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Abstract

A composite loss assigns a penalty to a real-
valued prediction by associating the predic-
tion with a probability via a link function
then applying a class probability estimation
(CPE) loss. If the risk for a composite loss
is always minimised by predicting the value
associated with the true class probability the
composite loss is proper. We provide a novel,
explicit and complete characterisation of the
convexity of any proper composite loss in
terms of its link and its “weight function”
associated with its proper CPE loss.

1 INTRODUCTION

The study of convex loss functions is central to the
practicality of many machine learning techniques such
as boosting and stochastic gradient descent. In this
paper we provide a characterisation of the convexity
of a large class of losses for probability estimation: the
proper composite losses. A loss function is the means
by which a learning algorithm’s performance is judged.
A binary loss function is a loss for a supervised pre-
diction problem where there are two possible labels
associated with the examples. A composite loss is the
composition of a loss for class probability estimation
(defined below) and a link function (also defined be-
low). A convex loss is one which is convex in the pre-
diction made by the learning algorithm; they are much
more amenable to numerical optimisation. We charac-
terise the convexity of proper composite binary losses
– a natural class of losses for probability estimation
and thus good surrogates for classification. We expect
this characterisation will help in the choice of practical
surrogate losses for binary classification problems.
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Informally, proper losses are well-calibrated losses for
class probability estimation, that is for the problem
of not only predicting a binary classification label, but
providing an estimate of the probability that an exam-
ple will have a positive label. Link functions are used
to map the outputs of a real-valued predictor to the
interval [0, 1] so they can be interpreted as probabil-
ities. Having such probabilities is often important in
applications, and there has been considerable interest
in understanding how to get accurate probability esti-
mates (Gneiting and Raftery, 2007) and understand-
ing the implications of requiring loss functions that do
so (Bartlett and Tewari, 2007).

Much previous work in the machine learning litera-
ture has focussed on margin losses which intrinsically
treat classes symmetrically. However it is now well
understood that it is important to deal with the non-
symmetric case (Bach et al., 2006; Buja et al., 2005).
A key goal of the present work is to consider composite
losses in the general (non-symmetric) situation.

Having the flexibility to choose a loss function is im-
portant to “tailor” the solution to a machine learning
problem; cf. (Hand, 1994; Hand and Vinciotti, 2003;
Buja et al., 2005). Understanding the structure of the
set of loss functions and having natural parametrisa-
tions of them is useful for this purpose. Even when
using a loss as a surrogate for the loss one would ide-
ally like to minimise, it is helpful to have an easy to
use parametrisation — see the discussion of “surrogate
tuning” in the Conclusion.

Our main result is Theorem 11 which characterises
when a composite loss is convex (what is called a “nice-
pair” in (Cesa-Bianchi and Lugosi, 2006, p.302)). This
characterisation is in terms of what seems to be the
most natural and intrinsic parametrisation of compos-
ite losses.

2 LOSSES AND RISKS

We write JpK = 1 if p is true and JpK = 0 oth-
erwise. The generalised function δ(·) is defined by
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∫ b
a
δ(x)f(x)dx = f(0) when f is continuous at 0 and

a < 0 < b. Random variables are written in sans-serif
font: X, Y.

Given a set of labels Y := {−1, 1} and a set of pre-
diction values V we will say a loss is any function1

` : Y × V → [0,∞). We interpret such a loss as giv-
ing a penalty `(y, v) when predicting the value v with
an observed label y. We can always write an arbi-
trary loss in terms of its partial losses `1 := `(1, ·) and
`−1 := `(−1, ·) using

`(y, v) = Jy = 1K`1(v) + Jy = −1K`−1(v). (1)

