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Abstract

Contrastive Divergence (CD) is a popular
method for estimating the parameters of
Markov Random Fields (MRFs) by rapidly
approximating an intractable term in the gra-
dient of the log probability. Despite CD’s
empirical success, little is known about its
theoretical convergence properties.

In this paper, we analyze the CD1 up-
date rule for Restricted Boltzmann Machines
(RBMs) with binary variables. We show that
this update is not the gradient of any func-
tion, and construct a counterintuitive “regu-
larization function” that causes CD learning
to cycle indefinitely. Nonetheless, we show
that the regularized CD update has a fixed
point for a large class of regularization func-
tions using Brower’s fixed point theorem.

1 INTRODUCTION

Markov Random Fields (MRFs) are an important class
of probabilistic models that are useful for denoising,
prediction, and density estimation (Cross and Jain,
1981; Malfait and Roose, 1997; Portilla et al., 2003;
Roth and Black, 2005; Li, 1994; Wainwright, 2008). In
particular, MRFs subsume the Restricted Boltzmann
Machines (RBMs) (Hinton, 2002; Smolensky, 1986),
which are essential for learning Deep Belief Networks
(Hinton et al., 2006; Bengio et al., 2007; Hinton and
Salakhutdinov, 2006).

Nearly every application of MRFs requires estimating
their parameters from data. The natural maximum-
likelihood parameter estimation is challenging, be-
cause the log probability’s gradient is the difference
of two expectations, of which one cannot be easily
computed. As a result, a number of approximate
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parameter estimation methods have been developed.
Pseudolikelihood (Besag, 1977) and Score Matching
(Hyvarinen, 2006) are tractable alternatives to the
log probability objective which are easier to optimize,
and Loopy Belief Propagation and its variants (Wain-
wright, 2008) directly approximate the intractable ex-
pectation in the gradient. This paper focuses on Con-
trastive Divergence (CD) (Hinton, 2002), which di-
rectly approximates the intractable expectation with
an easy Monte Carlo estimate. Being trivial to imple-
ment, CD is widely used (Hinton et al., 2006), but its
convergence properties are not entirely understood.

In this paper we gain a better understanding of the
noiseless CD1 update rule for binary RBMs, and report
the following results:

• We provide two proofs showing that the CD up-
date is not the gradient of any objective function.
This result was first proved by Tieleman (2007)
and stated by Bengio and Delalleau (2009).

• We construct an example of a nonconvex regu-
larization function that causes the CD update to
cycle indefinitely.

• The CD update is shown to have at least one fixed
point when used with L2 regularization.

2 RELATED WORK

There has been much work attempting to elucidate
the convergence properties of CD. Some of this work
shows that CD minimizes a known cost function when
used with specific Markov chains. For example, if
the Markov chain used to estimate the intractable
expectation (Hinton, 2002) is the Langevin Monte
Carlo method, then CD computes the gradient of the
score-matching objective function; similarly, when the
Markov chain samples a random component of the
data vector from its conditional distribution, then CD
becomes the gradient of the log pseudo-likelihood of
the model (Hyvarinen, 2007). Other work has pro-
vided general conditions under which CD converges to
the maximum likelihood solution (Yuille, 2004), which
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mainly depend on the rate of convergence of the said
Markov chain. A continuous-time version of CD is
also known to converge to the maximum-likelihood
solution for Gaussian models under broad conditions
(Movellan, 2008). An analysis of CD in terms of an
expansion of the log probability is found by Bengio
and Delalleau (2009). However, we are unaware of
convergence-related theoretical results that are appli-
cable to the commonly used CD1 for training binary
Restricted Boltzmann Machines.

3 PRELIMINARIES

In this section, we describe and define the Restricted
Boltzmann Machine and the Contrastive Divergence
update.

