
         605

REGO: Rank-based Estimation of Rényi Information using
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Abstract

We propose a new method for a non-
parametric estimation of Rényi and Shan-
non information for a multivariate distribu-
tion using a corresponding copula, a multi-
variate distribution over normalized ranks of
the data. As the information of the distri-
bution is the same as the negative entropy
of its copula, our method estimates this in-
formation by solving a Euclidean graph opti-
mization problem on the empirical estimate
of the distribution’s copula. Owing to the
properties of the copula, we show that the
resulting estimator of Rényi information is
strongly consistent and robust. Further, we
demonstrate its applicability in image regis-
tration in addition to simulated experiments.

1 Introduction

Numerous problems in machine learning require mea-
suring the strength of relation between random vari-
ables. From many different measures of dependence
between variables, Shannon mutual information is of-
ten the natural choice because of its connection to in-
formation theory. There is an abundance of applica-
tions which involve the estimation of mutual informa-
tion ranging from information theory via feature selec-
tion, clustering, image registration, independent com-
ponent analysis (ICA) and independent subspace anal-
ysis (ISA), causality detection, Bayesian active learn-
ing, optimal experiment design, to graphical model
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structure learning. However, mutual information of
the continuous random variables is difficult to esti-
mate when the functional form of their dependence
is not known.

We propose a novel non-parametric approach to esti-
mation of Rényi differential information and as one of
its limiting cases, Shannon differential mutual infor-
mation. Our approach is based on an alternative for-
mulation of the information involving the copula of the
joint distribution, a multivariate distribution obtained
by replacing each random variable by the value of its
distribution function. This transformation standard-
izes the marginals to be uniform on [0, 1] while preserv-
ing many of the distribution’s dependence properties
including its concordance measures and its informa-
tion.

Our approach consists of two steps: mapping the ob-
servations into their copula domain, and computing
the entropy of the transformed samples. For the copula
transformation (in lack of the true marginals) we em-
ploy the marginals’ empirical distribution functions.
This non-parametric transformation serves three pur-
poses. One, it simplifies the estimation problem by
removing the terms corresponding to the marginal en-
tropies (and potential errors associated with their esti-
mation). Two, as it is based entirely on the data ranks,
it is robust to outliers. Three, the resulting support
is bounded making it possible to use with estimators
not designed for unbounded support. The next step
of the algorithm, inspired by the pioneering work of
Hero and Michel (1998), estimates the information by
solving a Euclidean graph optimization (EGO) prob-
lem (e.g., minimum spanning tree, k-nearest neigh-
bor graphs) on the complete graph whose nodes cor-
respond to the transformed sample. We prove that
our estimator, which we call REGO after “rank-based
EGO”, is strongly consistent and has nice robustness
properties. A crucial feature of REGO is that it avoids
estimation of densities, nuisance parameters from the
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point of view of information estimation. To the best of
our knowledge, REGO is the only information estima-
tor with these properties. In addition, the estimator
runs in time O(dn log n), i.e., it can be used for large
samples. Its implementation is straightforward and
the source-code will be made publicly available. In our
experiments, in low-dimensional problems the estima-
tor proved to be competitive with alternatives, while in
higher-dimensional problems (in the lack of competi-
tors) it showed a remarkably quick convergence. We
have also tested its performance on an image registra-
tion task with and without outliers. This experiment
showed that the idea of working based on ranks is in-
deed essential to expect good performance in realistic
situations.

The paper is organized as follows. In Section 2 we for-
mally define our problem and give a short overview of
alternative approaches. Our estimator REGO is de-
scribed in Section 3. In Section 4 we prove REGO’s
strong consistency, and investigate its robustness prop-
erties. We validate our approach on simulated data
and on image registration, a fundamental problem re-
quiring the estimation of mutual information, in Sec-
tions 5 and 6, respectively. We conclude in Section 7.