Our definition of a loss function covers all commonly
used margin losses (i.e. those which can be expressed
as `(y, v) = φ(yv) for some function φ : R → [0,∞))
such as the 0-1 loss `(y, v) = Jyv > 0K, the hinge
loss `(y, v) = max(1− yv, 0), the logistic loss `(y, v) =
log(1 + eyv), and the exponential loss `(y, v) = e−yv

commonly used in boosting. It also covers class prob-
ability estimation losses where the predicted values
η̂ ∈ V = [0, 1] are directly interpreted as probability es-
timates.2 We will use η̂ instead of v as an argument to
indicate losses for class probability estimation and use
the shorthand CPE losses to distinguish them from
general losses. For example, square loss has partial
losses `−1(η̂) = η̂2 and `1(η̂) = (1 − η̂)2, the log loss
`−1(η̂) = log(1− η̂) and `1(η̂) = log(η̂), and the family
of cost-weighted misclassification losses parametrised
by c ∈ (0, 1) with

`c(−1, η̂) = cJη̂ ≥ cK and `c(1, η̂) = (1−c)Jη̂ < cK. (2)

2.1 Conditional and Full Risks

Suppose we have random examples X with associated
labels Y ∈ {−1, 1}. The joint distribution of (X,Y)
is denoted P and the marginal distribution of X is
denoted M . Let the observation conditional density
η(x) := Pr(Y = 1|X = x). Thus one can specify an
experiment by either P or (η,M).

If η ∈ [0, 1] is the probability of observing the label
y = 1 the point-wise risk (or conditional risk) of the
estimate v ∈ V is defined as the η-average of the point-
wise risk for v: L(η, v) := EY∼η[`(Y, v)] = η`1(v)+(1−
η)`−1(v). Here, Y ∼ η is a shorthand for labels being
drawn from a Bernoulli distribution with parameter
η. When η : X → [0, 1] is an observation-conditional
density, taking the M -average of the point-wise risk

1Restricting the output of a loss to [0,∞) is equivalent
to assuming the loss has a lower bound and then translating
its output.

2These are also known as scoring rules (Gneiting and
Raftery, 2007).

gives the (full) risk of the estimator v, now interpreted
as a function v : X→ V:

L(η, v,M) := EX∼M [L(η(X), v(X))].

The convention of using `, L and L for the loss, point-
wise and full risk is used throughout this paper. The
Bayes risk is the minimal achievable value of the risk
and is denoted

L(η,M) := inf
v∈VX

L(η, v,M) = EX∼M [L(η(X))] ,

where [0, 1] 3 η 7→ L(η) := infv∈V L(η, v) is the point-
wise or conditional Bayes risk.

3 LOSSES FOR CLASS
PROBABILITY ESTIMATION

We begin by considering CPE losses, that is, functions
` : {−1, 1} × [0, 1] → [0,∞) and briefly summarise
a number of important existing structural results for
proper losses.

3.1 Proper and Fair Losses

If η̂ is to be interpreted as an estimate of the true
positive class probability η (i.e., when y = 1) then it is
desirable to require that L(η, η̂) be minimised by η̂ = η
for all η ∈ [0, 1]. Losses that satisfy this constraint are
said to be Fisher consistent and are known as proper
losses (Buja et al., 2005; Gneiting and Raftery, 2007).
That is, a proper loss ` satisfies L(η) = L(η, η) for all
η ∈ [0, 1]. A strictly proper loss is a proper loss for
which the minimiser of L(η, η̂) over η̂ is unique.

We will say a loss is fair whenever `−1(0) = `1(1) = 0.
That is, there is no loss incurred for perfect prediction.
Fairness is relied upon in the integral representation of
Theorem 4 where it is used to omit some constants of
integration.

3.2 The Structure of Proper Losses

A key result in the study of proper losses is origi-
nally due to Shuford et al. (1966) though our pre-
sentation follows that of Buja et al. (2005). It char-
acterises proper losses for probability estimation via
a constraint on the relationship between its partial
losses.

