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Abstract

We propose a generalization of the Multiple-
try Metropolis (MTM) algorithm of Liu et al.
(2000), which is based on drawing several
proposals at each step and randomly choos-
ing one of them on the basis of weights
that may be arbitrary chosen. In particu-
lar, for Bayesian estimation we also intro-
duce a method based on weights depending
on a quadratic approximation of the posterior
distribution. The resulting algorithm cannot
be reformulated as an MTM algorithm and
leads to a comparable gain of efficiency with
a lower computational effort. We also out-
line the extension of the proposed strategy,
and then of the MTM strategy, to Bayesian
model selection, casting it in a Reversible
Jump framework. The approach is illustrated
by real examples.

1 INTRODUCTION

A well known method for Bayesian estimation is
the Metropolis Hastings (MH) algorithm proposed by
Metropolis et al. (1953) and modified by Hastings
(1970) . The algorithm allows us to generate a Markov
chain whose stationary distribution is equal to the tar-
get distribution π(x) which, in the Bayesian context,
corresponds to the posterior distribution of the model
parameters. The same strategy may be adopted for
Bayesian model choice and leads to the Reversible
Jump (RJ) algorithm, see Green (1995). This algo-
rithm generates a reversible Markov chain which jumps
between parameter spaces of different models, which
may have different dimensions.
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The MH algorithm was extended by Liu et al. (2000)
to the case of Multiple-try Metropolis (MTM). The ex-
tended method consists of proposing, at each step, a
fixed number of moves and then selecting one of them
with a certain probability. A larger portion of the ex-
plored sample space and a better mixing result. It is
also worth noting that, in order to attain the detailed
balance condition, MTM uses selection probabilities
which are proportional to the product of the target,
the proposal, and a λ-function which has to be non-
negative and symmetric. Moreover, at least to our
knowledge, a Multiple-try extension of the RJ algo-
rithm has not been proposed, although this extension
may represent a natural way to overcome typical prob-
lems of this algorithm.

In this paper, we propose a generalization of the MTM
scheme in which the selection probabilities are defined
so that minimal constraints are necessary to attain
the detailed balance condition. These constraints are
much weaker than those required in the original MTM
algorithm. In principle, any mathematical function
giving valid probabilities may be adopted, even if this
choice is crucial for the efficiency in the estimation of
the target distribution. The connection between the
two algorithms is illustrated in detail. We also in-
troduce an useful choice of the selection probabilities
which is based on a quadratic approximation of the
target distribution. This choice leads to a considerable
gain of efficiency over the traditional MH algorithm,
while being much less computing demanding than the
MTM algorithm.

We also introduce a Generalized Multiple-try version
of the RJ algorithm, so as to increase the efficiency
even from a Bayesian model selection prospective. In
this case, the acceptance probability includes a com-
ponent that depends on the Jacobian of the transfor-
mation between different parameter spaces.

The paper is structured as follows. In the following
Section we briefly review the MH, RJ, and MTM algo-
rithms. In Section 3 we introduce our generalization of
the MTM strategy for Bayesian estimation. In Section
4 we outline the extension to Bayesian model selection.
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The proposed approach is illustrated in Section 5 by
some applications.

2 PRELIMINARIES

We first introduce basic concepts about the MH and
RJ algorithms and then we outline the MTM method-
ology.

2.1 METROPOLIS HASTINGS AND
REVERSIBLE JUMP ALGORITHM

The MH algorithm is a Markov Chain Monte Carlo
method that can be used to generate random samples
from a target distribution π(x) for which direct sam-
pling is cumbersome. The basic idea of the algorithm
is to construct an ergodic Markov chain in the state
space of x that has the target distribution as its sta-
tionary distribution.

This algorithm may be seen as a form of generalized
rejection sampling, where the next state of the chain
xt+1 is drawn from a proposal distribution T (xt, ·) and
the candidate point xt+1 = y is accepted with proba-
bility

α = min
{

1,
π(y)T (y, xt)
π(xt)T (xt,y)

}
.

In this way, the generated chain is reversible, with in-
variant/stationary distribution π(x), because it satis-
fies the detailed balance condition, i.e.

π(y)P (y, x) = π(x)P (x,y), (1)

where P (y, x) is the transition kernel from y to x.