2 Problem Setup

Let X,X1, . . . ,Xn ∈ Rd be a sequence of indepen-
dent, identically distributed (i.i.d.) random variables.
We assume that X = (X1, . . . , Xd)

T has a density fX
underlying the Lebesgue-measure. We further assume
that the marginals of Xj (1 ≤ j ≤ d) assume den-
sities fXj with respect to the Lebesgue-measure on
the real-line. We consider the problem of estimating
Rényi (1961) information Iα(X) underlying X, given
the sample X1:n = (X1, . . . ,Xn). (Rényi information
plays an important role amongst measures of infor-
mation, see, e.g., Hero et al., 2002). Here α > 0 is
a parameter to be selected by the user. For α > 0,
α ̸= 1, it is defined as

Iα (X) =
1

α− 1
log

∫
X
fα
X (x)

 d∏
j=1

fXj (xj)

1−α

dx,

(1)
while, I1(X) is defined through the limit I1(X) =
limα→1

α̸=1
Iα(X). As it is well known, I1(X) is equal

to the Shannon mutual information:

I1 (X) =

∫
X
fX (x) log

fX (x)∏d
j=1 fXj (xj)

dx. (2)

To date, there are two approaches to estimate informa-
tion that we know of: Plug-in estimators attempt to es-
timate the densities fX, fX1 , . . . , fXd

and then use the

definition of information directly (the integral is com-
puted approximately using some numerical method).
From the point of view of information estimation, the
densities however play the role of a nuisance parame-
ter. Density estimators (based on histograms or kernel
density estimators) will have tuneable parameters and
may need to use cross-validation for model selection
to achieve good performance. Therefore, they will be
expensive, and their performance might be sensitive
to the choice of the density estimation method. The
alternative approach uses direct (not plug-in based)
estimators of the entropy, and then computes the esti-
mate of information based on the well-known identity
I1(X) = −H1(X) +

∑d
i=1 H1(Xi). The drawback is

that this approach works only when α = 1 (here H1 is
the entropy of its argument, see (3)). Direct estimators
of the entropy build a graph embedded in Rd whose
edges span the observations X1, . . . ,Xn and compute
some statistics based on the lengths of the edges.
These estimators include that of Kozachenko and Leo-
nenko (1987); Leonenko et al. (2008); Kraskov et al.
(2004); Kybic (2006); Hero and Michel (1998). The
first four estimators all use nearest-neighbor graphs,
while Hero and Michel (1998), building on previous
results from the literature of probabilistic geomet-
ric optimization, propose to use the solution of cer-
tain Euclidean Geometric Optimization (EGO) prob-
lems. Strong consistency (i.e., the estimates converge
to the true value with probability one) is known to
hold for the estimator of Hero and Michel (1998),
while Kozachenko and Leonenko (1987); Leonenko
et al. (2008) prove mean-square and weak consistency,
respectively. More information and a review on other
methods for entropy estimation can be found in Beir-
lant et al. (1997).

REGO differs from these algorithms by using rank
statistics only.1 Further, we do not have to assume
α = 1, and we do not have to estimate the entropy
of the marginals for the estimation of Iα(X). Accord-
ing to our knowledge, this is the first non-parametric
method that estimates Rényi’s mutual information in
a direct manner.

3 The Algorithm

Let X1:n = (X1, . . . ,Xn) be an i.i.d. sample, which
serves as the input to the algorithm. The algorithm
consists of two steps: In the first step, the input is
mapped into the unit hypercube so that the marginals
become approximately uniform. In the second step
the transformed sample is sent to an algorithm that

1It is interesting to notice that Kraskov et al. (2004) ac-
tually discussed transforming the marginals to make them
uniform, but they have dropped this idea in favor of mak-
ing the marginals normal with zero mean, unit variance.
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estimates the α-entropy of it. For this second step we
suggest to use an estimator based on Euclidean Graph
Optimization. In what follows, we explain both steps
in more details and give the rationale behind them.

3.1 Step 1: Empirical Distributional
Transformation

The first step is to compute Ẑ1:n = (Ẑ1, . . . , Ẑn),

where Ẑt = (Ẑt1, . . . , Ẑtd)
T , Ẑtj = Fnj(Xtj), where

Fnj is the empirical distribution function underlying

X
(j)
1:n = (X1j , . . . , Xnj): Fnj(x) = 1

n

∑n
t=1 I{Xtj≤x}.

Note that nẐtj is just the rank of Xtj in X
(j)
1:n, thus

(Ẑtj ; 1 ≤ t ≤ n) can be computed in O(nd log n)-time

by sorting the elements of the vector X
(j)
1:n.

