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Abstract

In this paper we consider a regularization ap-
proach to variable selection when the regres-
sion function depends nonlinearly on a few in-
put variables. The proposed method is based
on a regularized least square estimator penal-
izing large values of the partial derivatives.
An efficient iterative procedure is proposed
to solve the underlying variational problem,
and its convergence is proved. The empiri-
cal properties of the obtained estimator are
tested both for prediction and variable selec-
tion. The algorithm compares favorably to
more standard ridge regression and `1 regu-
larization schemes.

1 Introduction

In this work, we are interested into the variable se-
lection problem within the supervised learning frame-
work, when the input-output dependence is described
by a nonlinear model.

Given a set of input-output pairs z = (xi, yi)ni=1 sam-
pled i.i.d. with respect to an unknown probability
measure ρ, the task of supervised learning is to es-
timate the regression function fρ(x) = E[y|x]. The
output space Y can be either a subset of R or sim-
ply {+1,−1} in binary classification. In general,the
input space is X ⊂ Rp. The problem we have in mind
is motivated by the assumption that fρ depends on
d� p variables only. The key question is how to turn
this assumption into a learning algorithm. We study
this problem in the context of regularization where –
given the empirical risk E – one aims at designing a
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regularizer (penalty) R, so that

argmin
f∈H

{E(f) + τR(f)}

provides us with an estimator that is a (nonlinear)
function of few variables. Towards this end we will pro-
pose a new penalty which enforces the partial deriva-
tives of the learned estimator to be small in an ap-
propriate sense. The size of the partial derivatives of
the obtained estimator indicates which variables can
be discarded.

The variational problem corresponding to this new
functional cannot be solved using simple gradient de-
scent methods. Towards this end we develop an
iterative projection procedure based on a forward-
backward splitting approach (Daubechies et al., 2007;
Lions and Mercier, 1979; Combettes and Wajs, 2005;
Hale et al., 2008; Rosasco et al., 2009). Convergence
of the method can be proved and the entire regulariza-
tion path for the algorithm can be efficiently computed
using a simple continuation method (Hale et al., 2008).
The performance of the proposed algorithm is assessed
on toy data as well as on a benchmark data set.

The problem of variable selection has recently received
considerable attention, motivated by high dimensional
learning problems such as microarray data analysis
(Golub et al., 1999). The last few years witnessed
substantial progresses in the case when the regression
function is described by a linear model – see Lal et al.
(2006) for a survey – and regularization with a sparsity
penalty (`1 and its variations) proved to be a suitable
strategy (Tibshirani, 1996; Efron et al., 2004). In the
case of nonlinear models the situation is much less un-
derstood. A number of authors consider a dictionary
of nonlinear features and use a sparsity-based algo-
rithm to select the relevant elements of the dictionary.
The simplest of such approaches is that of considering
a generalized linear model where the regression func-
tion is assumed to be a linear combination of nonlin-
ear functions, each one depending on a single variable
only, see for example Ravikumar et al. (2008). A more
advanced approach would be to consider dictionaries
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encoding more complex interactions among the vari-
ables (Lin and Zhang, 2006). For example, one could
consider the features defined by a second-degree poly-
nomial kernel. The shortcoming of this approach is
that the size of the dictionary grows more than ex-
ponentially as one considers high order interactions.
Recently, Bach (2008) showed that it is still possible
to learn with such dictionaries if the subsets of vari-
ables that can be selected (the sparsity patterns) are
suitably restricted (e.g. the atoms of the dictionary
can be embedded into a directed acyclic graph). Our
approach differs from these latter works since we do
not try to design dictionaries encoding variables inter-
actions but we use partial derivatives to derive a new
regularizer that induces a different form of sparsity.
We recall that a number of heuristics for nonlinear
feature selection are surveyed by Guyon et al. (2006).
We also mention a series of related works considering
the problem of nonlinear dimensionality reduction, ei-
ther in the supervised setting (see Wu et al. (2008)
and references therein) or in the unsupervised setting
– see KPCA (Schölkopf and Smola, 2002) and mani-
fold learning (Belkin and Niyogi, 2008). More recently,
a method based on estimating the gradient of the re-
gression function is proposed by Mukherjee and Zhou
(2006). We note that the problem of subset selection
that we consider in this paper is somewhat different,
because rather than extracting new features we just
aim at selecting the most relevant variables. Indeed,
in all the dimensionality reduction methods, variable
selection is not embedded in the training phase and
can be achieved only as a postprocessing.