A potential problem of the above algorithm is that
draws are often highly correlated. Therefore, the es-
timates based on the generated sample tend to have
high variance. Moreover, the algorithm may have slow
convergence, since it may be trapped in a local mode
of the target function. Another challenge is the choice
of an efficient proposal. In fact, it is often the case that
a small step-size in the proposal transition results in a
slow convergence of the corresponding Markov chain,
whereas a large step-size results in a very low accep-
tance rate (Liu, 2001).

2.2 REVERSIBLE JUMP ALGORITHM

In the Bayesian model choice context, the RJ al-
gorithm introduced by Green (1995) uses the MH
paradigm to build a suitable reversible chain which is
able to jump between models with different parameter
space dimensions.

Let {M1, . . . ,MM} denote the set of available mod-
els and, for model Mm, let Θm be the parameter

space, whose elements are denoted by θm. In simu-
lating from the target distribution, the RJ algorithm
moves both within and between models. Moreover, the
move from the current state of Markov chain (m,θm)
to a new state has to be performed so as to ensure
that the detailed balance condition holds. For this
aim, Green (1995) introduced a set of auxiliary vari-
ables, such that all states of the chain have the same
dimension. In particular, a jump between models Mi

and Mj is achieved supplementing each of the param-
eter spaces Θi and Θj with artificial spaces in order
to create a bijection between them and to impose a
dimension matching condition; see also Brooks et al.
(2003).

The probability of acceptance for the move fromMi to
Mj is computed involving the Jacobian of the trans-
formation from the current value of the parameters to
the new value. The acceptance probability also in-
cludes the probability of choosing the jump and the
density distribution of the auxiliary variables.

2.3 MULTIPLE-TRY METROPOLIS
ALGORITHM

The MTM method enables one to propose multiple
trial points from the proposal distribution in order to
make large step-size jumps, without lowering the ac-
ceptance rate. The selection probabilities of the pro-
posed points are calculated, and the selected point is
then accepted, according to a modified MH ratio.

Let T (x,y) be an arbitrary proposal function satis-
fying the condition T (x, y) > 0 ⇐⇒ T (y, x) > 0
and let λ(x,y) be an arbitrary non-negative symmetric
function. Suppose the current state of Markov chain is
xt. The MTM strategy performs the following steps:

Step 1: Draw k independent trial proposals
y1, . . . , yk from T (xt, ·).

Step 2: Select a point y from {y1, . . . , yk} with
probability proportional to

w(yj , xt) = π(yj)T (yj ,xt)λ(yj , xt), (2)

where j = 1, . . . , k.

Step 3: Draw x∗1, . . . , x
∗
k−1 from the

distribution T (y, ·) and set x∗k = xt.

Step 4: Accept y with probability

α = min
{

1,
w(y1,xt) + . . . + w(yk, xt)
w(x∗1,y) + . . . + w(x∗k,y)

}
. (3)

Liu et al. (2000) proved that such a Metropolis scheme
satisfies the detailed balance condition and therefore
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defines a reversible Markov chain with π(x) as its sta-
tionary distribution.

Several special cases of this algorithm are possible,
the most interesting of which is when λ(x, y) =
{T (x, y)T (y, x)}−1. In this case, w(x, y) corresponds
to the importance weight of x when the sampling dis-
tribution is T (y, x) and the target is π(x). We refer
to this version of the algorithm as MTM-inv. Another
interesting choice is λ(x, y) = 1, which leads to the
MTM-I algorithm.

The efficiency of the MTM method relies on the cali-
bration between the proposal step size, the number of
trials k, and the landscape of the target distribution
π(x).

3 GENERALIZED MTM METHOD

The key innovation of the Generalized MTM (GMTM)
algorithm is that it uses selection probabilities that are
not constrained as in (2). These probabilities are eas-
ily computed, so as to increase the number of trials
without loss of efficiency. We also show that replacing
the target distribution by a quadratic approximation
results in performance very similar to the MTM algo-
rithm, with less computational effort.

3.1 THE ALGORITHM

Let w∗(y,x) be an arbitrary function satisfying
w∗(y,x) > 0. Let xt be the current state of Markov
chain at iteration t. The GMTM algorithm performs
the following step:

Step 1: Draw k trials y1, . . . , yk from a
proposal distribution T (xt, ·).