Rationale Note that for large n we expect Fnj to be

close to Fj , the distribution ofXj . Thus, we expect Ẑtj

(Ẑj = Fnj(Xj)) to be close to Ztj = Fj(Xtj) (resp.,
Zj = Fj(Xj)). Now, if Fj is continuous, Ztj (Zj)
will be uniformly distributed. Further, Fj being a
measurable invertible mapping, Iα(Z) = Iα(X), by the
isomorphism theorem (Vajda, 1989). Now, since the
marginals of Z are uniform, Iα(Z) = −Hα(Z), where

Hα(Z) =
1

1− α
log

∫
X
fα
Z (z) dz,

when α ̸= 1 and

H1(Z) = −
∫
X
fZ(z) log fZ(z) dz, (3)

when α = 1. Here fZ stands for the density underlying
Z.

The joint distribution of Z, when restricted to [0, 1]d

is called the copula of X, because it shows only the
couplings between the components of X and does not
depend on the marginals of X. Hα(Z) above depends
only on the copula of X and is called the copula’s en-
tropy. The approach of working with the rank-order
statistics to estimate dependence goes back at least
to Spearman (1904), but surprisingly, for some reason
unknown to us , although the relationship of a random
variable’s mutual information and its copula’s entropy
must be well known, to the best of our knowledge the
approach of estimating the mutual information based
on the rank-order statistics have never been suggested
or explored before. Yet we think, this step is highly
advantageous and should always be used when esti-
mating information.

3.2 Step 2: Entropy Estimation based on
Euclidean Graph Optimization

The next step of the algorithm estimates the α-entropy
of Z based on the sample Ẑ1:n. For this, we propose

to use Euclidean Graph Optimization (EGO) which we
briefly review now.

EGO entropy estimators expect an i.i.d. sample and
produce an estimate of the α-entropy (0 < α,α ̸= 1) of
the underlying common distribution. Although in our
case the sample is not i.i.d., we will show that these
estimator can still be used. In our description of EGO
estimators we follow Steele (1996) with slight changes
so that the correspondence to entropy estimation be-
comes more transparent.

Let G be a system of graphs on n nodes numbered
from 1 to n (specific examples will be given later), for
a graph G ∈ G let E(G) ⊂ {1, . . . , n}2 be its edge-set.
Let Gn be the complete graph on n nodes. Thus, each
graph G ∈ G is a subgraph of Gn. Define

Ln(Ẑ1:n) = min
G∈G

∑
(i,j)∈E(G)

∥Ẑi − Ẑj∥p, (4)

the minimal total p-power weighted edge length above
the graphs in G, where p(= pα) = d(1−α). Define the
estimate of the entropy as

Hn(Ẑ1:n) =
1

1− α
log

Ln(Ẑ1:n)

γd,α nα
. (5)

To emphasize the dependence of Hn on G, we will
sometimes write Hn = Hn(Ẑ1:n;G). Above γd,α > 0
is a universal constant (i.e., its value does not depend
on the distribution of the data).2 Possible systems of
graph sets G include GST, all spanning trees of Gn;
GH, the set of all Hamiltonian cycles of Gn, GR(k)

(k > 0), the set of all subgraphs of Gn where the out-
degree of each node is k; and more. The functional
Ln(Ẑ1:n) is known as Euclidean functional. Different
choices of G lead to different optimization problems.
When G = GST, computing Ln amounts to finding
the (p-weighted) minimal spanning tree (MST). When
G = GH, we need to solve a traveling salesman prob-
lem (TSP), while when G = GR(k), Ln can be com-
puted by finding the k-nearest neighbors (k-NN) for
each node and summing up the p-power edge-lengths.
Note that the complexity of computing Ln for the
MST (k-NN problem) is O(n2) with Prim’s algorithm
(Prim, 1957) (resp., O(kn log n) using Dickerson and
Eppstein, 1996).

Rationale The following theorem shows that the
above construction is indeed a good procedure to esti-
mate entropies:

Theorem 1 (Steele (1988), Yukich (1998)). Let d ≥
2, 0 < α < 1. Let Z,Z1, . . . ,Zn be i.i.d. random
variables, supported on [0, 1]d with density f = fZ.

