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The supplementary material contains proofs of the main theorems (Section
1), and two additional experiments (Section 2): a reconstruction of camera ori-
entation from images; and an additional set of document retrieval experiments,
using a language graph constructed via the Chow-Liu algorithm.

1 Proofs

1.1 Preliminary results

Given any operator A : G — F, the operator norm of A is written [|Al|,, and
its Hilbert-Schmidt norm (where defined) is
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where the ¢; form a complete orthonormal system (CONS) for F, and the ¢;
form a CONS for G. The set of Hilbert-Schmidt operators has the inner product
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We have defined the rank one operator f ® g : G — F such that f ® g(h) =
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It follows that
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and in particular,
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We can extend this notation to higher order: for instance, given the product
space F" and functions a; € F and b; € F for i € {1,...,n},
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‘We use the result
Al —B ' =A"Y(B-A)B™. (2)

Further, following [3], we may define the empirical regularized correlation oper-
ator Vxy such that

Cxy = (Cxx +2nt) Dy (Gy +0ur) g
where we have ||y || < 1.
1.2 Proof of Theorem 1
We now prove the result
[t ix — x| = 0p00E + NP, (4)

We define a regularized population operator
Uy|x =Cyx (Cxx + A )™

and decompose (4) as

|

There are two parts to the proof. In the first part, we show convergence in
probability of the first term in the above sum. In the second part, we demon-
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strate that as long as Cy xCy % is Hilbert-Schmidt, the second term in the sum
converges to zero as \,, drops.

Part 1: We make the decomposition
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The first term is bounded according to
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and we know from [2, Lemma 5] that HCYX - éy){H o= O,(1/+/m). For the
H

. . -1 .
Cyvx (CXX + Amf) — (Cxx + A\ 1)

’HS



second term, we first substitute (2) and then (3) to obtain
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Part 2: HCYXC)_(ﬁ( —Cyx (CXX + )\mI)iluHS = O(/\él)
Proof: We first expand the covariance operator Cx x in terms of the complete
orthonormal system (CONS)

Cxx = Z vipi @ i (5)
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Then
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Next, define
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Assuming Cy Xc;(; is Hilbert-Schmidt, we have that
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Furthermore,
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where we have used the arithmetic-geometric-harmonic means inequality. There-

fore we need
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If we assume that
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which corresponds to Cy xCy % being Hilbert-Schmidt, then the squared norm
difference in (6) will approach zero with rate A,,c.

1.3 Proof of Theorem 2

We make a similar decomposition to the proof of Theorem 1, yielding
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The third term follows similar reasoning. The second term is bounded according
to
. 4 —1 HCYX _ény :
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Convergence in probability of the three terms follows from the convergence of

‘CYX _CAYXHHS’ and HCXX _CAXXHHS’ as in the

each of HCYY — éyY“H57
proof of Theorem 1.



We next address the convergence of
H(ny + M) Cyx (Cxx 4+ AmI) ™! = Gy CxvCik HHS

for A, approaching zero. We use the earlier decomposition of Cxx in terms of
its eigenfunctions ¢; from (5), and further require that ¢; be the eigenfunctions
of CYYa
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Thus
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Furthermore, we have
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where we again use the arithmetic-geometric-harmonic mean inequality. As-
suming A\, < 71 and \,, < vy, it follows that
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and thus
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This is equivalent to requiring that Cy ¢Cy xCy % be Hilbert-Schmidt as a con-
dition of convergence.



1.4 Proof of Theorem 3

Our bound is in terms of the following constants:
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where R,, is the maximal ratio of the RKHS norm of the pre-message to that
of the message, Rp is maximal ratio of the RKHS norm of the pre-belief to
that of the belief, and R, is the maximal inverse of the RKHS norm of f,.
R is the largest of these three quantities. R, and Rp quantify the degree of
smoothing of the RKHS function after message propagation, while R, quantifies
the smoothness of the RKHS function f;, itself. Under our assumption that 0 <

k‘(l‘,m/) = <gp(l‘),<p(q;/)>]_. <1, we have HUXtdﬁllXSHg <1 and HCX.?SXS’ ) <1.
Proof We first bound the difference between the true message ms; = M{'S—L{Xt X,

and the message produced by propagatlng the true plre—messauge’7 through the
estimated embedding operator m;s := Mtsl/{ -1y
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with probability at least 1 — ¢ simultaneously for all 2(n — 1) messages, using
the union bound. The first inequality follows from ||Tal| < ||T|, [|al/ £z, and
the relation between the spectral norm and Hilbert-Schmidt norm of opera-
tors, i.e. |71, < ||7|| yg- We then have
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Note that 1y, is different from the estimated message 15 (zs) 1= Mt—'s—l;lxdﬁl X o(xs),
+ s

