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Abstract

The ability to detect weak distributed activation
patterns in networks is critical to several appli-
cations, such as identifying the onset of anoma-
lous activity or incipient congestion in the Inter-
net, or faint traces of a biochemical spread by a
sensor network. This is a challenging problem
since weak distributed patterns can be invisible
in per node statistics as well as a global network-
wide aggregate. Most prior work considers sit-
uations in which the activation/non-activation of
each node is statistically independent, but this is
unrealistic in many problems. In this paper, we
consider structured patterns arising from statisti-
cal dependencies in the activation process. Our
contributions are three-fold. First, we propose a
sparsifying transform that succinctly represents
structured activation patterns that conform to a
hierarchical dependency graph. Second, we es-
tablish that the proposed transform facilitates de-
tection of very weak activation patterns that can-
not be detected with existing methods. Third,
we show that the structure of the hierarchical de-
pendency graph governing the activation process,
and hence the network transform, can be learnt
from very few (logarithmic in network size) in-
dependent snapshots of network activity.

1 Introduction

Consider the problem of detecting a weak binary pattern
corrupted by noise that is observed at p network nodes:
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Here y; denotes the observation at node ¢ and x =
[1,...,2p] € {0,1}7 is the p-dimensional unknown bi-
nary activation pattern, x4 > 0 denotes an unknown signal

strength, and the noise ¢; NN (0,0?), the Gaussian dis-

tribution with mean zero and variance o2. The condition
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z; = 0,7 = 1,...,p, is the baseline or normal operating
condition (no signal present). If z; > 0 for one or more ¢,
then a signal or activation is present in the network. We are
interested not in arbitrary patterns of activation, but rather
our focus is on patterns that are related to the physical struc-
ture of the network and/or to other statistical dependen-
cies in the signal. This is motivated by problems arising
in practice, as discussed below. Specifically, we consider
classes of patterns that are supported over hierarchically-
structured groups or clusters of nodes. Such a hierarchical
structure could arise due to the physical topology of the
network and/or due to dependencies between the nodes.
For example, hierarchical dependencies are known to ex-
ist in gene networks due to shared regulatory pathways
(Yu & Gerstein 2006, Girvan & Newman 2002), empiri-
cal studies show that Internet path properties such as delay
and bandwidth are well-approximated by tree-embeddings
(Ramasubramanian, Malkhi, Kuhn, Balakrishnan & Akella
2009), sensor networks are often hierarchically structured
for efficient management (Sankaranarayanan, Kramer &
Mandayam 2004), and communities in social networks
can be hierarchical (Girvan & Newman 2002). We ad-
dress the problem of detecting the presence of weak but
hierarchically-structured activation patterns in the network.
This problem is of interest in several applications including
detecting incipient congestion or faint traces of malicious
activity in the Internet, early detection of a chemical spread
or bio-hazard by a sensor network, identification of differ-
entially expressed genes in microarray data, or malicious
groups in social networks.

If x is known, then the optimal detector is based on aggre-
gating the measurements of the locations known to contain
the signal (e.g., in the classical distributed detection litera-
ture it is often assume that x; = 1 for all ¢ or ; = 0 for
all 4+ (Varshney 1996)). We are interested in cases where
x is unknown. If x is arbitrary, this is a problem in lit-
erature known as the multi-channel signal detection prob-
lem (Ingster & Suslina 2002). In this case, global ag-
gregation rule (testing the average of all node measure-
ments) can reliably detect any signal strength p > 0 if the
number of active locations ||x|l¢ > ,/p. This is because

% P iy~ N (u%, 02), and therefore as the net-
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work size p grows, the probability of false alarm and miss
can be driven to zero by choosing an appropriate threshold.
However, in the high-dimensional setting when p is very
large and the activation is sparse ||x|lo < /p, different ap-
proaches to detection are required. If the signal strength
i > /202 logp, then the signal can be reliably detected
using the max statistic max; y;, irrespective of the signal
sparsity level. This is because if there is no signal, the max
statistic due to noise alone (maximum of p iid N(0,02)
random variables) is < /202 log p with probability 1, in
the large p limit. Therefore, the most challenging case is
when the network activation is

weak: j1 < \/20%logp and sparse: ||x|o < /P

In this case, the signal is buried in noise and cannot be
detected in per node measurement or in global network-
wide aggregate. This necessitates selective and adap-
tive fusion where the node measurements to be aggregated
are chosen in a data-driven fashion. One approach that
is common in the signal processing literature is to con-
sider the generalized likelihood ratio test (GLRT) statis-
tic, maxye(o,1}» X* y /X' x, where the observed vector is
matched with all 27 possible true activation patterns. How-
ever, in high-dimensional settings, the GLRT is compu-
tationally intractable. For weak and sparse signals, the
limits of detectability were studied by Ingster (Ingster &
Suslina 2002), and subtle tests that are adaptive in vari-
ous ranges of the unknown sparsity level were investigated.
More recently, test statistics have been proposed (Jin &
Donoho 2004, Jager & Wellner 2007) that can attain the
detection boundary simultaneously for any unknown spar-
sity level. Also see (Ingster, Pouet & Tsybakov 2009) for
a generalization of this problem. However, all this work
assumes that activations at nodes are independent of each
other. As a result, the signal strength p must be > cy/log p
for a constant ¢ > 0 and the signal cannot be too weak.