2Specific values of γ, if needed, can be estimated using
Monte-Carlo.
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Assume that G ∈ {GST,GH,GR(k)} and consider the
estimator Hn = Hn(Z1:n;G). Then Hn → Hα(Z)
almost surely as n → ∞.

The theorem was proven by Steele for the case of G =
GST. The GH, the GR(k) with α = 1− 1/d, and many
other cases were investigated by Yukich. Motivated
by his work Pál et al. (2010) proved the theorem for
a more general class of k-NN graphs including GR(k),
and applicable for any α ∈ (0, 1).

Previous work The first published work that we
know of where EGO was suggested to be used for
entropy estimation is due to Hero and Michel (1998,
1999a). More precisely, they consider the problem of
estimating entropy in the presence of a contamination
with a known distribution, but an unknown fraction
0 ≤ ϵ < 1. For this they proposed to use an estimator
that is based on solving the so-called k-MST, which,
for 1 ≤ k ≤ n is defined as the problem of finding
the MST based on k out of the n points that must be
picked by the algorithm optimally. The ideal value of
k is k = (1− ε)n, but since ε is unknown, the value of
k must be picked based on the sample. Although no
algorithm was proposed for doing this, the experimen-
tal result in these works are quite convincing and in
fact this is what motivated us to choose EGO as the
method of entropy estimation. For k(= kn) = (1−ε)n,
Hero and Michel (1999a) proved convergence to the
minimum conditional Rényi entropy over the sets A in
the domain which have a mass of at least 1−ε, i.e., for
which P (X ∈ A) ≥ 1− ε (for ε = 0 this result reduces
to Theorem 1). Note that although this algorithm has
a robust aspect to it, it is not trying to address the
classical problem of robust statistics where the con-
tamination is assumed to come from an arbitrary dis-
tribution and the proportion of contamination is as-
sumed to be negligible compared to the sample size.
(As argued by Huber (2009), in case of proportional
contamination, one should not use a robust procedure,
but a procedure that removes the contaminating ob-
servations, which is a different problem than making
an estimator robust.) In fact, when k = kn, kn/n 9 1,
the algorithm is not a consistent estimator of the Rényi
entropy. Hero and Michel (1999a) put a great amount
of work into making their algorithm computationally
efficient for a fixed k (the unmodified k-MST prob-
lem is hard), but since the algorithm needs to search
for the right value of k it can be expected to be n
times more expensive than a straightforward EGO al-
gorithm. Hero and Michel (1999b) gives an applica-
tion of k-MST to two-sample divergence estimation.
Recently, Jiménez and Yukich (2005) suggested and
analyzed EGO procedures for ϕ-divergence estimation
between an unknown distribution that generates the
sample and a known distribution.

4 Theory

In the first part of this section we prove results on
the asymptotics of our estimator, while in the second
part we prove results that show that our estimator is
robust.

4.1 Strong consistency

The goal of this section is to show the strong consis-
tency of our algorithm. The analysis starts from the
observation that (under appropriate conditions) it fol-
lows immediately from Theorem 1 thatHn(Z1:n,G) →
Hα(Z) (α > 0, α ̸= 1) where Z1:n = (Z1, . . . ,Zn)
with Ztj = FXj (Xtj). The difficulty in showing that

Hn(Ẑ1:n,G) also converges to Hα is twofold: First,

since Fnj ̸= FXj , Ẑt ̸= Zt. Second, the sample

Ẑ1, . . . , Ẑn is not an i.i.d. sample (since Fnj is esti-
mated based on X1:n). Hence, Theorem 1 is not di-

rectly applicable to Hn(Ẑ1:n,G). Nevertheless, we can
still prove the following theorem:

Theorem 2. Let d ≥ 3, 1/2 < α < 1. Let
X,X1, . . . ,Xn be i.i.d. random variables, supported
on [0, 1]d with density f = fX. Assume that G ∈
{GST,GH,GR(k)} and consider the corresponding es-

timator Hn = Hn(Ẑ1:n;G) obtained by running the al-
gorithm of Section 3.1 on X1:n = (X1, . . . ,Xn). Then
−Hn → Iα(X) almost surely as n → ∞.

