Gaussian kernel density estimation using 10, 000 sim-
ulations and bandwidth 0.05, of the optimal ones. In
each of these pictures, X0 is set to each of the column
vectors of(

−0.7923 −1.0077 1.9120 0.6653
1.8676 −1.2014 −0.9948 1.9506

)
(5.2)

and Y1 to each of the column vectors of(
0.3717 0.9695 1.5260 2.3871
2.9020 0.9471 0.1831 2.7523

)
, (5.3)

where the latter corresponds to the center points of
each quartile (with respect to the first component of
Y ) in a simulated sample of 1000 points, and the for-
mer are X-values of the same trajectory (and located
at the preceding time-step) as each of these Y ’s. For
each of the fixed (X0, Y1)-pairs, the kernel estimation-
based as well as the mixture-based approximations of
the optimal kernel density x1 7→ p(x1|X0, Y1) and the
optimal importance weight function x0 7→ p(Y1|x0) are
plotted in 2D. As in the previous example, the figures
display a nice agreement between the two different ap-
proximations, indicating that the mixture-parameters
are learned well also in this bivariate case.

Finally, filtering of the hidden process is performed us-
ing the APF based on the mixture-optimised proposal
kernels and weighting functions. The performence is
again compared to that of the vanilla bootstrap filter.
In this case a data record comprising 100 observations
was swept using 500 particles. In Figure 2 (c-d) the cu-
mulative sums of the resulting sorted normalised par-
ticle weights are displayed, each line representing one
of the 200 time-steps. The outcome shows again that
adjusting a mixture of experts leads to a significantly
improved particle filter with a clear advantage over the
plain bootstrap filter.
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Figure 2: Cumulative sums of sorted normalised parti-
cle weights for APFs using mixture-based approxima-
tions of the optimal adjustment multipliers and pro-
posal kernel ((b) and (d), corresponding to Example 1
and 2, respectively) and plain bootstrap filters ((a) and
(c), corresponding to Example 1 and 2, respectively)
for the two models. Each line corresponds to each of
the 200 time steps and the particle population size was
set to 500 for both models.

Figure 3: Estimation of the optimal proposal density
function x1 7→ p(x1|X0, Y1) obtained by means of trun-
cated Gaussian kernel density estimation using 10, 000
simulations and bandwidth 0.05 for each of the pairs
(X0, Y1) in (5.2) and (5.3).

Figure 4: Estimation of the optimal proposal density
function x1 7→ p(x1|X0, Y1) obtained by adaptation of
a mixture of experts with 12 components using a train-
ing sequence of length 20, 000. The approximation is
plotted for each of the pairs (X0, Y1) in (5.2) and (5.3).

Figure 5: As in Figure 3, but for the approximated
optimal adjustment weight function x0 7→ p(Y1|x0) in-
stead.

Figure 6: As in Figure 4, but for the approximated
optimal adjustment weight function x0 7→ p(Y1|x0) in-
stead.