The assumption of independent activations is often unrea-
sonable in a network setting, where the observations at
nodes tend to be highly dependent due to the structure of
the network and/or dependencies in the activation process
itself. For example, routers in the same autonomous system
will show similar variations in round-trip-time measure-
ments, or co-located sensors monitoring an environmental
phenomena will have correlated measurements. Recently,
there has been some work aimed at structured patterns of
activation in graphs (A.-Castro, Donoho & Huo 2005, A.-
Castro, Candés, Helgason & Zeitouni 2007, A.-Castro,
Candés & Durand 2010), which indicates that it is pos-
sible to detect even weaker signals by leveraging the sta-
tistical dependencies in the activation process. Of these,
the lattice-based models in (A.-Castro et al. 2010) are most
closely related to our work, but they do not capture the hi-
erarchical structure we have in mind, nor do they appear
to offer a computationally tractable approach to detection.
We also mention the recent work of (A.-Berry, Broutin,

Devroye & Lugosi 2009), which establishes fundamental
limits of detectability for several classes of structured pat-
terns in graphs. The detection tests proposed in that pa-
per are generally combinatorial in nature (like the GLRT
mentioned above) requiring a brute-force examination of
all patterns in each class, and therefore are computation-
ally prohibitive except in very low-dimensional cases.

In this paper, we consider a different class of patterns that
reflects the hierarchical dependencies present in many real-
world networks and leads to computationally practical de-
tection methods. Furthermore, we demonstrate that it is
possible to learn the hierarchical dependency structure of
the class from a relatively small number of observations,
adding to the practical potential of our framework. The hi-
erarchical dependencies structures we consider tend to re-
sults in network activation patterns that are supported over
hierarchically-organized groups or clusters of nodes. We
will show that such structured activation patterns can be
sparsified even further by an orthonormal transformation
that is adapted to the dependency structure. The trans-
form concentrates the unknown x in a few large basis co-
efficients, thus facilitating detection. We show that if the
canonical domain sparsity ||x||o ~ p! = and the transform
domain sparsity scales as pl_ﬁ , where 3 > «, then the
threshold of detection scales as p > +/2p~ (=) g2log p.
Contrasting this with the detectability threshold of earlier
methods p > /21,02 logp (Ingster & Suslina 2002, Jin
& Donoho 2004) (where 0 < 7, < 1 is independent of
p), we see that a polynomial improvement is attained if the
activation pattern is sparser in transform domain. By ex-
ploiting the structure of x, we can detect extremely faint
activations that can not be detected with existing methods.

Our contributions are three-fold. First, we propose a
sparsifying transform based on hierarchical clustering that
is adapted to the dependency structure of network mea-
surements. We propose a practically-motivated genera-
tive model that allows for arbitrary activation patterns,
but favors patterns that are supported over hierarchically-
organized groups of nodes. We show that patterns from
this model are compressed by the sparsifying transform.
Though we focus on the detection problem in this paper, the
sparsifying transform could be exploited in other problem
domains, e.g. de-noising, compression, sparse regression,
variable selection, etc. Second, we establish that the sparsi-
fying transform can amplify very weak activation patterns
by effectively performing adaptive fusion of the network
measurements. Since the network activity is summarized
in a few large transform coefficients, the signal-to-noise ra-
tio (SNR) is increased, and this facilitates detection of very
weak activation patterns. We quantify the improvement in
the detection threshold relative to existing methods. The
detection method we propose is a constructive procedure
and computationally efficient. Third, we do not necessarily
assume that the graph structure is known a priori, and show
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that the dependency structure, and hence the sparsifying
transform, can be learnt from very few, O(log p), multiple
independent snapshots of network measurements.

We introduce the sparsifying transform in section 2] a
generative model for hierarchically-structured patterns and
corresponding sparsifying properties and detection thresh-
old in section |3} sample complexity of learning the trans-
form in Section F] and simulations in Section Proofs
sketches are given in the Appendix.

2 Hierarchical structure in Networks

As discussed in the introduction, activation patterns in
large-scale networks such as the Internet, sensor, biological
and social networks often have hierarchical dependencies.
This hierarchical dependency structure can be exploited to
enable detection of very weak and sparse patterns of activ-
ity. In this section, we propose a transform that is adapted
to a given set of pairwise similarities between nodes. The
similarity of node 7 and j is denoted by 7;;. For exam-
ple, 7;; could be the covariance between measurements at
nodes ¢ and j, but other similarity measures can also be em-
ployed. The transform is derived from a hierarchical clus-
tering based on the similarity matrix {r;;}. If the matrix
reflects an underlying hierarchical dependency structure,
then the resulting transform sparsifies activation patterns
supported on hierarchically-organized groups of nodes.