The paper is organized as follows. In Section 2
we present a new regularized functional, where the
penalty is based on partial derivatives, and propose
an iterative algorithm for finding its minimizer. In
Section 3 we describe the derivation of the proposed
algorithm. Finally in Section 4 the proposed scheme is
empirically evaluated and compared with benchmark
subset selection techniques as standard ridge regres-
sion on synthetic and real data.

Notation: In the following, we will use lower indices
to indicate different elements of a space – e.g. xi ∈ X
– and upper indices to indicate different components
of a vector – e.g. x = (xj)pj=1 ∈ X . We use indices
i, s ∈ {1, . . . , n} for the examples and j, l ∈ {1, . . . p}
for coordinates.

2 Regularization for Nonlinear Subset
Selection

In the following we study the minimization problem

fτ = argmin
f∈H

1
n

n∑
i=1

(yi − f(xi))2 +

2τ
p∑
j=1

√√√√ 1
n

n∑
i=1

|∂jf(xi)|2 (1)

where ∂jf(x) denotes the jth partial derivative of f at
some point x and the hypotheses space, H, is assumed
to be a reproducing kernel Hilbert space of smooth
functions. Recall that our primary goals are to esti-
mate the true underlying fρ as well as to detect the
subset of relevant variables, given the training set z.

The above penalty searches for an estimator for which
each partial derivative is small when evaluated on most
points of the training set. This choice is suggested by
the fact that, if a function does not depend on a vari-
able, the corresponding partial derivative will be zero
(or small) for all (or most) points, and such a vari-
able can be considered irrelevant. In theory, a natural
choice in order to enforce the jth derivative to be small
“on average” would be to penalize the L2(X, ρX) norm

‖∂jf‖ρ =

√∫
X
|∂jf(x)|2dρX (2)

where ρX is the probability distribution of the input
points. Since in practice ρX is unknown, and we only
have an i.i.d. sample x = (x1, . . . , xn), a feasible alter-
native to (2) is its empirical counterpart, which is the
one used in (1). To build a regularizer we then have
to consider the different partial derivatives at once,
and different regularizers can be obtained considering
different norms for the vector ~R(f) ∈ Rp, whose jth

element is:

~Rj(f) =

√√√√ 1
n

n∑
i=1

|∂jf(xi)|2.

The most natural choice is probably

R0(f) = ‖~R(f)‖0 = #{j | ~Rj(f) 6= 0}.

When considering linear functions, H = {f : f(x) =
β · x, β ∈ Rp}, the above penalty is the so called `0
norm, ‖β‖0, which counts the number of non-zero co-
efficients. It is well known that there are no efficient
algorithms to minimize E+ τR0, and `1 regularization
– i.e. using the `1 norm ‖β‖1 – is an efficient convex
relaxation to this problem. Reasoning along the same
line we replace R0 with

R1(f) = ‖~R(f)‖1 =
p∑
j=1

|~Rj(f)|,
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Algorithm 1 Iterative Projection Algorithm
Require: σ, η, τ > 0
Initialize: α0 = 0, β0 = 0, t = 0
while convergence not reached do

αt = αt−1 − (2σ)−1 (Kαt−1 + Zβt−1 − y)

set v0 = 0, q = 0 and
for j = 1, . . . p do

while convergence not reached do

vjq+1 =
vjq − η

(
Lj
(
vq − σ

τ βt−1

)
− σ

τ Zjαt
)

1 + η‖Lj
(
vq − σ

τ βt−1

)
− σ

τ Zjαt‖n
,

q := q + 1
end while
set v̄jt = vjq

end for

t = t+ 1, βt = βt−1 −
τ

σ
v̄t.

end while
return (αt, βt)

so that the functional in (1) is given by E+2τR1. Note
that, indeed, the proposed penalty reduces to `1 regu-
larization in the case of linear models. Though convex-
ity makes the corresponding algorithm more tractable,
the solution of the underlying variational problem is
not straightforward due to nonsmoothness and we pro-
pose an efficient optimization procedure in the next
section.