Step 2: Select a point y from the set
{y1, . . . , yk} with probability given by

py =
w∗(y,xt)∑k

j=1 w∗(yj , xt)
.

Step 3: Draw realizations x∗1, . . . , x
∗
k−1 from

the distribution T (y, ·) and set x∗k = xt.

Step 4: Define

pxt =
w∗(xt,y)∑k

j=1 w∗(x∗j , y)
.

Step 5: The transition from xt to xt+1 = y is
accepted with probability

α = min
{

1,
π(y)T (y,xt)pxt

π(xt)T (xt,y)py

}
. (4)

For the proof that the detailed balance condition is
attained see the Appendix (Theorem 5.1).

In order to show that the MTM algorithm is a special
case of the GMTM algorithm, consider that (4) may
be rewritten as

α = min

{
1,

∑
j w∗(yj , xt)∑
j w∗(x∗j ,y)

π(y)T (y, xt)w∗(xt, y)
π(xt)T (xt, y)w∗(y, xt)

}
,

so that:

1. if w∗(yj , xt) = π(yj)T (yj , xt), then the accep-
tance ratio above reduces to that characterizing
the MTM-I scheme;

2. if w∗(yj , xt) =
π(yj)

T (xt, yj)
, then the MTM-inv al-

gorithm results.

Our main interest is to explore situations where the
selection probabilities are easy to compute so as to
increase the efficiency of the GMTM algorithm.

3.2 QUADRATIC APPROXIMATION OF
THE TARGET DISTRIBUTION

Even if in principle one could choose any mathematical
function giving valid probabilities py, we aim at using
selection probabilities so that the resulting algorithm
is more effective than the standard MTM.

We propose to use a quadratic approximation of the
target distribution given by

π∗(y) = π(xt)A(y, xt)

A(y, xt) = es(xt)
′(y−xt)+

1
2 (y−xt)

′D(xt)(y−xt),

where s(x) and D(x) are, respectively, the first and
second derivatives of log π(x) with respect to x. The
selection probabilities are then proportional to

w∗(y,xt) = π∗(y)T (y,xt)λ(y, xt).

In particular, using the MTM-inv version, the selection
probability simplifies to

py =
A(y, xt)
T (xt,y)

/ ∑

j

A(yj , xt)
T (xt,yj)

(5)

Then, after some simple algebra, we find an expression
that, contrary to the MTM algorithm, does not require
to compute the target distribution for each proposed
value, saving much computing time.
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4 GENERALIZATION OF THE RJ
ALGORITHM

We extend the GMTM strategy to the Bayesian model
selection problem in order to overcome some of the typ-
ical drawbacks of the RJ algorithm. The latter usually
requires accurate tuning of the jump proposals in or-
der to promote mixing among models. The extension
consists of proposing, at each step, a fixed number of
moves, so as to improve the performance of the algo-
rithm and to increase the efficiency from a Bayesian
model selection perspective.

4.1 THE GENERALIZED MULTIPLE-TRY
RJ ALGORITHM

Suppose the Markov chain currently visits model Mi

with parameters θi and let w∗(θaj
, θi) be an arbitrary

function satisfying w∗(θaj , θi) > 0. The proposed
strategy (GMTRJ) is based on the following:

Step 1: Choose a subset of models MA = {Ms :
s ∈ A} for some index set A = {a1, . . . , ak}
of size k from which to propose trials.

Step 2: Draw parameters θa1 , . . . , θak
of

models Ma1 , . . . ,Mak
, respectively, with

proposal density T (θi,θa1), . . . , T (θi,θak
).

Step 3: Choose θaj from {θa1 , . . . , θak
} with

probability given by

pθaj
=

w∗(θaj ,θi)∑k
h=1 w∗(θah

, θi)
.

Step 4: Choose a subset of models MB = {mt :
t ∈ B} for some index set B = {b1, . . . , bk}
where bk = i.

Step 5: Draw parameters θb1 , . . . , θbk−1

of Mb1 , . . . ,Mbk−1, with proposal
density T (θaj , θb1), . . . , T (θaj , θbk−1) and
set θbk

= θi.