2.1 Hierarchical Clustering of Nodes

We employ a standard, bottom-up agglomerative cluster-
ing algorithm. The algorithm takes as input a set of pair-
wise similarities {r;; } and returns a hierarchical set of clus-
ters/groups of nodes, denoted as . The algorithm is de-
scribed in Figure [T Suppose instead that we are given
a hierarchical set of clusters 7*. What conditions must a
similarity matrix satisfy, in relation to H*, so that the ag-
glomerative clustering algorithm recovers H* and not some
other hierarchical clusters? This is an important question
for several reasons as we will see in subsequent sections
(e.g., to robustly identify H* from a noisy observation of
the similarity matrix). To answer this question, first note
that the agglomerative clustering algorithm always merges
two clusters at each step. Therefore, the most we can hope
to say is that under some conditions on the similarity ma-
trix, the agglomerative clustering algorithm produces a hi-
erarchical set of clusters H, such that H* C H; ie., H
contains all cluster sets in H*, but may include additional
subsets due to the restriction of binary merging. The fol-
lowing lemma gives a sufficient condition on the similar-
ity matrix to guarantee that this is the case. The proof is
straightforward and omitted to save space.

Lemma 1. Suppose we are given a collection of hierarchi-
cal clusters H*. If for every pair of clusters (c,c') € H*,
where ¢ C ¢, the maximum similarity between any i € ¢/

and j € c/c is smaller than the minimum similarity be-
tween any pair of nodes in c, then the agglomerative clus-
tering algorithm of Figure|l|recovers H*.

2.2 Hierarchical Basis for Network Patterns

Based on a hierarchical clustering of network nodes, we
propose the following unbalanced Haar basis representa-
tion for activation patterns. When two clusters ¢; and ¢
are merged in the agglomerative clustering algorithm, a
normalized basis vector is defined (up to normalization) by
b o¢ 51, — yle, where 1., denotes the indicator of
the support of subcluster ¢;. Projecting the activation pat-
tern x onto this basis vector computes a difference of the
average measurement on each constituent cluster. As a re-
sult, the basis coefficient bTx is zero if the nodes in the
constituent clusters are all active or inactive. Thus, the ba-
sis vectors possess one vanishing moment akin to standard
Haar wavelet transform, and will sparsify activation pat-
terns that are constant over the merged clusters. This proce-
dure yields p — 1 difference basis vectors. These basis vec-
tors are augmented with the constant vector that computes
the global average. The resulting vectors form the columns
of an orthonormal unbalanced Haar transform matrix B.

Input: Set of all nodes £ = {1,...
similarities {7 }; jer

Initialize: Clusters C = {{1},{2},...,{p}},
Hierarchical clustering % = C, Basis B = []

while |C| > 1

,p} and pairwise

Eieol E]Ecz Tig

Select (1, cp) = argmaxe, c,ec eTes]

Merge c = c1 Uco

Update H = HU {c},C = (C/{c1,c2}) U{c}

Construct unbalanced Haar basis vector:

x@mm[l

Ve + fez]

en 1

Output: B, H

1
11, |, B=[B|b
o2l 7 Tea] ] (Bl b

Figure 1: Algorithm for hierarchical clustering.

The proposed method of hierarchical clustering followed
by basis construction is similar in spirit to the recent work
of Lee et al. (Lee, Nadler & Wasserman 2008) on treelets
and of Murtagh (Murtagh 2007). However, treelets do
not lead to a sparsifying transform in general if the node
measurements or aggregates have different variances. The
work of Murtagh uses balanced Haar wavelets on a den-
drogram and does not yield an orthonormal basis since the
basis vectors are not constant on sub-groups of nodes. As
a result, the transform coefficients are correlated and de-
pendent, making the resulting statistics difficult to analyze.
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Our procedure, on the other hand, is based on unbalanced
Haar wavelets which are constant on sub-groups of nodes
and thus result in orthogonal vectors.

2.3 Activations of Hierarchically-Organized Groups

To illustrate the effectiveness of the proposed transform,
consider activation patterns generated by the union of a
small number of clusters of the hierarchical collection H,
ie. let x = 1u;”:1ci, where ¢; € H. Then it is not dif-
ficult to see that the transform of x will produce no more
than O(m) non-zero basis coefficients. The magnitude of
each coefficient will be proportional to the square-root of
the number of nodes in the corresponding cluster on which
the basis is supported. Suppose that the largest cluster con-
tains k nodes. Then the largest coefficient of x will be on
the order of v/k. This implies that the corresponding coeffi-
cient of the noisy observations y will have a signal-to-noise
energy ratio (SNR) of order ku?/o?, compared to the per
node SNR of /02 in the canonical domain, making the
activation much more easily detectable.

In practice, actual activation patterns may only approxi-
mate this sort of ideal condition, but the transform can
still significantly boost the SNR even when the underly-
ing activation is only approximately sparse in the trans-
form domain. In the next section we propose a practically-
motivated generative model capable of generating arbitrary
patterns. As the parameter of the model is varied, the pat-
terns generated from the model tend to have varying de-
grees of sparseness in the transform domain.