2.1 An Iterative Projection Algorithm

We will show (see the beginning of Subsec. 3.3) that
if H is a RKHS of sufficiently smooth functions, a
straightforward generalization of the representer theo-
rem ensures that a generic solution of problem (1) can
be conveniently written as a linear combination:

fτ (x) =
n∑
i=1

1
n
αik(xi, x) +

n∑
i=1

p∑
j=1

1
n
βji zj,xi(x), (3)

where α, βj ∈ Rn for all j = 1, . . . , p and

zj,xi(x
′) =

∂k(x′, x)
∂xj

∣∣∣
x=xi

. (4)

In order to compute the coefficients, let us introduce
the two vectors β = (β1,. . . , βp) and v = (v1, . . . , vp),
where vj ∈ Rn for all j = 1, . . . , p. Also, let’s define
the matrices K,Zj , Lj as

(K)i,s =
1
n
k(xi, xs),

(Zj)i,s =
1
n
zj,xi(xs)

and

(Ljβ)i =
p∑
l=1

n∑
s=1

Lj,l(xi, xs)βls,

where

Lj,l(xi, xs) =
1
n2

∂2k(x, x′)
∂xj∂x′l

∣∣∣
x=xi,x′=xs

.

As shown in the next section, the coefficients can be
computed using the iterative Algorithm 1.

Before describing the derivation of this algorithm and
discussing its convergence properties, we add several
remarks. First, the above algorithm follows recent
works studying optimization procedures for `1-based
regularization and related algorithms – see Hale et al.
(2008), Daubechies et al. (2007), Figueiredo et al.
(2007) – and more general learning schemes – see for
example Rosasco et al. (2009).
Second, the proposed procedure requires the choice of
an appropriate stopping rule, which will be discussed
later, and of the step sizes σ, η. Simple a priori choices
ensuring convergence are discussed in the following
section and are the one we used in our experiments.
We expect more sophisticated step size choices to con-
siderably speed up the iteration, at the price of a more
complicated convergence analysis, which is outside the
scope of the paper.
Third, while computing solutions corresponding to dif-
ferent regularization parameters we use the continua-
tion method suggested by Hale et al. (2008). Start-
ing from a large regularization parameter value, the
obtained solution is used to initialize the algorithm
for the next smaller regularization parameter value
and the same strategy is iterated for all the other
parameter values. We found this warm restart pro-
cedure to greatly improve the computational require-
ment needed to calculate the whole regularization
path.
Finally, a critical issue is related to the choice of a
suitable selection criterion that enables one to identify
the variables that are more relevant to the specific re-
gression problem. In fact, while in standard `1-based
regularization the relevant variables correspond to the
non zero entries of the regression coefficients, using our
approach this is no longer valid. Nevertheless a natural
way to select the relevant variables is to set a thresh-
old on the size of the partial derivatives evaluated on
the training set points, that is:

n∑
i=1

|∂jfτ (xi)|2 = ||Zjα+ Ljβ||2 for j = 1, . . . , p.

(5)
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3 Derivation of the Iterative
Projection Procedure

In this section we derive the procedure proposed in the
previous section. We start rewriting problem (1) in a
more convenient way, allowing for a useful characteri-
zation of the regularized solution fτ .

3.1 RKHS and derivatives

A key observation is that partial derivatives have a
particularly useful representation if we choose the hy-
potheses space to be a RKHS. In fact if the kernel is
sufficiently smooth it is possible to prove (Zhou, 2008)
that zj,x ∈ H for all x ∈ X where zj,x is defined in (4),
and the following reproducing property for derivatives,
that will be the main tool towards deriving Algorithm
1, holds

∂jf(x0) = 〈f, zj,x0〉H .