Step 6: Define

pθi
=

w∗(θi, θaj )∑k
h=1 w∗(θbh

, θaj )
.

Step 7: Accept the move from θi to θaj with
probability

α = min

{
1,

π(θaj )T (θaj , θi)pθi

π(θi)T (θi, θaj )pθaj

|J(θi, θaj )|
}

.

It is possible to prove that the GMTRJ algorithm sat-
isfies detailed balance; see Theorem 5.2 in Appendix.

Similarly to the previous algorithm, even in this case
it is possible to consider some special cases of the
GMTRJ scheme:

1. if w∗(θah
, θi) = π(θah

)T (θah
, θi), then we have

the MTRJ-I scheme;

2. if w∗(θah
, θi) =

π(θah
)

T (θi,θah
)
, then we have the

MTRJ-inv scheme;

3. if w∗(θah
, θi) =

π∗(θah
)

T (θi,θah
)
, where π∗(θah

) is the

quadratic approximation of the target distribu-
tion, then the GMTRJ scheme results.

5 SOME APPLICATIONS

We tested our methods by three examples about
Bayesian estimation and model selection. The first
example is about a logistic regression model and is il-
lustrated in some detail. The other two are about a
linear and a latent class model and, for reason of space,
are only briefly explained.

5.1 LOGISTIC REGRESSION ANALYSIS

To illustrate the GMTM method we estimated a logis-
tic regression model for the number of survivals in a
sample of 79 subjects suffering from a certain illness.
The patient condition, A, and the received treatment,
B, are the explanatory factors. See Dellaportas et al.
(2002) for details.

We considered the model formulated as

Yij ∼ Bin(nij , pij), logit(pij) = µ+µA
i +µB

j +µAB
ij

where, for i, j = 1, 2, Yij , nij and pij are, respec-
tively, the number of survivals, the total number of pa-
tients and the probability of survival for the patients
with condition i who received treatment j. The pa-
rameter vector of the model is β = (β0, β1, β2, β3) =
(µ, µA

2 , µB
2 , µAB

22 ). As in Dellaportas et al. (2002), we
used the prior N(0, 8) for any of these parameters,
which by assumption are also a priori independent.

In this framework, we compared the following algo-
rithms in terms of efficiency in drawing samples from
the posterior distribution of β: MH, MTM-I, MTM-
inv, and GMTM (based on the quadratic approxima-
tion illustrated in Section 3.2). In all algorithms, the
proposal distribution used to update the parameters
is βt+1 ∼ N(βt, σ

2
p) and as initial value of the Markov

chain we used β = 0. We evaluated the results with
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three different values of σp (0.5,0.75,2), three differ-
ent numbers of trials k (10,50,100) and on the basis of
1,000,000 draws, with a burn-in of 50,000 iterations.

The above algorithms were compared in terms of ac-
ceptance rate and efficiency of the estimator of the
posterior expected value of β. For each algorithm, the
acceptance rate is reported in Table 1.

Table 1: Acceptance rates for the logistic example

σp = 0.5 σp = 0.75 σp = 2
MH 13.98 5.15 0.20

MTM-I 55.56 32.63 1.85
k = 10 MTM-inv 54.93 32.65 1.88

GMTM 49.63 29.15 1.83

MTM-I 71.94 62.69 8.20
k = 50 MTM-inv 77.72 63.80 8.23

GMTM 62.00 51.15 7.40

MTM-I 74.74 71.29 14.68
k = 100 MTM-inv 83.94 73.91 14.69

GMTM 64.55 57.03 12.70

We observe that, for all algorithms, the acceptance
rate is strongly affected by the parameter values of the
proposal distribution, but the MTM and GMTM algo-
rithms always outperform the MH algorithm. As for
the comparison between the MTM and GMTM strate-
gies, it is important to note that the latter leads to an
acceptance rate which is slightly lower than that of
the first, but this reduction is more than compensated
by the saved computing time due to the use of the
quadratic approximation illustrated in Section 3.2.