We prove the theorem in three steps. First we show

that Zi and Ẑ
(n)
i are close to each other for large n,

where, for the sake of precision the upper index n was

introduced to denote that Ẑ
(n)
i is obtained based on

the empirical distribution of the marginals using X1:n.

Lemma 1. Almost surely

lim sup
n
(d log(2dn2)/(2n))−1/2 max

1≤t≤n
∥Zt − Ẑ

(n)
t ∥ ≤ 1

Proof. Fix n. Let Fj = FXj . By a union bound ar-
gument and the Dvoretzky–Kiefer–Wolfowitz inequal-
ity (Dvoretzky et al., 1956; Massart, 1990), for any

0 < δ < 1, max1≤j≤d ∥Fj − Fnj∥∞ ≤
√

log(2d/δ)
2n holds

with probability at least 1−δ. Since for any 1 ≤ t ≤ n,

∥Zt − Ẑ
(n)
t ∥2 ≤ dmax1≤j≤d ∥Fj − Fnj∥2∞, the proba-

bility of the event

En =

{
ω : max

1≤t≤n
∥Zt − Ẑ

(n)
t ∥ >

√
d log(2dn2)

2n

}

is at most 1/n2. Hence,
∑∞

n=1 P (En) < ∞. Thus,
by the first Borel-Cantelli lemma, the probability that
the event En happens for infinitely many n is zero, and
therefore the conclusion of the lemma must hold.
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Our second results concerns the stability of the EGO
functional Ln:

Lemma 2. Fix d ≥ 3, 1/2 < α < 1. Let Ln be any of
the EGO functionals where G = Gn is any graph set on
n nodes such that the graphs in Gn have at most O(n)
edges. Then there exists a function g : N × R → R+

such that for any n ≥ 1, z1:n, ẑ1:n,

|Ln(z1:n)− Ln(ẑ1:n)| ≤ g(n, max
1≤i≤n

∥zi − ẑi∥)

and that gn
def
= g(n,

√
d log(2dn2)/(2n)) = o(nα).

Proof. Fix G, α, n, z1:n, ẑ1:n. Let p = d(1 − α) (and
hence α = 1 − p/d). For e = (i, j), 1 ≤ i, j ≤ n,
let c(e) = ∥zi − zj∥p and let ĉ(e) = ∥ẑi − ẑj∥p. Let

Ln = Ln(z1:n) =
∑

e∈E c(e) and L̂n = Ln(ẑ1:n) =∑
e∈Ê c(e), where E = E(G) for some G ∈ G and

Ê = E(Ĝ) for some Ĝ ∈ G. By the optimality of
the edge-set Ê, L̂n =

∑
e∈Ê ĉ(e) ≤

∑
e∈E ĉ(e) ≤ Ln +∑

e∈E |ĉ(e) − c(e)|. Similarly, by the optimality of E,

Ln ≤ L̂n +
∑

e∈Ê |ĉ(e)− c(e)|. Hence,

|Ln − L̂n| ≤ max(
∑
e∈E

|ĉ(e)− c(e)|,
∑
e∈Ê

|ĉ(e)− c(e)|).

Case 1: 0 < p ≤ 1. Consider an egde e = (i, j): Using
the triangle inequality and (|a|+ |b|)p ≤ |a|p + |b|p, we
get c(e) = ∥zi− zj∥p ≤ ∥zi− ẑi∥p+ ∥zj − ẑj∥p+ ∥ẑi−
ẑj∥p ≤ ∥zi − ẑi∥p + ∥zj − ẑj∥p + ĉ(e). By symmetry,
we get

|c(e)− ĉ(e)| ≤ ∥zi − ẑi∥p + ∥zj − ẑj∥p.

Since by assumption |E|, |Ê| ≤ Cn with some C >
0, |Ln − L̂n| ≤ 2Cn(max1≤t≤n ∥zi − ẑi∥)p. Thus,
we may choose g(n,M) = 2CnMp. Hence, gn =

O(n1−p/2 logp/2(n2)) = o(n1−p/d), provided that d >
2.