Theorem 1 Suppose ` : {−1, 1}×[0, 1]→ R is a CPE
loss and that its partial losses `1 and `−1 are both dif-
ferentiable. Then ` is a proper loss if and only if for
all η̂ ∈ (0, 1)

−`′1(η̂)
1− η̂

=
`′−1(η̂)
η̂

= w(η̂) (3)
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for some weight function w : (0, 1) → R+ such that∫ 1−ε
ε

w(c) dc <∞ for all ε > 0.

This simple characterisation of the structure of proper
losses has a number of interesting implications. Ob-
serve from (3) that if ` is proper, given `1 we can de-
termine `−1 or vice versa. Also, the partial derivative
of the conditional risk can be seen to be the product
of a linear term and the weight function:

Corollary 2 If ` is a differentiable proper loss then
for all η ∈ [0, 1]

∂

∂η̂
L(η, η̂) = (1−η)`′−1(η̂)+η`′1(η̂) = (η̂−η)w(η̂). (4)

Another corollary, observed by Buja et al. (2005), is
that the weight function is related to the curvature of
the conditional Bayes risk L.

Corollary 3 Let ` be a a twice differentiable3 proper
loss with weight function w defined as in equation (3).
Then for all c ∈ (0, 1) its conditional Bayes risk L
satisfies

w(c) = −L′′(c). (5)

The relationship between a proper loss and its asso-
ciated weight function is captured succinctly via the
following representation of proper losses as a weighted
integral of the cost-weighted misclassification losses `c
defined in (2); see (Reid and Williamson, 2009).

Theorem 4 Let ` : Y × [0, 1] → R be a fair, proper
loss. Then for each η̂ ∈ (0, 1) and y ∈ Y

`(y, η̂) =
∫ 1

0

`c(y, η̂)w(c) dc, (6)

where w = −L′′. Conversely, if ` is defined by (6)
for some weight function w : (0, 1)→ [0,∞) then it is
proper.

Buja et al. (2005) show that ` is strictly proper if and
only if w(c) > 0 in the sense that w has non-zero
mass on every open subset of (0, 1). Some example
losses and their associated weight functions are given
in Table 1.

4 COMPOSITE LOSSES

General loss functions are often constructed with the
aid of a link function. For a particular set of prediction

3The restriction to differentiable losses can be removed
in most cases if generalised weight functions — that is,
possibly infinite but defining a measure on (0, 1) — are
permitted. For example, the weight function for the 0-1
loss is w(c) = δ(c− 1

2
).

values V this is any continuous mapping ψ : [0, 1] →
V. In this paper, our focus will be composite losses
for binary class probability estimation. These are the
composition of a CPE loss ` : {−1, 1}× [0, 1]→ R and
the inverse of a link function ψ, an invertible mapping
from the unit interval to some range of values. Unless
stated otherwise we will assume ψ : [0, 1]→ R. We will
denote a composite loss by

`ψ(y, v) := `(y, ψ−1(v)). (7)

The classical motivation for link functions (McCullagh
and Nelder, 1989) is that often in estimating η one uses
a parametric representation of η̂ : X →[0,1] which has
a natural scale not matching [0, 1]. Traditionally one
writes η̂ = ψ−1(ĥ) where ψ−1 is the “inverse link”.
The function ĥ : X → R is the hypothesis. Often ĥ =
ĥα is parametrised linearly in a parameter vector α.
In such a situation it is computationally convenient if
`(η, ψ−1(ĥ)) is convex in ĥ (which implies it is convex
in α when ĥα is linear in α).

4.1 Proper Composite Losses

We will call a composite loss `ψ (7) a proper compos-
ite loss if ` in (7) is a proper loss for class probability
estimation. As in the case for losses for probability
estimation, the requirement that a composite loss be
proper imposes some constraints on its partial losses.
Many of the results for proper losses carry over to com-
posite losses with some extra factors to account for the
link function.