The efficiency of the algorithms is measured on the
basis of the ratio R = σ2

a/σ2, where σ2 is the Monte
Carlo variance of the mean estimator and σ2

a is the
asymptotic variance of the same estimator based on
the draws generated by the algorithm of interest. In
particular, σ2

a is computed on the basis of the autocor-
relation between these draws. For each parameter in
β, the results are given in Table 2 for σp = 0.5, 0.75, 2
and k = 50. Moreover, in Figure 1 we show some
autocorrelation plots for β1 when σp = 2 and k = 50.

It is clear that the GMTM algorithm can reach re-
sults similar to the MTM algorithm with less compu-
tational effort. Especially, when the value of σp is not
adequate, the MH sampler performs poorly and the
resulting draws are highly correlated. In these situa-
tions, the Multiple-try strategy is more effective and,
when the number of trials becomes large, the GMTM
algorithm allows us to obtain an important gain of ef-

ficiency after adjusting for the computing time.

In the same framework, we also considered the prob-
lem of Bayesian model selection, closely following the
example in Dellaportas et al. (2002). In particular,
we considered five possible models: M1 (intercept);
M2 (intercept + A); M3 (intercept + B); M4 (in-
tercept + A + B); M5 (intercept + A + B + A.B).
The last model, also termed as full model, is the same
considered above and based on the parameter vector
β having four elements. We assumed again a N(0, 8)
prior distribution for β, whereas the proposal distribu-
tion N(βt, σ

2
p) was also used to jump from one model

to another.

Table 2: Values (divided by 1000) of R for the logistic
example with k = 50

β0 β1 β2 β3

σp = 0.5

MH 0.0217 0.0227 0.0206 0.0219

MH* 0.6450 0.6771 0.6127 0.6514

MTM-I 0.0079 0.0069 0.0075 0.0080
MTM-inv 0.0038 0.0040 0.0039 0.0039
GMTM 0.0058 0.0062 0.0060 0.0058

MTM-I* 2.3664 2.0696 2.2438 2.3878
MTM-inv* 0.8848 0.9282 0.9067 0.9024
GMTM* 0.7738 0.8227 0.7933 0.7762

σp = 0.75

MH 0.0493 0.0460 0.0431 0.0393

MH* 1.4384 1.3432 1.2591 1.1483

MTM-I 0.0054 0.0048 0.0052 0.0055
MTM-inv 0.0041 0.0039 0.0041 0.0038
GMTM 0.0062 0.0067 0.0062 0.0061

MTM-I* 1.3037 1.1661 1.2558 1.3192
MTM-inv* 0.9841 0.9380 0.9699 0.9190
GMTM* 0.8568 0.9184 0.8593 0.8454

σp = 2

MH 0.8030 0.8293 0.7832 0.8144

MH* 23.5490 24.3220 22.9690 23.8860

MTM-I 0.0251 0.0254 0.0282 0.0243
MTM-inv 0.0268 0.0284 0.0273 0.0260
GMTM 0.0261 0.0280 0.0328 0.0263

MTM-I* 5.9598 6.0312 6.6819 5.7700
MTM-inv* 6.5457 6.9318 6.6629 6.3516
GMTM* 3.4431 3.6968 4.3265 3.4667

∗Computing time taken into account.
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Figure 1: Autocorrelation plot for β1 with σp = 2 and
k = 50 (computing time taken into account): (a) MH,
(b) MTM-inv, (c) GMTM.

In this case, we applied the following algorithms:
RJ, MTRJ-inv, and GMTRJ. We used a larger set
of values of σp (0.1,0.2,0.5,1,1.5,2,2.5), and, for the
last two algorithms, three different numbers of trials
(k = 10, 50, 100). All the Markov chains were initial-
ized from the full model, with β = 0, and their moves
were restricted to adjacent models (which increase or
decrease the model dimension by one). In the MTRJ-
inv and GMTRJ algorithms, the Multiple-try strategy
is only applied in drawing the parameter values. For
all algorithms, every iteration consists of one GMTM
step, in order to update the parameters of the current
model, and one RJ, MTRJ-inv, or GMTRJ step, in
order to jump from a model to another. Finally, each
Markov chain ran for 1,000,000 iterations, discarding
the first 50,000 as burn-in.