Case 2: 1 < p < d/2. Consider again an edge e =
(i, j). Let x = zi − zj , x̂ = ẑi − ẑj , g : Rd → R,
g(·) = ∥ · ∥p. Let L be the Lipschitz constant of g over
[−1, 1]d. Then |c(e) − ĉ(e)| = |g(x) − g(x̂)| ≤ L∥x −
x̂∥ ≤ L(∥zi − ẑi∥ + ∥zj − ẑj∥) ≤ 2Lmax1≤t≤n ∥zt −
ẑt∥. Thus, we may choose g(n,M) = 2CLnM , making

gn = O(n1/2 log1/2(n)) = o(n1−p/d) where the last
relation holds thanks to p < d/2.

Proof of Theorem 2. Fix G, α. By Theorem 1,
Hn(Z1:n) → Hα(Z) a.s. On the other hand, by
the argument in Section 3.1, −Hα(Z) = Iα(X). By

the definition of Hn(Ẑ1:n), it suffices to show that

|Ln(Z1:n) − Ln(Ẑ1:n)|/nα → 0 almost surely. How-
ever, this follows from Lemmas 1 and 2.

Discussion Unfortunately, our proof technique does
not work when d = 2 or when α < 1/2. The lat-
ter case is maybe less interesting (the most interesting
case is when α → 1). Let us thus discuss the case
when d = 2: Our (wild) conjecture is that the algo-
rithm is still strongly consistent. However, to prove
this conjecture will probably require a completely dif-
ferent approach. One way to “patch” the algorithm is
to add an extra dimension to the inputs by generating
the new coordinates (say) uniformly at random, inde-
pendently of each other and the sample. Although this
way it becomes possible to apply our result, the vari-
ance of the resulting estimate will in general increase.
An alternative is to split the sample and use the first
half of it for constructing the empirical distributional
transformation with which the second half is trans-
formed and would then be the subject of the further
computations. Again, this may result in a decreased
accuracy.

Although we have not given an algorithm to estimate
the Shannon information, such an estimator could be
constructed by making α = αn → 1 as n → ∞. How-
ever, details and analysis of such an estimator are left
for future work.

4.2 Robustness

The purpose of this section is to study the robustness
properties of our estimator. We start by analyzing the
finite-sample breakdown point. This is followed by the
study of the influence curve.

4.2.1 The finite-sample breakdown point

Given some sample-size n, the finite-sample break-
down point ϵ∗n of an estimator indicates the proportion
of outliers that the estimator can tolerate in that if the
proportion of outliers is larger than this critical value
the estimator “breaks down”, i.e., it can give arbi-
trarily large estimates (Huber, 1981). The breakdown
point of any estimator that uses the rank-order statis-
tics of the sample and which gives uniformly bounded
estimates no matter what the rank-order statistics is
has a breakdown point of 1 (i.e., is maximally robust).
It is known (Yukich, 1998, e.g.) that for the func-
tionals we consider supẑ1:n∈[0,1]d Ln(ẑ1:n) ≤ Cnα with
some C > 0. Hence, supẑ1:n∈[0,1]d Hn(ẑ1:n) < +∞, i.e.,
our estimator gives uniformly bounded estimates irre-
spectively of its input. Hence, its break-down point
is 1. Note that here the key is that the sample is
transformed to [0, 1]d. Had we left out the first step
of the algorithm (e.g., when considering entropy es-
timation), the breakdown point would become 1/n
since by moving a single point arbitrarily far from
the rest of the points we can increase Ln without any
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limit. One way to deal with this issue would be to use
truncated edge-weights, which does not influence the
asymptotics. However, this would introduce an addi-
tional free parameter. The k-MST estimator might be
another solution (Hero and Michel, 1998), though, as
discussed earlier, this estimator will be biased unless
k = kn, kn/n → 1. It is, however, still interesting to
study its robustness. In this case (assuming k > n/2)
if we change fewer than n− k points the estimate will
stay bounded no matter how these points are changed.
Hence, in this case ϵ∗n = (n − k + 1)/n = ϵ + 1/n, if
k = (1− ϵ)n. At this stage, it is however important to
emphasize that we do not know how these entropy es-
timators could be used to estimate Rényi information
unless our suggestion of applying an empirical distri-
butional transformation is used as the first step of the
algorithm.