3 Sparsifying and Detecting Activations

In this section, we study the sparsifying capabilities of the
proposed transform, and the corresponding improvements
that can be attained in the detection threshold. For this, we
introduce a generative model that, with high probability,
produces patterns that are approximately sparse.

3.1 A Generative Model for Activations

‘We model the hierarchical dependencies governing the ac-
tivation process by a multi-scale latent Ising model, defined
as follows. Let 7* = (V| E) denote a tree-structured graph
with V' as the vertex set and E as the edge set. For sim-
plicity, we assume that the degree of each node is uniform,
denoted as d, and let L = log, p denote the depth of the
tree. The leaves L of the tree are at the deepest level L and
correspond to the network nodes, while the internal ver-
tices characterize the multi-scale dependencies between the
node measurements. Let z denote a |V'|-dimensional vec-
tor of variables defined over the complete tree, but we only
observe x = {z; }ier, the p-dimensional vector of network
observations. We assume that z (and hence x) is generated

according to the following probabilistic Ising model:

L
p(z) x exp (Z Ye Z [Zizﬂ'(i) +(1—2)(1— Zﬂ(l’))])

=1 i€Vy

Here V, denotes the vertices at level ¢, and v, > 0 charac-
terizes the strength of pairwise interaction between a vertex
i at level £ and its parent 7(¢). This model implies that the
2P possible activation patterns are not equiprobable, and
the probability of a pattern is higher if the variables agree
with their parents in the tree dependency graph 7 *. This is
a natural model for several application domains where the
activation is governed by a contact process, e.g. the spread
of an infection or disease.

3.2 Canonical and Transform Domain Sparsity

To evaluate the transform domain sparsity, we first establish
that the latent tree dependency graph 7 can be recovered
by the agglomerative hierarchical clustering algorithm of
Figure[I] Based on a result by Falk (Falk 1975), the covari-
ance between any two leaf variables 7 and j is proportional
to IIj,, ., (tanh ~,)?, where ¢ denotes the level of the
root of the smallest subtree containing ¢ and j (i.e. smallest
cluster containing ¢ and j). Thus, if the covariance is used
as the similarity measure, it is easy to verify that it satisfies
the conditions of Lemmal[I] This is important since covari-
ance can be estimated from observations of the network.

Proposition 1. The hierarchical clustering algorithm of
Figure[l| perfectly recovers the tree-structured dependency
graph T on which the Ising model is defined, using covari-
ance between the leaf variables as the similarity measure.

We now show how the unbalanced Haar basis built on the
tree dependency graph 7* leads to a sparse representation
of binary patterns drawn from the multi-scale Ising model.
Recall that a transform coefficient is zero if the activation
pattern is constant over the basis vector’s support.

Theorem 1. Consider a pattern x drawn at random from a
latent Ising model on a tree-structured graph with uniform
degree d and depth L = log, p. If the interaction strength
scales with the level ¢ as vy = (S logd where 0 < 5 < 1,
then with probability > 1 — § and for p large enough, the
number of non-zero transform coefficients are bounded by

IB"xl|o < 3d(log, p)*p'~*.

Proof is given in the Appendix. Since the interaction
strength increases with level, variables at deeper levels are
less likely to disagree with their parents and activation pat-
terns supported over groups of nodes are favored. The theo-
rem states that, with high probability, patterns generated by
this model are approximately sparse in the proposed trans-
form domain. The degree of sparsity is governed by (3, the
rate at which the interaction strength increases with level.
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We also have in mind situations in which the number of
total activations in the network is small, i.e., ||x|[o < /P,
which renders the naive global fusion test statistic unreli-
able (see discussion in Introduction). To make widespread
activations less probable, we constrain the Ising model as
follows. Set the root vertex to the value 0. Let {5 = £ L,
where 0 < a < (. Let vy, = {flogd for { > ¢y, and
v¢ = oo for £ < fy. This model forces variables at scales
coarser than /{; to be identically 0. Proof of the following
theorem is given in the Appendix.

Theorem 2. Consider a pattern x drawn at random from a
latent Ising model on a tree-structured graph with uniform
degree d and depth L = log,p. Let {y = %L, where 0 <
a < B, and the interaction strength scale with the level ¢
as vy = LB logd for £ > Ly, and vy = oo for £ < Ly. If the
pattern corresponds to the root variable taking value zero,
then with probability > 1 — 49 and for p large enough, the
number of non-zero transform coefficients are bounded by

IB"xllo < 3d(log, p)°p" 7,

and the canonical domain sparsity is bounded as

[}

ep' ™ < xlo < C(logyp)p' %,
where C >c > O are constant.

The result of the theorem states that the transform domain
sparsity scales as p'~# (and is therefore determined by the
rate at which the interaction strength increases with level),
while the canonical domain sparsity scales as p' = (and is
therefore determined by the smallest interaction strength
between a variable and its parent). Since 5 > a, the
proposed transform enhances the sparsity of canonically
sparse patterns that have a hierarchical structure. In the
next section, we show that this enhanced sparsity implies
a higher Signal-to-Noise (SNR) ratio in the transform do-
main, thus facilitating detection.