Theorem 5 Let λ = `ψ be a composite loss with dif-
ferentiable and strictly monotone link ψ and suppose
the partial losses λ−1(v) and λ1(v) are both differen-
tiable. Then λ is a proper composite loss if and only
if there exists a weight function w : (0, 1) → R+ such
that for all η̂ ∈ (0, 1)

−λ′1(ψ(η̂))
1− η̂

=
λ′−1(ψ(η̂))

η̂
=
w(η̂)
ψ′(η̂)

=: ρ(η̂). (8)

Furthermore, ρ(η̂) ≥ 0 for all η̂ ∈ (0, 1).

Proof This is a direct consequence of Theorem 1 for
proper losses for probability estimation and the chain
rule applied to `y(η̂) = λy(ψ(η̂)). Since ψ is assumed
to be strictly monotonic we know ψ′ > 0 and so, since
w ≥ 0 we have ρ ≥ 0.

As we shall see, the ratio ρ(η̂) is a key quantity in
the analysis of proper composite losses. For example,
Corollary 2 has natural analogue in terms of ρ that will
be of use later. It is obtained by letting η̂ = ψ−1(v)
and using the chain rule.
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w(c) `−1(η̂) `1(η̂) Loss

2δ
(

1
2 − c

)
Jη̂ > 1

2K Jη̂ ≤ 1
2K 0-1

1 η̂2/2 (1− η̂)2/2 Square

1
(1−c)c − ln(1− η̂) − ln(η̂) Log

1
[(1−c)c]3/2 2

√
η̂

1−η̂ 2
√

1−η̂
η̂ Boosting

Table 1: Weight functions and associated partial losses.

Corollary 6 Suppose `ψ is a proper composite loss
with conditional risk denoted Lψ. Then

∂

∂v
Lψ(η, v) = (ψ−1(v)− η)ρ(ψ−1(v)). (9)

Loosely speaking then, ρ is a “co-ordinate free” weight
function for composite losses where the link function
ψ is interpreted as a mapping from arbitrary v ∈ V to
values which can be interpreted as probabilities.

Another immediate corollary of Theorem 5 shows how
properness is characterised by a particular relationship
between the choice of link function and the choice of
partial composite losses.

Corollary 7 Let λ := `ψ be a composite loss with
differentiable partial losses λ1 and λ−1. Then `ψ is
proper if and only if the link ψ satisfies

ψ−1(v) =
λ′−1(v)

λ′−1(v)− λ′1(v)
, ∀v ∈ V. (10)

Proof Substituting η̂ = ψ−1(v) into (8) yields
−ψ−1(v)λ′1(v) = (1 − ψ−1(v))λ′−1(v) and solving this
for ψ−1(v) gives the result.

These results give some insight into the “degrees of
freedom” available when specifying proper composite
losses. Theorem 5 shows that the partial losses are
completely determined once the weight function w and
ψ (up to an additive constant) is fixed. Corollary 7
shows that for a given link ψ one can specify one of
the partial losses λy but then properness fixes the other
partial loss λ−y. Similarly, given an arbitrary choice
of the partial losses, equation 10 gives the single link
which will guarantee the overall loss is proper.

5 CONVEXITY OF PROPER
COMPOSITE LOSSES

We have seen that proper composite losses are defined
by the proper loss ` and the link ψ. We have further
seen from Corollary 6 that it is natural to parametrise
proper composite losses in terms of w and ψ′, and com-
bine them as ρ. One may wish to choose a weight func-
tion w and determine which links ψ lead to a convex
loss; or choose a link ψ and determine which weight
functions w (and hence proper losses) lead to a con-
vex composite loss. The main result of this section
(Theorem 11) answers these questions by characteris-
ing convex proper composite losses in terms of (w,ψ′)
or ρ.

We first establish some convexity results for losses and
their conditional and full risks.

Lemma 8 Let ` : Y×V→ [0,∞) denote an arbitrary
loss. Then the following are equivalent:

1. v 7→ `(y, v) is convex for all y ∈ {−1, 1},
2. v 7→ L(η, v) is convex for all η ∈ [0, 1],

3. v 7→ L̂(v, S) := 1
|S|
∑

(x,y)∈S `(y, v(x)) is convex
for all finite S ⊂ X× Y.