3.1 RESTRICTED BOLTZMANN

MACHINES

A binary RBM defines a probability distribution over
binary vectors V ∈ {0, 1}n and H ∈ {0, 1}m by the
expression

P (V,H) =
exp(−E(V,H))

Z
(1)

where the energy E(V,H) is defined as

E(V,H) = −V ⊤WH − V ⊤bV − H⊤bH (2)

and the partition function Z is

Z =
∑

V ∈{0,1}n

∑

H∈{0,1}m

exp(−E(V,H)) (3)

The marginal probability P (V ) is
∑

H∈{0,1}m P (V,H),

and its logarithm log P (V ) is equal to

V ⊤bV +
m

∑

j=1

log
(

1 + exp
(

V ⊤W(:,j) + bHj

))

− log Z

A standard way of estimating the RBM’s parameters
from a training set {V1, . . . , VN} is by finding the pa-
rameters that maximize the average log probability

L = ED(V )[log P (V )] (4)

where D(V ) is the empirical data distribution (which
is a uniform mixture of delta distributions, one for
each training point). The parameters maximizing the
average log probability L are typically found with a
gradient-based optimization method. The gradient of
L with respect to the weights of the RBM is given by

∂L

∂bV

= ED(V,H) [V ] − EP (V,H) [V ] (5)

∂L

∂bH

= ED(V,H) [H] − EP (V,H) [H]

∂L

∂W
= ED(V,H)

[

V H⊤
]

− EP (V,H)

[

V H⊤
]

where D(V,H) = P (H|V )D(V ). In each equation,
expectations with respect to D(V,H) are easy to esti-
mate because D(V ) is trivial to sample and the distri-
bution P (H|V ) is factorial (eq. 1 implies P (H|V ) =
∏m

j=1 P (Hj |V )). In contrast, there is no easy way to
estimate expectation with respect to P (V,H).

3.2 CONTRASTIVE DIVERGENCE

Contrastive Divergence (CD) (Hinton, 2002) is an al-
gorithmically efficient procedure for RBM parameter
estimation. The CD update is obtained by replacing
the distribution P (V,H) with a distribution R(V,H)
in eq. 5

∆bV CD(W ) = ED(V,H) [V ] − ER(V,H) [V ] (6)

∆bH CD(W ) = ED(V,H) [H] − ER(V,H) [H]

∆W CD(W ) = ED(V,H)

[

V H⊤
]

− ER(V,H)

[

V H⊤
]

Drawing samples from R(V,H) is cheaply done as fol-
lows:

1. Let V ′ ∼ D(V ) be a random training point.

2. Sample H ′ from P (H ′|V ′).

3. Sample V from P (V |H ′).

4. Sample H from P (H|V ).

5. return (V,H).

Although the distribution R is obtained by starting at
the data distribution and running the Gibbs sampling
Markov chain for one step, the term ER(V,H)

[

V H⊤
]

still reflects the kind of data the model “likes”, causing
the difference to often point in a direction of improve-
ment. See the discussion in (Hinton, 2002).

In addition, CD has an “objective function”,

CD(W ) = EP (H|V )D(V )[−E(V,H)]−ER(V,H)[−E(V,H)],
(7)

whose gradients ∇CD(W ) are close—but not equal—
to the CD update ∆CD(W ) (Hinton, 2002).

Standard CD learning proceeds by repeatedly chang-
ing the RBM parameters W according to the CD up-
date ∆CD(W ) with some learning rate1. The regular-
ized CD update, ∆CDF (W ), with the regularization
function F , is defined by the equation

∆CDF (W ) = ∆CD(W ) + ∇F (W ) (8)

so, for example, if F (W ) = −λ/2 · ‖W‖, then
∆CDF (W ) is the CD update with L2 weight decay.

1We abuse the notation ∆CD and “the CD update”:
an actual update must involve a learning rate which we
omit.
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4 THE CD UPDATE DIRECTION IS

NOT THE GRADIENT OF ANY

FUNCTION

Finding a function H(W ) whose gradients are precisely
equal to ∆CD would shed light on the type of solutions
that CD tends to find, and would also let us conclude
that CD always converges. However, in this section we
prove that ∆CD is not a gradient of a function. Even
more surprisingly, we construct a regularization func-
tion that causes the CD update to cycle indefinitely
around a circle.