3.3 Threshold of Detectability

Recall that the observed datais y; = ux;+¢; 1t =1,...,p,
where o denotes the unknown signal strength, x is the un-

. jid
known activation pattern, and ¢; ~ N(0,02). The detec-
tion problem corresponds to the following hypothesis test:

Hy:p=0 vs. Hy:p>0

Projecting the network data onto the basis vectors b € B
yields the empirical transform coefficients b} y. If the pat-
tern x is sparser in the transform domain, then its energy
is concentrated in a few non-zero coefficients. Thus, the
signal-to-noise ratio is boosted and detection is easier. To
investigate the threshold of detectability for weak but struc-
tured activation patterns, we consider a simple test based on
the maximum of the absolute values of the empirical trans-
form coefficients max; |bYy| as the test statistic. The fol-
lowing theorem provides an upper bound on the detection

threshold using the max statistic in the transform domain
for patterns drawn from the tree-structured Ising model.

Theorem 3. Consider a pattern x drawn at random from a
latent Ising model on a tree-structured graph with uniform
degree d and depth L = log,p. Let {y = %L and the
interaction strength scales with the level { as v, = £ log d
for € > {4y, and vy = oo for £ < {.

With probability > 1 — 26 over the draw of the activation
pattern, the test statistic max; |b!y| drives the probability
of false alarm and miss (conditioned on the draw of the pat-
tern) to zero asymptotically as p — oo if the signal strength

> c\/2p~ra?logp,
where k = 8 — a > 0 and ¢ > 0 is a constant.

Proof is given in the Appendix. We see that a polynomial
improvement is attained if the activation pattern is sparser
in a network transform domain. This is a significant im-
provement over canonical domain methods that do not ex-
ploit the structure of patterns and are limited to detect-
ing signals with strength p > +/21,02logp (Where 0 <
No < 11isindependent of p) (Ingster & Suslina 2002, Jin &
Donoho 2004, Ingster et al. 2009).

4 Learning Clusters from Data

In practice, the pairwise similarities or covariances used
for hierarchical clustering and constructing the proposed
transform can only be estimated from data. Since the em-
pirical covariance between network nodes can be learnt
from multiple i.i.d. snapshots of network measurements,
we now provide finite sample guarantees on the recovery
of the multi-scale dependency structure from empirically
estimated covariances. Analogous arguments can also be
made for any similarity measure provided the empirical es-
timates satisfy a concentration inequality.

Theorem 4. Consider noisy network measurements

yz:zz+€z iil,...,p

with known signal strength, where the noise variables ¢;
are independent N'(0,0%). The x; are independent of
€;, are uniformly bounded by M, and are zero-mean for
simplicity. Assume {E[z;z;]} satisfy the conditions of
LemmalI| for a hierarchical set of clusters H*. Let T de-
notes the smallest difference (gap) between the minimum
pairwise covariance of leaf variables within any cluster
and the maximum covariance between leaf variables in
different clusters. Suppose we observe n i.i.d noisy real-

izations {y%k), ..

,yz(,k)}zzl of the p leaf variables, and
{ri; = 130, yl(k)y](-k)} denote the empirical covari-
ances. Let § > 0. If n/logn > log(ci1p®/3)/cat?, then
with probability > 1 — 0, the agglomerative clustering al-
gorithm of Figure |I| applied to {7;;} recovers H*. Here
c1,ce > 0 are constants that depend on M and o2,
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Figure 2: Performance comparison of global fusion, FDR,
and the max statistic in transform and canonical domains,
for weak patterns generated according to a hidden multi-
scale Ising model.

The theorem implies that only O(log p) measurements are
needed to learn hierarchical clustering, and hence the pro-
posed transform, in a network with p nodes.

5 Simulations

We simulated patterns from a multi-scale Ising model de-
fined on a tree-structured graph with p = 1296 leaf nodes
with degree d = 6 and depth L = 4. The network obser-
vations are modeled by adding white gaussian noise with
standard deviation ¢ = 0.1 to these patterns. This im-
plies that a weak pattern is characterized by signal strength
u < oy/2logp = 0.38. We generate weak patterns with
signal strength g varying from 0.06 to 0.2 and compare
the detection performance of the max statistic in transform
and canonical domains, and the global aggregate statis-
tic, for a target false alarm probability of 0.05. We also
compare to the FDR (False Discovery Rate) (Benjamini &
Hochberg 1995) which is a canonical domain method that
orders the measurements and thresholds them at a level that
is adapted to the unknown sparsity level. The probability
of detection as a function of signal strength is plotted in
Figure 2| Detection in the transform domain clearly out-
performs other methods since our construction exploits net-
work node interactions.

The algorithmic complexity of hierarchical clustering p ob-
jects is O(p? log p), which essentially dominates the com-
plexity of the detection procedure we propose.

Appendix

Proof of Theorem [k Each unbalanced Haar basis vector
b € B (except for the global summary vector 1./ \/m )
has one vanishing moment, i.e. bT1 = 0. Therefore, the
only basis vectors with non-zero coefficients are the ones
whose support contains a pair of nodes with different acti-
vation values. The number of node pairs with different ac-
tivation values can be bounded by the total number of edge
flips (variables that do not agree with their parent variables)
in the tree. Let D, denote the number of edge flips at level
£. Since there are no more than dL basis vectors supported
on a node pair with different activation values, the total
number of non-zero coefficients | B x| o < dL Y, D.