In the following it will be useful to view partial deriva-
tives and gradients as linear operators. Consider Rn
with the standard inner product normalized by a fac-
tor 1/n denoted by 〈·, ·〉n and the corresponding norm
‖ · ‖n. We define D̂j : H → Rn as

D̂jf = ((∂jf) (x1), . . . , (∂jf) (xn)) ,

and its adjoint D̂∗j : Rn → H as

D̂∗j v =
1
n

n∑
i=1

vizj,xi

It is also useful to view the gradient of f as an opera-
tor. Let Rnp be p times the Cartesian product of Rn
so that if v = (v1, . . . , vp), w = (w1, . . . , wp) belong to
Rnp then 〈v, w〉Rnp =

∑p
j=1

〈
vj , wj

〉
n
. The empirical

gradient ∇̂ : H → Rnp and its adjoint ∇̂∗ : Rnp → H
are defined by

∇̂f =
(
D̂jf

)p
j=1

,

and

∇̂∗v =
p∑
j=1

D̂∗j v
j ,

respectively.

Note that ∇̂f can be viewed as a p×n matrix so that
R1(f) =

∑p
j=1 ‖D̂jf‖n, can be seen as the norm 2, 1

of the gradient, obtained summing up the Euclidean
norms of each row.

3.2 Iterative Projected Gradient

The functional under study is not differentiable, and
standard minimization techniques cannot be used. Ac-
tually, minimizing non differentiable objective func-
tions is quite common in sparse approximation, there-
fore a number of authors have already proposed some
suitable solutions. A popular technique employs prox-
imity operators, a powerful generalization of the notion
of projection operators. Following the mainstream
proposed by Combettes and Wajs (2005), in a previ-
ous work – in which we focus on structured sparsity for
linear variable selection – we proposed an optimization
framework consisting of an iterative projection and
based on subgradient calculation to solve an appropri-
ate fixed point equation satisfied by fτ , see Rosasco
et al. (2009) for details. Indeed, both the theorem 1
below, which represents the theoretical basis for it-
erative algorithm 1, and the equation (11) generalize
analogous results derived in that paper.

For convenience, let’s introduce the sampling operator
Sn : H → Rn and its adjoint Sn∗, defined by Sn(f) =
(f(x1), . . . , f(xn)) and Sn

∗v(x) =
∑n
i=1 vik(xi, x) re-

spectively. The kernel matrix is simply K = SnSn
∗

(De Vito et al., 2005). Using the above notations,
solving problem (1) amounts to finding

fτ = argmin
f∈H

{
‖Snf − y‖2n︸ ︷︷ ︸

E(f)

+2τ
p∑
j=1

‖D̂jf‖n︸ ︷︷ ︸
R1(f)

}
. (6)

Theorem 1. Given σ > 0, and assuming E + 2τR1

to be strictly convex, fτ is the unique solution of the
fixed point equation

f =
(
I − P τ

σ C
) (
f − (2σ)−1Sn

∗ (Snf − y)
)

(7)

where PC is a suitable projection defined below.

The solution of the above problem can be calculated
by the following iteration

ft+1 =
(
I − P τ

σ C
) (
ft − (2σ)−1Sn

∗ (Snft − y)
)

(8)

with f0 = 0 (Combettes and Wajs, 2005). Under suit-
able assumptions, it is possible to prove that

lim
t→∞

‖ft − fτ‖H = 0, (9)

if σ is appropriately chosen. Following Proposition 1
in Rosasco et al. (2009) it turns out that the best a
priori chosen step-size σ depends only on the smallest
and biggest eigenvalues of the kernel matrix K.

Remark. Note that in order to have a unique so-
lution, strict convexity of the functional is required.
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Since in general this assumption is too restrictive, it
is possible to avoid it by adding a further strictly con-
vex regularization term to R1. We also remark that
strong convergence holds also without requiring strict
convexity – see Theorem 3.4 in Combettes and Wajs
(2005).

The projection PC is the core of the above algorithm,
and is related to the subgradient of the regularizer R1

at 0. If we let

Bpn = {v = (v1, . . . , vp) | ‖vj‖n ≤ 1, j = 1, . . . , p},

then we can use Proposition 2 in Rosasco et al. (2009)
to show that

C = ∂R1(0) =
{
f ∈ H | f = ∇̂∗v with v ∈ Bpn

}
.