4.2.2 Stability

The breakdown point measures how resistant the esti-
mator is against outliers. However, it fails to quan-
tify the stability of the estimator to outliers. For
this, the following measure, inspired by Tukey’s finite-
sample influence curve, can be used: Define ∆n(x) =
|Hn+1(X1:n,x) − Hn(X1:n)| the amount of change
caused in the estimate by adding a single observa-
tion x to the sample X1:n. In general, we would like
∆n(x) = o(1) to hold a.s. independently of x as this
indicates that the effect of a single sample becomes
negligible as n → ∞. (Tukey’s criterium for stability
was ∆n(x) = O(n−1), and of course, this, in general, is
the best that we can hope for.) We have the following
result:

Proposition 3. Let G = GST. Then ∆n(x) =
O(n−α) holds a.s., uniformly in x.

Proof. It is known (Yukich, 1998) that {Ln} is smooth
on the unit cube in the sense that for any n,m ≥ 1, and
z1:n+m ⊂ [0, 1]d, |Ln+m(z1:n+m) − Ln(z1:n)| ≤ Cmα

with some C > 0. Fix the sample X1:n and let Ln =
Ln(X1:n) and L′

n+1 = Ln+1(X1:n,x). By exploiting
the smoothness property and since by Theorem 1 Ln =
Θ(nα) it follows that

∆n(x) =
1

1− α

∣∣∣∣log L′
n+1

(n+ 1)α
− log

Ln

nα

∣∣∣∣
≤ 1

1− α

∣∣L′
n+1 − Ln

∣∣
min{Ln, L′

n+1}
− α

1− α
log

n

n+ 1

≤ O(n−α).

Note that the smoothness property is expected to hold
for many other graphs (and in fact we only need a
much weaker condition). Smoothness holds for α =
1− 1/d for Ln(·;GR(k)) (Yukich, 1998).

Sometimes, stability is measured by the so-called pop-
ulation influence curve. However, this measure can
only be used when the statistics of interest is obtained
by applying a fixed T functional to the empirical distri-
bution function. Since our estimator is not a plug-in
estimator (just like many other estimators)3, the in-
finitesimal approach is not applicable and we shall not
explore it further.

5 Experiments on Simulated Data

The purpose of these experiments is to check consis-
tency in the two-dimensional case (going beyond our
theoretical results), as well as to check consistency and
rate of convergence in a higher dimensional setting.

5.1 Consistency in 2D

We conjecture that our estimator is consistent for
d = 2. Absent of proof, our goal here is to verify this
empirically. In particular, we consider several REGO
estimators based on either the k-NN, the MST, or the
k-MST estimators (the k-MST estimator is expected
to be biased). We have also implemented an informa-
tion estimator that we call cop-hist and which applies
a standard, well-tested 2D histogram based plug-in en-
tropy estimator due to Scott (1979) on the empirical
copula (i.e., the empirical distribution function of the
transform obtained in the first step of our method).

The following numerical experiments support this con-
jecture. For the plots in Fig. 1, i.i.d samples were
drawn from two random variables that are (a) indepen-

dent Beta (3, 4), (b) uniform on a square [−0.5, 0.5]
2

rotated by π/4, (c) a distribution with Gamma
marginals and a t-copula, where we chose the cop-
ula and marginal parameters randomly, and (d) jointly
Gaussian with Σ11 = 7, Σ12 = 2, Σ21 = 2, Σ22 = 1 co-
variance matrix. We used α = 0.999 (approximat-
ing Shannon information at α = 1), and k = 3 for
the k-NN. As for the k-MST we used k = ⌊0.95n⌋ in
Fig. 1(a)- 1(c), and k = ⌊0.8n⌋ in Fig. 1(d).

Fig.1 demonstrates that (with the exception of the k-
MST, which is not expected to be consistent) as the
number of samples (x-axis) increases, the estimates
converge to the true Shannon information (y-axis).

3This also applies to the estimator of Hero and Michel
(1998), who analyzed the influence function of the func-
tional their estimator converges to in the limit. It is how-
ever questionable of the properties of this influence func-
tion to have any relevance whatsoever to the robustness of
their estimator. We have found this part of the literature
of robust statistics quite controversial for several reasons.
Huber (2009) lists a few problems with the infinitesimal
approach.
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(a) Independent beta
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(b) Rotated uniform
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(c) t-copula
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Figure 1: Consistency in 2D. The estimated MI in the number of samples. The curves are averaged over 5 runs.