Now observe that the tree-structured Ising model essen-
tially specifies that edge flips are independent and occur
with probability ¢, = 1/(1 + ) = 1/(1 + d°*) at
level ¢. That is, the number of flips per level D, ~
Binomial(| E|, ¢/) where E; (= d*) denotes the number of
edges atlevel £. Let ¢/ = L(1 — ) = (1 — ) log, p. Now
d“1=P) /2 < |Ey|qe < d**~F), and therefore | Ey|qp — oo
as p — oo for all £ > . Invoking the relative Cher-
noff bound, we have: For any ¢ > ¢, with probability >
1-6/L, 27 Eslqr < Dy < 2|Ey|qq for p large enough.We
now have the following bound: With prob > 1 —§
4 L

IB"xllo < dLO)_Di+ Y. Dy)

/=1 =041
4 L
< ALY |Ed+ ) 2|Elq) < 3dL2d"7).
=1 0=0'+1

Proof of Theorem [2; For ¢ < {y, 7, = oo implies that
the probability of edge flip at level ¢, go = 0. Following
Theorem [I] proof, the transform sparsity bound still holds.

To evaluate the canonical domain sparsity, we condition
on patterns for which the root variable is zero (inactive).
Let A, denote the number of variables that are active (take
value 1) at level £. Since gy = 0 for £ < ¢, there are no
flips and hence no variables are active up to level ¢, i.e.
Ay = 0 for £ < ¢y. We argue that the canonical sparsity is
governed by the number of nodes that are activated by flips
at level ¢y. Flips at lower levels might activate/de-activate
some of the nodes but their effect is insignificant.

First, observe that the number of active variables at level
£y, conditioned on the root variable being inactive, is sim-
ply the number of edge flips Dy, atlevel £y, i.e. Ay, = Dy,.
Consider ¢ > ¢;. Let M, denote the number of active vari-
ables at level ¢ whose parents were inactive, and let N, de-
note the number of active variables at level £ whose parents
were also active. Therefore, Ay = M, + N,. Observe that,
conditioned on the values of the variables at level £ — 1,

M4|A5_1 ~ Binomial((\Eg_1| — Ag_l)d, qE)
Ng|Ag_1 ~ BiIlOIl’lial(Ag_1Cl7 1-— q@)
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To gain some understanding for the canonical sparsity, we
first look at the expected canonical sparsity. Note that
Ellxlo] = E[Az] = E[E[AL|4,-)] = E[E[M; +
Np|Ap—1]]- For the lower bound, we proceed as follows.
E[AL] Z E[]E[NL|AL,1H Z E[AL,ﬂd(]. — qL). NOW,
repeatedly applying similar arguments for ¢ > ¢,

Elllxllo] > E[Ag,]d" T, (1~ r)

> |Egylge,d™ 0 (1 — gg, )"0

dbo(1=5)
> 7dL7[0 1— d*fgﬁ L—2g
ST

1 1
_ 7de*£06 1—p-@ log, p
5 (I=p7%)

B > Cde*ZOB _ cplfa7
where ¢ < 1. The second step uses the fact that 1 — ¢, de-
creases with £, and that Ay, = Dy, ~ Binomial(| Ey, |, qs, )-
The last inequality holds for large enough p. For the upper
bound, we proceed as follows.

E[AL]

E[E[My + Np|AL—1]]
= E[(|EPr-1| — Ar—1)dqr + Ar—1d(1 — q1.)]
|Er—1ldqr, + E[AL_1]d

AN

Repeatedly applying similar arguments for £ > ¢y, we get:

L—{g
Elllxllo] < D |Breldqr—csr +E[Ag]d" %

=1
L—fo

< Z de—(L—Z-I-l)ﬂ + |EZ0 |C]é0 dL—Zo
=1

< Ldlq—(o+1)B + dlo(1=8) gL—to

< (L+1)d"d="" < C(log,p)p'~*,

where C' > 1. The second step uses the fact that Ay, =
Dy, ~ Binomial(| Ey, |, gz, )-

We now show that similar bounds on canonical sparsity
hold with high probability as well. For this, we will in-
voke the relative Chernoff bound for binomial random vari-
ables M, and N,. First, we derive a lower bound on A,
for £ > /gy recursively as follows. Recall that A, =
Dy, ~ Binomial(|Ey,|, q¢,) and using relative Chernoff
bound as in the previous proof, w.p. > 1 —¢/L, Agy =
Dy, > E[Dy,]/2 = |Ee,|qe, /2 > d°(1=8) /4 — oo since
by = %L = %logdp — 00. Now Ay,41 > Nygya.
And E[NZ0+1|A£0] = Afod(]- - qfo-i-l) > Azod(l -
q,) = Agd(l — d~*f) = Agd(l — p~*). Thus,
E[Ngy+1|Ae,] = 0o w.p. > 1 — /L. Conditioning on the
values of the variables at level ¢y and using relative Cher-
noff bound, we have with probability > 1 — 2§/L,