4.1 FIRST PROOF

We present two proofs showing that the CD update is
not the gradient of any function.

Assume, in order to obtain a contradiction, that there
is a function H such that ∇H = ∆CD. Consider an
RBM with one visible unit and one hidden unit, and
a single training point where the visible unit is in the
zero state. The bias to the hidden unit is fixed to
zero, so that there are only two parameters: w, the
connection between the two units, and bV , the bias to
the visible unit. The parameters are jointly written as
W = (w, bV ).

Now, because ∆CD is sufficiently smooth, basic cal-
culus states that

∂2H(W )

∂w∂bV

=
∂2H(W )

∂bV ∂w
∂

∂w

∂

∂bV

H(W ) =
∂

∂bV

∂

∂w
H(W )

∂

∂w
∆bV CD(W ) =

∂

∂bV

∆wCD(W ) (9)

is valid for all W .

We investigated whether those are equal, and found,
with bV = 0 and w = 1, that they are not. A straight-
forward but tedious derivation reveals that

∂

∂w
∆bV CD −

∂

∂b
∆wCD =

e · (e − 1) · (e + 3)

8(e + 1)3
(10)

where e = exp(1). None of the terms in the numerator
are zero, so these two partial derivatives are not equal,
implying that no such function H exists.

4.2 SECOND PROOF

Our second proof involves a simulation and is impor-
tant for constructing a regularization function that
causes CD to cycle; it is essentially the proof in (Tiele-
man, 2007). As before, suppose that ∆CD were the
gradient of a function H. We can use the CD update

to compute the change in the value of H as we travel
along a path in the parameter space. If the path’s ini-
tial and final points are equal, then the total change
in the value of H, as measured by ∆CD, its gradient,
must be zero. Therefore, if we use the CD update to
numerically evaluate the change in H along a closed
loop, and find that the cumulative change in the value
of this presumed H is nonzero, then there cannot be
any function H of which ∆CD is the gradient.

Our example is the same 2-parameter RBM as before.
The path we follow, γ(t), traverses a circle whose ra-
dius is 1/(2π) and whose center is (2, 0) as t traverses
the interval [0, 1]; this radius ensures that the length
of the path is 1. The path γ begins at (2, 1/(2π)) and
proceeds in counter-clockwise direction. In particular,
γ(0) = γ(1).

We computed the total change in the supposed func-
tion H along the path γ using the CD update, which
turned out to be 0.008242 (see fig. 1); if the CD update
were the gradient of a function, this total change would
be zero. The total change is computed by traversing
the path with 105 equally-spaced steps, where at each
step, the change in the function’s value is proportional
to the length of the projection of the CD update onto
the path’s direction.2

4.3 STRONGER NEGATIVE

STATEMENTS

While we have shown that ∆CD is not the gradient of
any objective function, CD can still be minimizing a
function by having a positive inner-product with this
function’s gradient. This would imply that CD learn-
ing is guaranteed to find a local optimum of H, and
that CD learning never cycles.

We did not manage to prove that there cannot be such
an objective function. However, the following is true:
if there is no function whose gradient has a positive
inner-product with CD, then CD learning must some-
times fail to converge.

Indeed, if CD always converges then the total length of
the path followed by CD learning, from θ to the con-
vergence point that it reaches, is clearly being mini-
mized by CD. Therefore, this function’s gradient must
be positively correlated with CD.

2We are reasonably certain that the reported value of
the function H is computed accurately, because we tried
traversing the path with 106 steps, and obtained an answer
whose 6 significant digits match 0.008242. Since the rect-
angle method is used to compute this integral (whose error
is O(n−2)), we can be fairly confident in this value.
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Figure 1: The surface of the supposed function H im-
plied by the CD update along the path γ described
in the text (blue curve). The figure shows that the
altitude of the final point is slightly greater than the
altitude of the initial point. Although the total ele-
vation along this closed path is slight, its existence is
sufficient to deduce that there is no function whose
gradient is equal to the CD update. The black curve
is the projection of the blue circle to the z = 0 plane.