5.2 Consistency in 10D

In the next experiment we demonstrate the consis-
tency of our algorithm when the dimension is larger, in
particular, for d = 10. The histogram based methods
are not efficient when d > 4 due to the curse of di-
mensionality. Also, we already know that the k-MST
is asymptotically biased, thus we do not show results
for these estimators. Figure 2 demonstrates that the
REGO estimators based on either the MST, or the
k-NN graphs are consistent. In order to achieve rea-
sonable estimates, in this case we need n = 30, 000
samples, which is remarkable given that n1/d = 2.8
only. In Fig. 2(a) and 2(b) the task was to estimate the
MI between the marginals of a 10D uniform distribu-
tion with [0, 1]10 support, and a 10D distribution with
Gaussian copula and Gamma distributed marginals,
where the parameters of this distributions were cho-
sen randomly.

6 Application to Image Registration

Image registration is an important application of mu-
tual information estimation. We use this application
to demonstrate the efficiency of our estimators, as well
as their robustness to outliers. We repeated the experi-
ment proposed in Kybic (2006) for the evaluation of MI
estimators: Given two images represented as vectors
(X1i, . . . , Xni) ∈ [0, 1]n, i = 1, 2, the task is to estimate
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(a) 10D uniform
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(b) 10D Gauss copula

Figure 2: Consistency in 10D. The estimated MI in
the number of samples. The curves are averaged over
5 runs.

the mutual information of the sample (X1, . . . ,Xn)
where Xt = (Xt1, Xt2)

T . Following Kybic (2006), we
used the 70× 70 version (n = 4, 900) of Fig. 3(a) with
the pixel intensities normalized to [0, 1] as one of the
image (i = 1), and the rotated version of the same
image as the comparison image (i = 2).

We compared several estimators (k-NN, MST, k-MST,
and the plug-in histogram estimator of Scott (1979))
with and without the empirical distributional transfor-
mation. Fig. 3(b) shows the results, we used α = 0.99
in our experiments. As expected, all the estimators
achieve their maximum when the rotation angle is zero:
from the point of view image registration they perform
perfectly. To test their sensitivity to outliers, we cor-
rupted 200 pixels (ca. 4%) of the rotated images by
random values and rerun the algorithms. This is a
realistic situation in the image registration, where, in
practice, we would expect even larger corruption. The
results are shown on Fig. 3(c). As expected, the rank-
based estimators were not influenced by the outliers.
However, the response of the EGO methods based on
MST, k-MST, and k-NN is so heavily influenced that
they either just partly fit the figure if at all. We have
also experimented with kernel density (KDE) based
plug-in estimators, but its performance was very sim-
ilar to that of the histogram based estimator, thus we
do not show it here.

7 Discussion and conclusion

Our method is unique in that (i) it is strongly con-
sistent, (ii) it is remarkably robust as it works only
with ranks, (iii) it is computationally efficient, (iv) it
converges quickly, (v) it works for distributions with
unbounded support, (vi) it is insensitive to the choice
of the parameters. Many of these good properties are
the result of applying the probability integral transfor-
mation based on the empirical distribution function,
thereby reducing the problem of estimating informa-
tion to that of estimating the neg-entropy of the re-
sulting random variable. Although in this paper we
advocated the use of EGO techniques for this latter
task, other methods can also be used after the trans-
formation. Indeed, in our experiments, we have used
histogram based estimators, which seemed to work
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(b) Without outliers
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Figure 3: Image registration experiment. (a) The original image. (b) Performance on clean data. (c) Performance
in the presence of 200 outliers: only the copula based estimators gave reasonable estimates. Some of the estimators
behaved so poorly that we can only partly show their response. The response of the MST estimator did not fit
on the graph at all. The curves show the results of a typical run.

well in the low-dimensional cases. A few important
questions remained unanswered in connection to our
method: Most importantly, we could not prove the
consistency of our estimator in two dimensions. While
an upper bound on the rate of convergence has been
derived in Pál et al. (2010), not much is known about
lower rates of convergence.
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