Proof 1 ⇒ 2: By definition, L(η, v) = (1 −
η)`(−1, v)+η`(1, v) which is just a convex combination
of convex functions and hence convex.

2 ⇒ 1: Choose η = 0 and η = 1 in the definition of L.

1 ⇒ 3: For a fixed (x, y), the function v 7→ `(y, v(x))
is convex since ` is convex. Thus, L̂ is convex as it is
a non-negative weighted sum of convex functions.

3 ⇒ 1: The convexity of L̂ holds for every S so for
each y ∈ {−1, 1} choose S = {(x, y)} for some x. In
each case v 7→ L̂(v, S) = `(y, v(x)) is convex.
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The following theorem characterises convexity of
proper composite losses with invertible links.

Theorem 9 Let `ψ(y, v) be a composite loss compris-
ing an invertible link with inverse q := ψ−1 and strictly
proper loss with weight function w. Assume q′(·) > 0.
Then v 7→ `ψ(y, v) is convex for y ∈ {−1, 1} if and
only if

− 1
x
≤ w′(x)

w(x)
−ψ

′′(x)
ψ′(x)

≤ 1
1− x

, ∀x ∈ (0, 1). (11)

This theorem suggests a very natural parametrisation
of proper composite losses is via (w,ψ′). Observe that
w,ψ′ : [0, 1]→ R+. (But also see the comment follow-
ing Theorem 11.)

Proof We can write the conditional composite loss as

Lψ(η, v) = η`1(q(v)) + (1− η)`−1(q(v))

and so by substituting q = ψ−1 into (9) we have

∂

∂v
Lψ(η, v) = w(q(v))q′(v)[q(v)− η]. (12)

A necessary and sufficient condition for v 7→ `ψ(y, v) =
Lψ(y, v) to be convex for y ∈ {−1, 1} is that

∂2

∂v2
Lψ(y, v) ≥ 0, ∀v ∈ R, ∀y ∈ {−1, 1}.

Using (12) the above condition is equivalent to

[w(q(v))q′(v)]′(q(v)− Jy = 1K)
+w(q(v))q′(v)q′(v) ≥ 0, ∀v ∈ R, (13)

where [w(q(v))q′(v)]′ := ∂
∂vw(q(v))q′(v). Inequality

(13) is equivalent to (Buja et al., 2005, equation 39).
By further manipulations, we can simplify (13) con-
siderably.

Since Jy = 1K is either 0 or 1 we equivalently have the
two inequalities

[w(q(v))q′(v)]′q(v) + w(q(v))(q′(v))2≥ 0, ∀v ∈ R,
[w(q(v))q′(v)]′(q(v)−1) + w(q(v))(q′(v))2≥ 0, ∀v ∈ R,

which we shall rewrite as the pair of inequalities

w(q(v))(q′(v))2≥−q(v)[w(q(v))q′(v)]′, ∀v∈R, (14)
w(q(v))(q′(v))2≥(1−q(v))[w(q(v))q′(v)]′,∀v∈R. (15)

Observe that if q(·) = 0 (resp. 1− q(·) = 0) then (14)
(resp. (15)) is satisfied anyway because of the assump-
tion on q′ and the fact that w is non-negative. It is
thus equivalent to restrict consideration to v in the set

{x : q(x) 6=0 & (1−q(x)) 6=0} = q−1((0, 1)) = ψ((0, 1)).