Moreover, it is possible to show that ∂R1(0) is a closed
convex subset of H, and the projection P τ

σ C of a f ∈ H
on τ

σC, is given by

P τ
σ Cf =

τ

σ
∇̂∗v̄, (10)

where
v̄ = argmin

v∈Bpn
{‖f − τ

σ
∇̂∗v‖2H}.

Finally, it can be shown that v̄ can be calculated
component-wise using the iteration:

vjq+1 =
vjq − ηD̂j

(
∇̂∗vq − σ

τ f
)

1 + η‖D̂j(∇̂∗vq − σ
τ f)‖n

(11)

with vj0 = 0. As long as η = 1/‖∇̂∇̂∗‖ it is possible to
prove that

lim
q→∞

‖ τ
σ
∇̂∗vq − P τ

σ Cf‖H = 0. (12)

3.3 Towards an Implementation

In order to implement the above algorithm we need
to find a finite dimensional representation of f . Note
that from (8) and (10) the minimizer of (6) satisfies
fτ ∈ Range(Sn∗) + Range(∇̂∗). Henceforth it satisfies
the following form of the representer theorem

fτ = Sn
∗α+ ∇̂∗β =

n∑
i=1

1
n
αik(xi, ·) +

n∑
i=1

p∑
j=1

1
n
βji zj,xi

(13)
with α ∈ R and β = (β1, . . . , βp) with βj ∈ Rn, for
j = 1, . . . , p. Note that Zj , Lj defined in Section 2.1 are
the matrices associated to the operators SnD̂∗j : Rn →
Rn and D̂j∇̂∗ : Rnp → Rn, respectively. Moreover
we define Z and L as the matrices associated to the
operators Sn∇̂∗ : Rnp → Rn and ∇̂∇̂∗ : Rnp → Rnp,
respectively. Then we have the following result.

Proposition 1. For f0 = 0, the solution at step t+ 1
is given by

ft+1 = Sn
∗αt+1 + ∇̂∗βt+1

with
αt+1 = αt −

1
2σ

(Kαt + Zβt − y) (14)

and
βt+1 = βt −

τ

σ
v̄t+1, (15)

where v̄t+1 is such that

τ

σ
∇̂∗v̄t+1 = P τ

σ C

(
Sn
∗αt+1 + ∇̂∗βt

)
. (16)

Proof. We proceed by induction. The base case is
clear. Then, by the inductive hypotheses we have that

ft = Sn
∗αt + ∇̂∗βt.

Therefore, using (8) it follows that ft+1 can be ex-
pressed as:

(
I − P τ

σ C
) (
Sn
∗ (αt − (2σ)−1 (Kαt + Zβt − y)

)
+ ∇̂∗βt

)
and the proposition is proved, letting αt+1, βt+1 and
v̄t+1 as in Equations (14), (15) and (16).

The following results shows how to explicitly calculate
the projection.
Proposition 2. Let η = 1/‖L‖. If f ∈ H can be
written as Sn∗α + ∇∗β, then the projection P τ

σ Cf is
given by τ

σ ∇̂
∗v̄ where v̄ can be calculated starting from

v0 = 0 and using the following iteration

vjq+1 =
vjt − η

(
Lj
(
vq − σ

τ β
)
− σ

τ Zjα
)

1 + η‖Lj
(
vq − σ

τ β
)
− σ

τ Zjα‖n
. (17)

Proof. In order to get (17) we can plug the represen-
tation (13) in (11) and use the fact that D̂jSn

∗ =
SnD̂

∗
j = Zj .

In practical implementation, Algorithm 1 requires the
definition of a suitable stopping rule. Equations (9)
and (12) suggest the following choice

‖ft − ft−1‖H ≤ tol and ‖∇̂∗(vq − vq−1)‖H ≤ tol.

Note that these quantities are computable since

‖ft − ft−1‖2H = ‖Sn∗δα+ ∇̂∗δβ‖2H
= 〈δα,Kδα〉n

+2 〈δα, Zδβ〉n
+ 〈δβ, Lδβ〉n



         658

A Regularization Approach to Nonlinear Variable Selection

where δα = αt−αt−1 and δβ = βt−βt−1, and similarly

‖∇̂∗(vq − vq−1)‖2H = 〈(vq − vq−1), L(vq − vq−1)〉n .