> E[Ngyt1]Ag](1 — €r5+1)
> Azod(l - p_a)(l - 650+1)

3log(L/5) 3log(L/5)
here = <
WIS ot \/ E[Ngy+11 4] =\ Agd(d —p=)

< ¢ p 30 /loglogp < 1

Apg+1 > N1

for p large enough and ¢’ > 0 is a constant. Notice that
Agy+1 — oo with probability > 1 — 2§/L. Now con-
sider any ¢ > {y and assume that for all £ > ¢ >
by, Ap > Ag/_ld(l — pia)(l — Egl), where €y <
c’p_%(l_ﬁ)\/loglogp < 1, and Ay — oo with prob-
ability > 1 — (¢ — £y + 1)6/L. We show that similar
arguments are true for Ay41. Recall that Ay11 > Nygq.
And E[Ngi1]Af] = Aed(1 — qr1) = Aed(1 — q4,) >
Aed(1 — p=®). Thus, E[Ny11]A¢] — oo wh.p. since
Ay — oo. Now, conditioning on the values of the vari-
ables at level ¢ and using relative Chernoff bound, we have
with probability > 1 — (£ — ¢y +2)d/L,

E[Net1|Ad(1 = €o41)
Aed(1 = p~*)(1 — €r41)

3log(L/9) 3log(L/9)
_ <
where €41 \/E[Ne+1|Aé] —\ Ad(1 —p)
) 3log(L/0)
TN\ Ay (1 = pre)fri=togti=boIry, _, (1 —ep)

<cp %17 /loglogp

The last step follows by recalling that Ay, > d‘(1=F) /4 =
p%(lfﬁ)/4 and (1 — p=@)t+i=to > (1 — p=o)Ltl-to —
(1 — p~)(-a/Blogaptl ~ ¢/ for large enough p.
Also, ¢y < 1/2 for large enough p and hence
AT, (1 — ep) > d(d/2)""% > 1. Thus we
get, with probability > 1 — 6, for all £ > ¢,

=P ) T gy 1 (1~ err)

Apy1 > Noepp >
>

Ay > Ay, dt—to (1

where €y < c’p_‘%ﬁ(l_ﬂ)\/log log p < 1. Finally, we have
a lower bound on the canonical sparsity as follows: With
probability > 1 — 4, ||x|lo = AL, and

Ap> Apd (1= p=)(1— ¢ p~ "7 logp))L—"
2 cd@g(l—ﬁ)dlj—lo _ chd—Kgb’ — cpl—oz

where we use the fact that (1 — p~®)!°ga P > ¢ > 0 for
large enough p. Also note that ¢ < 1.

For the upper bound, recall that Ay = M+ N, and proceed
recursively using relative Chernoff bound for both M, N,.
For details, see (Singh, Nowak & Calderbank 2010).

Proof of Theorem Bt Consider the threshold ¢ =

202(1 + ¢) log p, where ¢ > 0 is an arbitrary constant.
Since the proposed transform is orthonormal, it is easy to
see that under the null hypothesis Hy (no activation), the
empirical transform coefficients by ~ A(0,02). There-
fore, the false alarm probability can be bounded as follows:

Py (max[bly| > 1) = 1—T_, Py, (bly] <1)

292 1\
< 1—(1—2et/%)f’:l—(l—pm) -0
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Under the alternate hypothesis H1, the empirical transform
coefficients bly ~ N(ublx,0?). Therefore, the miss
probability can be bounded as follows:

Py, (max [b] y| < t) < Tprcso PN (ub] x, 0%) < 1)
= ;presoPN(0,0%) <t — p[blx|)
My rxco PN (0,0%) > —t + p[bi x])
= Wiprao PN (0,0%) <t — pfb] x|)
< PN(0,0%) <t— pmax b7 x|)

In the second step we use the fact that P(|a|] < t) < P(a <
t) and P(]a| <t) < P(a > —t). Thus, the miss probabil-
ity goes to zero if pmax; |b? x| > (1+¢)t forany ¢’ > 0.

AN

The detectability threshold follows by deriving a lower
bound for the largest absolute transform coefficient. The
energy in the largest transform coefficient is at least as large
as the average energy per non-zero coefficient, and hence
max; b x| > \/|x[lo/|[BTx]|o. Invoking Theoremfor
patterns that correspond to the root value zero, with proba-
bility > 1 — 24, max; |b? x| > ¢ plP=)/2 where ¢ > 0 is
a constant. Patterns that correspond to the root variable tak-
ing value one are canonically non-sparse with even larger
|Ix|lo- Thus, the same lower bound holds in this case.

Proof of Theorem [4: The true hierarchical structure H*
between the leaf variables can be recovered if the empirical
covariances {7;; } satisfy the conditions of Lemma[l] Since
the true covariance r;; = E[(y;y;)] = E[(z;z;)] fori # j
(the auto-covariances are not important for clustering) sat-
isfy these conditions, a sufficient condition for recovery of
the structure is that the deviation between true and empir-
ical covariance of the observed variables is less than 7/2,
i.e. max j [y —ri| < 71/2.