Combining (14) and (15) we obtain the equivalent con-
dition

(q′(v))2

1−q(v)
≥ [w(q(v))q′(v)]′

w(q(v))
≥ −(q′(v))2

q(v)
, ∀v∈ψ((0, 1)),

(16)
where we have used the fact that q : R → [0, 1] and
is thus sign-definite and consequently −q(·) is always
negative and division by q(v) and 1 − q(v) is permis-
sible since as argued we can neglect the cases when
these take on the value zero, and division by w(q(v))
is permissible by the assumption of strict properness
since that implies w(·) > 0. Now

[w(q(·))q′(·)]′ = w′(q(·))q′(·)q′(·) + w(q(·))q′′(·)

and thus (16) is equivalent to

(q′(v))2

1− q(v)
≥ w′(q(v))(q′(v))2 + w(q(v))q′′(v)

w(q(v))

≥ −(q′(v))2

q(v)
, ∀v ∈ ψ((0, 1)). (17)

Now divide all sides of (17) by (q′(·))2 (which is permis-
sible by assumption). This gives the equivalent condi-
tion

1
1− q(v)

≥ w′(q(v))
w(q(v))

+
q′′(v)

(q′(v))2
≥ −1
q(v)

, ∀v ∈ ψ((0, 1)).

Let x = q(v) and so v = q−1(x) = ψ(x). Then the
above is equivalent to

1
1− x

≥ w′(x)
w(x)

+
q′′(ψ(x))

(q′(ψ(x)))2
≥ −1

x
, ∀x ∈ (0, 1).

Now 1
q′(ψ(x)) = 1

q′(q−1(x)) = (q−1)′(x) = ψ′(x). Thus
the above equivalent to

1
1− x

≥ w′(x)
w(x)

+ Φψ(x) ≥ −1
x
, ∀x ∈ (0, 1), (18)

where
Φψ(x) := q′′ (ψ(x)) (ψ′(x))2 . (19)

All of the above steps are equivalences. We have thus
shown that

(18) is true ⇔ v 7→ Lψ(y, v) is convex for y ∈ {−1, 1}

where the right hand side is equivalent to the assertion
in the theorem by Lemma 8.

Finally we simplify Φψ. We first compute q′′ in terms
of ψ = q−1. Observe that q′ = (ψ−1)′ = 1

ψ′(ψ−1(·)) .
Thus

q′′(·) = (ψ−1)′′(·) =
(

1
ψ′(ψ−1(·))

)′
=

−1
(ψ′(ψ−1(·)))2

ψ′′(ψ−1(·))
(
ψ−1(·)

)′
=

−1
(ψ′(ψ−1(·)))3

ψ′′(ψ−1(·)).
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Thus by substitution

Φψ(·) =
−1

(ψ′(ψ−1(ψ(·))))3
ψ′′(ψ(ψ−1(·))) (ψ′(·))2

=
−1

(ψ′(·))3
ψ′′(·) (ψ′(·))2

= −ψ
′′(·)
ψ′(·)

. (20)

Substituting the simpler expression (20) for Φψ into
(18) completes the proof.

Corollary 10 Proper losses are convex if and only if

− 1
x
≤ w′(x)

w(x)
≤ 1

1− x
, ∀x ∈ (0, 1).

5.1 A Simpler Characterisation of Convex
Proper Composite Losses

The following theorem more explicitly describes all
proper losses that generate a convex composite loss
given a particular link function. Noting that loss func-
tions can be multiplied by a scalar without affecting
what a learning algorithm will do, it is convenient to
normalise them by normalising their weight functions
by setting w( 1

2 ) = 1. (Observe too that (11) is scale
invariant with respect to w.)

Theorem 11 Consider a proper composite loss `ψ

with invertible link ψ and (strictly proper) weight w
normalised such that w( 1

2 ) = 1. Then `ψ is convex if
and only if

ψ′(x)
x

Q 2ψ′( 1
2 )w(x) Q

ψ′(x)
1− x

, ∀x ∈ (0, 1), (21)

where Q denotes ≤ for x ≥ 1
2 and denotes ≥ for x ≤ 1

2 .

Observe that the condition (21) is equivalent to

1
2ψ′( 1

2 )x
Q ρ(x) Q

1
2ψ′( 1

2 )(1− x)
, ∀x ∈ (0, 1),

which reinforces the importance of the function ρ(·).