Limited to the case of k = 50 trials, the results of
the above comparison are reported in Figure 2, which
shows how the index R (computed by an adjusted for-
mula which takes into account the permanence in the
same model and corrected for the computing time) be-
haves as σp increases. In Figure 3 we also report the ef-
ficiency ratios, corrected again for the computing time.

We observe that, for most values of σp there is a consis-
tent gain of efficiency of the MTRJ-inv and GMTRJ
algorithms with respect to the RJ algorithm. This
gain of efficiency corresponds to an increase of the ac-
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Figure 2: Values of the index R as σp increases with
k = 50 (computing time taken into account): (a) RJ,
(b) MTRJ-inv, (c) GMTRJ

ceptance rate, which is higher in both the MTRJ-inv
and the GMTRJ algorithms with respect to the RJ
algorithm. Overall, the proposed algorithm GMTRJ
outperforms the other two algorithms, when the com-
puting time is properly taken into account.

5.1.1 Linear regression analysis

In this experiment, we considered a linear regression
problem based on a collection of possible predictor
variables, among which we have to choose the ones
to be included. In particular, we defined a normal-
gamma prior system for which we can calculate poste-
rior model probability exactly, and so we can compare
the performance of the MTRJ algorithm to the stan-
dard RJ algorithm (Bernardo and Smith, 1994). Here,
50 independent datasets were generated with four pre-
dictor variables, three of which were used to simulate
the response data. Therefore, there are 24 − 1 = 15
possible models containing at least one variable.

The MTRJ algorithm was applied to each dataset,
where trials to every model including the current
model were proposed. The parameter values from
the proposed models were drawn from their full-
conditional distributions. The RJ algorithm was also
applied to each dataset, where a move to a model
which increased or decreased the model dimension
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Figure 3: Efficiency ratio as σp increases with k = 50
(computing time taken into account): (a) RJ versus
MTRJ-inv, (b) RJ versus GMTRJ.

by one was proposed. Again, parameter values were
drawn from full-conditional distributions. For a fair
comparison, the computing time was chosen to be the
same for both algorithms.

In order to compare the performance of each algo-
rithm, we computed a weighted distance between the
exact posterior model probabilities and those esti-
mated from each algorithm. Overall, 40 out of 50 of
the datasets yielded a smaller weighted distance be-
tween the exact and estimated MTRJ model probabil-
ities, than between the exact and estimated RJ prob-
abilities. This result indicates that mixing of the first
is improved with respect to the second.

5.1.2 Latent class analysis

We considered the same latent class model and the
same data considered by Goodman (1974), which con-
cern the responses to four dichotomous items of a sam-
ple of 216 respondents. These items were about the
personal feeling toward four situations of role conflict;
then there are four response variables collected in the
vector Y = (Y1, Y2, Y3, Y4).

Parameters of the model are the class weights πc and
the conditional probabilities of success λj|c, where
c = 1, . . . , C, with C denoting the number of classes.
On the basis of these parameters, the probability of a
response configuration y, with elements yj , is given by

P (y) =
C∑

c=1

πc

4∏

j=1

λ
yj

j|c(1− λj|c)1−yj .

A priori, we assumed a Dirichlet distribution for the
parameter vector (π1, . . . , πC) and independent Beta
distributions for the parameters λj|c. Finally, for C we

assumed a uniform distribution between 1 and Cmax.

The objective of the analysis was the inference about
the number of classes (C), and the parameters λj|c and
πc. At this aim we exploited the approach of Richard-
son and Green (1997), which consists of a RJ strat-
egy where the moves are restricted to models with
one more or one less component. In this approach,
we associated to each subject in the sample an allo-
cation variable zi equal to c when subject i belongs
to latent class c. The a priori distribution of each zi

depends on the class weights πc; see also Cappe et al.
(2003). We considered two different pair of dimension-
changing moves: split-combine and birth-death. The
first one consists of a random choice between splitting
an existing component into two or combining two com-
ponents into one, whereas the second one consists of
adding a new empty component or deleting an existing
one. At every iteration, split-combine and birth-death
moves are preceded by a Gibbs move aimed at updat-
ing the parameters of the current model sampling from
the full conditional distribution.