where both the pre-message and the conditional embedding operator are esti-
mated. Next, we bound

||mts - mts”]—‘ Hmts - mts”]—‘ ||mts - mts”]—‘
Imesllz = sz [[mes ||
HMguxgt,l‘X — MUy
= L te
Hmtsnf
‘ - Mts
<A (13)
[mes || =



where we use [y a, -1 < 1. Furthermore, we have:
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We can then prove by induction that
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where 7; is the subtree induced by node ¢ when it sends a message to s. For a
node i in the subtree 7;, h; denotes the depth of this node. The root node of
the subtree 7;, i.e. node t, starts with depth 0, i.e. hy = 0.
For a leaf node, the subtree 7; contains a single node, and ms = f,,. We
f:rt _fxt HAts_Ats
z 2 <e. (16)

have
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Assume that (15) holds for all messages coming into node ¢. Combining (13)
and (14),
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where in the last equality we have grown the tree by one level. Applying a

similar argument to the final belief By and using HCXdSX

< 1, we complete
2
the proof. |



2 Additional experiments

Finding camera rotations: We apply NTGM to to a computer vision prob-
lem as in [5]. We try to determine the camera orientation based on the images
it observes. In this setting, the camera focal point is fixed at a position and
traces out a smooth path of rotations while making observations. The dataset
is generated by POVRAY'! which renders images observed by the camera. The
virtual scene is a rectangular-shaped room with a ceiling light and two pieces of
furniture. The images exhibit complex lighting effects such as shadows, inter-
reflections, and global illumination, all of which make determining the camera
rotation difficult especially for noisy cases.

The sequence of image observations contains 3600 frames, and we use the
first 1800 frames for training and the remaining 1800 frames for testing. The
dynamics governing the camera rotation is a piece-wise smooth random walk.
This is an unconventional graphical model in that the camera state is a rotation
matrix R from SO(3); and the observations are images which are high dimen-
sional spaces with correlation between pixel values. The graph structure for this
problem is a caterpillar tree in Figure 1(b), and one performs online inference.

We flatten each image to a vector, and apply a Gaussian RBF kernel. The
bandwidth parameter of the kernel is fixed using the median distance between
image vectors. We use a Gaussian RBF kernel between two rotations R and R,
i.e., k(R, R) := exp(—0o||R — R||?). Using this kernel, we find the most prob-
able camera rotation matrix by maximizing the belief B(R) over the rotation
group [1].

We compare our method to a Kalman filter and the method of [5]. For the
Kalman filter, we used the quaternion corresponding to a rotation matrix R
as the state and the image vectors as the observations. We learn the model
parameters of the linear dynamical system using linear regression. In Song et
al., an approximation algorithm is used for aggregating dynamical system his-
tory and the current image observation. We expect NTGM which incorporates
both information in a principled way should outperform the method by [5]. We
use tr(RT R) between the true rotation R and the estimated one R as perfor-
mance measure (this measure ranges between [—1, 3], and the larger the better
performance).

We add zero mean Gaussian white noise to the images and study the per-
formance scaling of the three methods as we increase the noise variance. We
observe that the performance of NTGM degrades more gracefully than the other
two methods (Figure 1(a)). For large noise, Kalman filter overtakes the method
proposed by [5]. In this setting, the images are very noisy, and the dynamics
become the key to determine the camera orientation. In this regime, NTGM
significantly outperforms the other two methods, with 40% higher trace mea-
sure.

Additional cross-language document retrieval experiment: We ob-
tained a graphical model on languages by applying the Chow-Liu algorithm,
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Figure 1: Performance of different methods vs observation noise, camera rota-
tion problem.
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Figure 2: (a) A graphical model for cross-language document retrieval, obtained
via Chow-Liu with the HSIC dependence measure. The target document was in
English. (f,g,h) The recall score for NTGM, bilingual topic model and normal-
ized file size method for retrieval conditioned on document observations from
other languages.

using the Hilbert-Schmidt Independence Criterion (HSIC) [4] for the required
statistical dependence measure (applying the same kernels that were used in our
inference algorithm). Our goal was to retrieve English documents conditioned
on documents from other languages. Besides the different graph structure, all
remaining experimental settings were identical to those of the linguistic simi-
larity tree experiments (Figure 2(e) in the main document). Results are shown
in Figure 2, and are qualitatively similar to the cross-language retrieval results
using the linguistic similarity tree (Figures 2(f,g,h) in the main document).
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