Proof Observe that if w satisfies (11) then so does αw
for all α ∈ (0,∞). Thus without loss of generality we
will normalise w such that w( 1

2 ) = 1. 4 Observing that
w′(x)
w(x) = (logw)′(x) we let g(x) := logw(x). We have

4We chose to normalise about 1
2

for two reasons: sym-
metry and the fact that w can have non-integrable singu-
larities at 0 and 1; see e.g. (Buja et al., 2005).

that g(v) =
∫ v

1
2
g′(x)dx + g( 1

2 ) and g( 1
2 ) = logw( 1

2 ) =
0. Thus from (11) we obtain

− 1
x
− Φψ(x) ≤ g′(x) ≤ 1

1− x
− Φψ(x).

For v ≥ 1
2 we thus have∫ v

1
2

− 1
x
− Φψ(x)dx ≤ g(v) ≤

∫ v

1
2

1
1− x

− Φψ(x)dx.

Conversely, for v ≤ 1
2 we have∫ v

1
2

− 1
x
− Φψ(x)dx ≥ g(v) ≥

∫ v

1
2

1
1− x

− Φψ(x)dx,

and thus

− ln v − ln 2−
∫ v

1
2

Φψ(x)dx Q g(v) Q

− ln 2− ln(1− v)−
∫ v

1
2

Φψ(x)dx.

Since exp(·) is monotone increasing we can apply it to
all terms and obtain

1
2v exp

(
−
∫ v

1
2

Φψ(x)dx
)

Q w(v) Q

1
2(1−v) exp

(
−
∫ v

1
2

Φψ(x)dx
)
. (22)

Now∫ v

1
2

Φψ(x)dv =
∫ v

1
2

−ψ
′′(x)
ψ′(x)

dx = −
∫ v

1
2

(logψ′)′(x)dx

= − logψ′(v) + logψ′( 1
2 )

and so

exp

(
−
∫ v

1
2

Φψ(x)dx

)
=
ψ′(v)
ψ′( 1

2 )
.

Substituting into (22) completes the proof.

If ψ is the identity (i.e. if `ψ is itself proper) we get
the simpler constraints

1
2x

Q w(x) Q
1

2(1− x)
, ∀x ∈ (0, 1), (23)

which are illustrated as the shaded region in Figure
1. Observe that the (normalised) weight function for
squared loss is w(c) = 1 which is indeed within the
shaded region as one would expect.

Consider the link ψlogit(c) := log
(

c
1−c

)
with corre-

sponding inverse link q(c) = 1
1+e−c . One can check

that ψ′(c) = 1
c(1−c) . Thus, constraints on the weight

function w to ensure a convex composite loss are

1
8x2(1− x)

Q w(x) Q
1

8x(1− x)2
, ∀x ∈ (0, 1).
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Figure 1: Allowable normalised weight functions to ensure convexity of composite loss functions with identity
link (left) and logistic link (right).

This is shown graphically in Figure 1. One can com-
pute similar regions for any link. Two other exam-
ples are the Complementary Log-Log link ψCLL(x) =
log(− log(1− x)) (cf. (McCullagh and Nelder, 1989)),
the “square link” ψsq(x) = x2 and the “cosine link”
ψcos(x) = 1− cos(πx). All are illustrated in Figure 2.

The reason for considering these last two rather un-
usual links is to illustrate the following fact. Observing
that the allowable region in Figure 1 precludes weight
functions that approach zero at the endpoints of the
interval, and noting that in order to well approximate
the behaviour of 0-1 loss (with its weight function be-
ing w0−1(c) = δ(c− 1

2 )) one would like a weight func-
tion that does indeed approach zero at the end points,
it is natural to ask what constraints are imposed upon
a link ψ such that a composite loss with that link and
a weight function w(c) such that

lim
c↘0

w(c) = lim
c↗1

w(c) = 0 (24)

is convex. Inspection of (21) reveals it is necessary
that ψ′(x)→ 0 as x→ 0 and x→ 1. Such ψ necessar-
ily have bounded range and thus the inverse link ψ−1

is only defined on a finite interval and furthermore the
gradient of ψ−1 will be arbitrarily large. If one wants
inverse links defined on the whole real line (such as the
logistic link) then one cannot obtain a convex compos-
ite link with the associated proper loss having a weight
function satisfying (24). Thus one cannot choose an
effectively usable link to ensure convexity of a proper
loss that is arbitrarily “close to” 0-1 loss in the sense
of the closeness of corresponding weight functions.