In this application, we compared the standard RJ al-
gorithm with the MTRJ-inv algorithm. Within the
split-combine move, the Multiple-try strategy consists
of choosing, at each step, among a fixed number k of
different components to split or to combine. More-
over, the birth-death move is carried out by selecting
among k new components to add or among k empty
components to delete.

We ran each Markov chain for 1,000,000 sweeps fol-
lowing a burn-in of 200,000 iterations; moreover, we
set Cmax = 10. From the output of the algorithm, it
results that MTRJ-inv algorithm has a higher accep-
tance rate with respect to the RJ algorithm (around
1.9% for split-combine and 4.8% for birth-death in RJ
- around 5% for split-combine and 9.7% for birth-death
in MTRJ-inv algorithm with k = 5), lowering the auto-
correlation of the chain. This has obvious implications
on the efficiency in estimating the posterior probability
of each model.

Appendix

Theorem 5.1 The GMTM algorithm satisfies de-
tailed balance.

It is sufficient to prove that

π(xt)P (xt,y) = π(y)P (y, xt),

where P (xt, y) is the transition probability of the
Markov chain from state xt to y. Suppose that xt 6= y,
noting that the {y1, . . . , yk} are exchangeable; it holds
that

π (xt)P (xt, y)
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= kπ (xt)T (xt,y)py

∫
. . .

∫
T (xt, y1) . . . T (xt, yk−1)

min
{
1,

π(y)T (y,xt)pxt

π(xt)T (xt, y)py

}
T (y, x∗1) . . . T (y, x∗k−1)

dy1 . . . dyk−1 dx∗1 . . . dx∗k−1

= k

∫
. . .

∫
T (xt, y1) . . . T (xt, yk−1)

min
{
π(xt)T (xt,y) py , π(y)T (y, xt) pxt

}

T (y, x∗1) . . . T (y, x∗k−1)dy1 . . . dyk−1dx∗1 . . . dx∗k−1

= kπ (y) T (y, xt)pxt

∫
. . .

∫
T (xt, y1) . . . T (xt,yk−1)

min
{
1,

π(xt)T (xt, y)py

π(y)T (y,xt)pxt

}
T (y, x∗1) . . . T (y, x∗k−1)

dy1 . . . dyk−1 dx∗1 . . . dx∗k−1

= π (y) P (y, xt) ,

as required.

It is possible to prove that the GMTRJ algorithm sat-
isfies detailed balance in an entirely similar manner to
the previous theorem.

Theorem 5.2 The GMTRJ algorithm satisfies de-
tailed balance.

The GMTRJ algorithm involves transitions to states
of variable dimension, and consequently the detailed
balance condition is now written as

π(θi)P (θi, θaj ) = π(θaj )P (θaj , θi)|J(θi, θaj )|.

Suppose that θi 6= θaj , noting that θa1 , . . . , θak
are

exchangeable, it holds that

π (θi) P (θi,θak
)

= k π (θi)T (θi,θak
)pθak∫

. . .

∫
T (θi, θa1) . . . T (θi, θak−1)

min

{
1,

π(θak
)T (θak

,θi) pθi

π(θi)T (θi,θak
) pθak

|J(θi, θak
)|

}

T (θak
,θb1) . . . T (θak

, θbk−1)
dθa1 . . . dθak−1 dθb1 . . . dθbk−1

= k

∫
. . .

∫
T (θi, θa1) . . . T (θi, θak−1)

min
{
π(θi)T (θi, θak

)pθak
, π(θak

)×
×T (θak

, θi)pθi
|J(θi, θak

)|}

T (θak
,θb1) . . . T (θak

, θbk−1)
dθa1 . . . dθak−1 dθb1 . . . dθbk−1

= k π (θak
) T (θak

,θi)pθi
|J(θi, θak

)|∫
. . .

∫
T (θi, θa1) . . . T (θi, θak−1)

min

{
1,

π(θi)T (θi,θak
) pθak

π(θak
)T (θak

,θi) pθi

1
|J(θi,θak

)|

}

T (θak
,θb1) . . . T (θak

, θbk−1)
dθa1 . . . dθak−1 dθb1 . . . dθbk−1

= π (θak
) P (θak

, θi) |J(θi, θak
)|,

as required. Note that |J(θak
, θi)| = 1/|J(θi, θak

)|.
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