4 Experimental Analysis

In this section we present some preliminary experi-
ments conducted in order to assess empirically the ef-
fectiveness of the proposed regularization approach on
both synthetic data sets and a standard benchmark
comprising real data. The aims of the experiments
are: (i) to verify that the proposed algorithm selects
the correct subset of relevant variables when the un-
derlying regression function is nonlinear; (ii) to assess
the prediction performance of the estimator learned
with our algorithm, and to compare it with a number
of more standard alternatives for both sparse and non
sparse regression.

We compare Algorithm 1 with: non-sparse kernel-
based ridge regression with a Gaussian kernel (which
will be denoted G-ridge hereinafter), and the sparse
`1 regularization on a linear model both with respect
to the input variables (denoted simply `1), and with
respect to a nonlinear combination of the input vari-
ables (denoted `feat1 ). Specifically, for `feat1 we con-
sider functions which are the linear combination of
the expansion of a 4th degree polynomial defined over
the input variables. Note that we do not compare
experimentally our approach with the ones based on
sparse nonlinear additive models proposed by Raviku-
mar et al. (2008). This is mainly due to the fact that
the additiveness assumption required by such models
is too restrictive and is not satisfied by the regression
functions we are interested in (see Subsection 4.1).

As for the actual deployment of Algorithm 1, we con-
sidered two different settings. In the first we use the
algorithm as it has been described so far, (this setting
is denoted Alg1). Furthermore, we decided to rely on a
fairly standard approach based on a double optimiza-
tion – see Candès and Tao (2005), De Mol et al. (2009)
for `1 and `1-`2 regularization – where Algorithm 1 is
used for selecting the variables only, and subsequently
a second optimization is performed using the G-ridge
algorithm on the selected variables in order to pro-
vide accurate variable selection and good prediction
performance at the same time. This second setting is
referred to as Alg1GR. As pointed out in Section 2,
an important point of the algorithm is the choice of
a threshold value for the quantity in (5) to discrimi-
nate among relevant and non relevant variables. In the
following experiments we used as threshold the regu-
larization parameter τ , which empirically proved to be
a very effective solution. In order to guarantee a fair
comparison among the different methods, we employ
a common validation protocol for all considered algo-

rithms, based on different data sets for training, val-
idation and test, where the validation set is used for
choosing the value of τ minimizing the error on such a
set, and the test set for estimating the prediction accu-
racy. All the experiments presented below have been
performed using a prototype Matlab implementation.

4.1 Synthetic Data

In this set of experiments, we generated a number
of synthetic data sets as follows. Given the interval
[−3, 3]6 ⊆ R6 we sampled n = 80 training points ran-
domly drawn from the uniform distribution and two
separate validation and test sets of size m = 200. Ac-
cording to our initial assumption, the output labels
are computed using a noise-corrupted regression func-
tion fρ that depends nonlinearly from {x1, x2} only, i.e
y = fρ(x1, x2)+w, where xi denotes the ith component
of the vector x. For each x, the w is a white noise, sam-
pled from a normal distribution with zero mean and
variance that is a small fraction of the average output
of fρ over the input domain. Specifically, we focused
on the following examples f1 = (x4

1 − x2
1) · (3 + x2);

f2 = 2(x3
1 − x1) · (2x2 − 1) · (x2 + 1) + (x3

2 − x2 + 3);
and f3 = −2(2x2

1 − 1) · (x2) · e−x2
1−x

2
2 .

In order to evaluate the stability of the results, for
each example we run the five algorithms several times
by keeping fixed the test set and letting the training
examples vary.
The ability to select correctly the relevant variables has
been assessed by computing true (TP) and false (FP)
positive rates. For lack of space we do no report a table
summarizing the results of all the tests. However, the
experimental evidence is that the Alg1GR algorithm
has constantly a TP rate equal to 1, and the FP rate
is less than 0.05. With Alg1 the FP rate increases since
the optimization procedure leads to selecting a higher
number of variables in order to keep a low prediction
error. The selection performances of `1 are extremely
poor, since the algorithms almost always selects all the
variables. The `feat1 approach shows a high variance in
the selection of the variables, and the TP rate is less
than 0.8.