The requirement that a loss be convex and proper con-
strains the weight function considerably.

Corollary 12 If a loss is proper and convex, then it
is strictly proper.

The proof 12 uses the following Gronwall-style lemma
(Bainov and Simeonov, 1992, Lemma 1.1.1).

Lemma 13 Let b : R → R be continuous for t ≥ α.
Let v(t) be differentiable for t ≥ α and suppose v′(t) ≤
b(t)v(t), for t ≥ α and v(α) ≤ v0. Then for t ≥ α,

v(t) ≤ v0 exp
(∫ t

α

b(s)ds
)
.

Proof (Corollary 12) Observe that the RHS of (11)
implies w′(v) ≤ w(v)

1−v , v ≥ 0. Suppose w(0) = 0. Then
v0 = 0 and by setting α = 0 the lemma implies

w(t) ≤ v0 exp
(∫ t

0

1
1− s

ds

)
=

v0
1− t

= 0, t ∈ (0, 1].

So if w(0) = 0 then w(t) = 0 for all t ∈ (0, 1). Choos-
ing any other α ∈ (0, 1) leads to a similar conclusion.
Thus if w(t) = 0 for some t ∈ [0, 1), w(s) = 0 for
all s ∈ [t, 1]. Thus w(t) > 0 for all t ∈ [0, 1] and by
the remark following Theorem 4, ` is strictly proper.

6 CONCLUSIONS

We have characterised the convexity of composite bi-
nary losses in terms of the weight function associ-
ated with the proper loss, and the link function. The
parametrisation of a composite loss in terms (w,ψ′) (or
ρ) has advantages over using (φ, ψ) (for margin losses)
or (L,ψ). As Masnadi-Shirazi and Vasconcelos (2009)
explain, the representation in terms of (φ, ψ) is in gen-
eral not unique. The representation in terms of L is
harder to intuit: whilst the conditional Bayes risk for
squared loss and 0-1 loss are “close” (compare graphs
of c 7→ c(1− c) and c 7→ c∧ (1− c)) their weight func-
tions they are seen to be very different (w(c) = 1 versus
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Figure 2: Allowable normalised weight functions to ensure convexity of loss functions with complementary log-log,
square and cosine links.

w(c) = 2δ(c− 1
2 )). We have also seen that on the basis

of Theorem 9, the parametrisation (w,ψ′) is perhaps
the most natural — there is a nice symmetry between
the loss and the link as they are both parametrised in
terms of non-negative functions on [0, 1].

The parametrisation (w,ψ′) arising from our charac-
terisation suggests an implementation of a novel induc-
tive principle known as surrogate tuning (Nock and
Nielsen, 2009). The idea of surrogate tuning is sim-
ple: noting that the best surrogate loss depends on
the problem at hand, adapt the surrogate loss you are
using to the problem. To do so it is important to
have a good parametrisation of the loss as is given by
the weight function view of Theorem 11. It would be
easy to develop low dimensional parametrisations of
w that satisfy the conditions of this theorem. This
would allow a learning algorithm to explore the space
of convex losses. One could (taking care with the sub-
sequent multiple hypothesis testing problem) regularly
evaluate the 0-1 loss of the hypotheses so obtained.

Surrogate tuning differs from loss tailoring (Hand,
1994; Hand and Vinciotti, 2003; Buja et al., 2005)
which adapts the loss to what is important rather
than adjusting a surrogate for computational reasons
(which is why convexity is desirable in the first place).
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