To establish this, we study the concentration of the em-
pirical covariances around the true covariances. Since y
is the sum of a bounded random variable and gaussian
noise, it can be shown (Singh et al. 2010) that v, :=
yfk)yyc) satisfies the moment condition E[|vs, — E[vg][P] <
plvar(vg)h?=2 /2 for integers p > 2 and some constant
h > 0. We can now invoke the Bernstein inequality:

" 2
Z var(v) | <e™'
k=1

n

P %Z(vk — E[vg]) > %

k=1
for 0 <t < /> ,_, var(vg)/(2h). Now, straight-forward
computations show that ¢; := o < var(v,) < 20* +

4M?0? + 4M* =: c,. And we get

1 n 2t\/5 —¢2
Pl - —E ’
<n kzzjl(vk [Uk]) > \/ﬁ > <e
Lett = /n7/(4v/calogn).Then 0 < t < /nci/(2h) <
/> p—y var(vg)/(2h) for large enough n and hence ¢ sat-

isfies the desired conditions. Similar arguments show that

—vy, also satisfies the moment condition. Using this and
taking union bound over all elements in similarity matrix,

Plmax [7iy = rig| > 7/2) < 2pPe 7/ (exlogm),
Thus, the covariance clustering algorithm of Figure
recovers H* with probability > 1 — ¢ if n/logn >
16¢o log(2p?/8)/72.
Acknowledgements: This work was supported in part by
NSF under grant DMS 0701226, by ONR under grant

N00173-06-1-G006, and by AFOSR under grants FA9550-
05-1-0443 and FA9550-09-1-0423.

References
A.-Berry, L., Broutin, N., Devroye, L. & Lugosi,
G. (2009), ‘On combinatorial testing problems,

http://arxiv.org/abs/0908.3437".

A.-Castro, E., Candés, E. .
‘Detection of an abnormal
http://arxiv.org/abs/1001.3209°.

A.-Castro, E., Candés, E. J., Helgason, H. & Zeitouni, O. (2007),
‘Searching for a trail of evidence in a maze’, Annals of
Statistics 36, 1726-1757.

A.-Castro, E., Donoho, D. L. & Huo, X. (2005), ‘Near-optimal
detection of geometric objects by fast multiscale methods’,
IEEE Trans. Info. Theory 51(7), 2402-2425.

Benjamini, Y. & Hochberg, Y. (1995), ‘Controlling the false dis-
covery rate: a practical and powerful approach to multiple
testing’, Journal Royal Stat. Soc: Series B 57, 289-300.

Falk, H. (1975), ‘Ising spin system on a cayley tree: Correla-
tion decomposition and phase transition’, Physical Review
B 12(11).

Girvan, M. & Newman, M. E. J. (2002), ‘Community structure in
social and biological networks’, Proc. Natl. Acad. Sci. USA
99(12), 7821-7826.

Ingster, Y. 1., Pouet, C. & Tsybakov, A. B. (2009), ‘Sparse classi-
fication boundaries, http://arxiv.org/abs/0903.4807".

Ingster, Y. I. & Suslina, 1. A. (2002), Nonparametric goodness-of-
fit testing under Gaussian models.

Jager, L. & Wellner, J. A. (2007), ‘Goodness-of-fit tests via phi-
divergences’, Annals of Statistics 35, 2018-2053.

Jin, J. & Donoho, D. L. (2004), ‘Higher criticism for detect-
ing sparse heterogeneous mixtures’, Annals of Statistics
32(3), 962-994.

Lee, A. B., Nadler, B. & Wasserman, L. (2008), ‘Treelets - an
adaptive multi-scale basis for sparse unordered data’, An-
nals of Applied Statistics 2(2), 435-471.

Murtagh, F. (2007), ‘The haar wavelet transform of a dendro-
gram’, J. Classification 24, 3-32.

Ramasubramanian, R., Malkhi, D., Kuhn, F., Balakrishnan, M. &
Akella, A. (2009), On the treeness of internet latency and
bandwidth, in ‘Proc. of SIGMETRICS, Seattle, WA’.

Sankaranarayanan, L., Kramer, G. & Mandayam, N. B. (2004),
Hierarchical sensor networks:capacity bounds and coop-
erative strategies using the multiple-access relay channel
model, in ‘IEEE Comm. Soc. Conf. Sensor & Ad Hoc
Comm. Nwks’.

Singh, A., Nowak, R. & Calderbank, R. (2010), ‘Detecting
weak but hierarchically-structured patterns in networks,
http://arxiv.org/abs/1003.0205v1’.

Varshney, P. K. (1996), Distributed Detection and Data Fusion,
Springer-Verlag New York Inc.

Yu, H. & Gerstein, M. (2006), ‘Genomic analysis of the hierarchi-
cal structure of regulatory networks’, Proc. Natl. Acad. Sci.
USA 103, 14724-14731.

& Durand, A. (2010),
cluster in a network,

756