The prediction errors of the learned algorithms are re-
ported in Table 1. From the results therein it emerges
that: the `1 algorithm is not appropriate to predict
the output values of the above functions. Further-
more, the performance of a linear selection of nonlinear
features computed from the original input variables is
viable as long as the true regression function is actu-
ally within the set spanned by the basis features (as
for f1 and f2), otherwise the performances degrade
quite dramatically (as for f3). Overall, the best al-
gorithmic approach to nonlinear feature selection is to
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Table 1: Average generalization errors associated to
the considered algorithms.

Regression Function
Learning

f1 f2 f3Algorithm
Alg1 0.030± 0.006 0.23± 0.06 0.071± 0.012

Alg1GR 0.008± 0.003 0.10± 0.04 0.003± 0.002

`1 0.096± 0.003 3.32± 0.07 0.103± 0.003

`feat1 0.026± 0.007 0.17± 0.04 0.079± 0.003

G-ridge 0.030± 0.003 0.21± 0.03 0.015± 0.003

Figure 1: Results obtained with the Boston Housing
data set. We report the selection frequency of each
variable.

run the Algorithm 1 for selecting the relevant features
and to perform a second optimization for estimating
the regression function. This leads clearly to better
results then those obtained by G-ridge on all the in-
put variables. Finally, in most cases, the prediction
performance of the Algorithm 1 alone is competitive
with the other methods.

4.2 Real Data

In this experiment, we use the standard Boston
Housing data, i.e. the housing data for 506
census tracts of Boston, available from the
UCI Machine Learning Database Repository:
http://archive.ics.uci.edu/ml/. Each cen-
sus tract represents a data-point, described by 13
features, whereas the output is the housing price. In
our experiment, we randomly partition the data into
50 training, 228 validation and 228 test points. For
comparison we use the four algorithms: `1, G-ridge,
Alg1 and Alg1GR. We perform the experiments
20 times. For each repetition the data points are
centered and normalized with respect to the training
set points. In Figure 1 we report a table with the
average squared test errors of all the tested algorithms
and the selection frequencies for the Alg1GR and `1.

From Figure 1 we can observe that the most frequently
selected features are the same in both algorithms, that
is average number of rooms per dwelling (RM), pupil-
teacher ratio by town (PTRATIO), and % lower status

Table 2: Results obtained with the Boston Housing
data set. We report a comparison of the average
squared test errors relative to the different algorithms.

Learning
`1 G-ridge Alg1 Alg1GRAlgorithm

Test 30± 4 22± 5 23± 5 21± 3Error

of the population (LSTAT). Nevertheless we can notice
that Alg1GR presents a larger gap between the features
that are most frequently selected and the other fea-
tures, indicating that selection performed via Alg1GR

is more stable than via `1-regularization. A number
of previous studies have analyzed this data set. In
particular Zhang (2009) applies different subset selec-
tion techniques and compares their prediction accu-
racy. Indeed, the prediction errors provided by these
techniques are comparable with our results for `1 reg-
ularization and are higher than those achieved by ker-
nel methods, with and without subset selection. This
behavior may suggest that, on this data set, nonlinear-
ity is stronger than sparsity. In fact, G-ridge, which
does not perform subset selection, provides better esti-
mate than `1 regularization which trades off nonlinear-
ity for sparsity. Only Alg1GR, which combines both
approaches, is able to perform a more stable subset se-
lection though maintaining, and even improving, the
prediction accuracy of the solution.

5 Conclusions

We have proposed a new regularization scheme for
nonlinear variable selection, promoting estimators
which depend on a small number of the original vari-
ables.

To the best of our knowledge this is the first direct
approach to nonlinear variable selection, which on one
hand does not require the use of nonlinear features,
and on the other hand directly promotes sparsity in the
original variables. We described an iterative procedure
to solve the underlying variational problem, which con-
vergence to the optimal solution is proved.

The initial experimental results on synthetic and real
data are promising. Indeed, they show that our
method outperforms linear subset selection techniques
as well as nonlinear regression methods, both in terms
of prediction and variable selection, since it performs
selection as the former, though maintaining nonlinear-
ity as the latter.
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