4.4 CONVERGENCE-PREVENTING

REGULARIZATION

Using the above result, we construct a “regularization”
function F for which the update3

∆CDF (W ) = ∆CD(W ) + ∇F (W ) (11)

does not converge for the previously-described RBM,
and causes the optimization to cycle indefinitely. It is
not a function likely to be used in practice for regular-
ization, but it demonstrates how the fact that the CD
update is not a gradient can cause the optimization to
behave in unexpected ways.

We achieve this effect by choosing a function F satis-
fying the following criteria:

1. The function F causes ∆CDF (W ) to seem like it
is always “ascending” along the path γ.

2. The function F severely penalizes deviations from
the path γ.

Condition 2 ensures that parameters following
∆CDF (W ) tend to stay near the path γ, while con-
dition 1 causes the parameters cycle around it. As
we will see, a function satisfying condition 1 can be
constructed precisely because the CD update “thinks”
that traversing γ causes a total increase of 0.008 in H.

3If ∆CD were the gradient of H and we wished to op-
timize F + H, then its gradient would be eq. 11.

We now define the function F more formally. Let G(t)
be the change, as computed by ∆CD, between the
values of the presumed function H at γ(0) and γ(t).
Specifically, G(t) is defined by the integral

G(t) =

∫ t

0

∆CD(γ(τ))⊤γ′(τ)dτ (12)

The main fact about G is that G(1) ≈ 0.008 > 0.
Using G, we can define the values of the function F
along the path γ with the equation

F (γ(t)) = −G(t) + G(1) · t (13)

For this definition to be consistent, the above equation
must have F (γ(0)) equal to F (γ(1)) (simply because
γ(0) = γ(1)). And indeed,

F (γ(0)) = −G(0) + G(1) · 0

= 0

= −G(1) + G(1) · 1 = F (γ(1)) (14)

In fact, F is differentiable on each point of the circle
γ including γ(0) = γ(1) because

∂F (γ(0))

∂t
= −G′(0) + G(1)

= −G′(1) + G(1)

=
∂F (γ(1))

∂t
(15)

because G′(0) = G′(1) by eq. 12. Finally, we extend F
to R

2: F (x) is the value of F at the closest point to x
on γ (and 0 at the circle’s center), so F is differentiable
everywhere except in the circle’s center (which we set
to zero).

As a result, the update ∆CDF (W ) cancels out the ir-
regular effect of CD and preserves only the elevation
t · G(1), which is can be seen by computing the mag-
nitude of ∆CDF ’s projection on the direction of γ:

∆CDF (γ(t))⊤γ′(t) = ∆CD(γ(t))⊤γ′(t) + F ′(γ(t))⊤γ′(t)

= ∆CD(γ(t))⊤γ′(t) − G′(t) + G(1)

= G′(t) − G′(t) + G(1)

= G(1)

> 0 (16)

where we used the identity ∆CD(W )⊤γ′(t) = G′(t)
from the definition of G(t). This causes the parameters
to move in a constant speed along the circle γ provided
that the point stays near γ—which is easily arranged
using regularization.

For the regularization function, we added R(x) =
−10·‖x−γ‖1.3 to F , where ‖x−γ‖ is the distance from
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Figure 2: The surface of the “regularization” function
F that causes CD learning to cycle. The plot clearly
shows the contribution from G which is reflected in
slope of the circle, as well as the contribution from the
regularization.

x to the nearest point on γ. This regularization was
chosen to make the simulation work successfully. For
the simulation, we implemented F as described above
by computing approximate values for F (γ(t)) at 20,000
equally-spaced points (using the rectangle method, as
F (γ(t)) is an integral; eq. 13), and using cubic splines
to extend F (γ(t))’s definition to all 0 ≤ t ≤ 1. The
gradient ∇F was computed with numerical differenti-
ation (with a 10−7 stepsize); if the stepsize of CD is set
to 10−5, the update ∆CDF (W ) makes the parameters
cycle around γ indefinitely.

The resulting F is not differentiable at 0, which we
fix by multiplication with a smooth function whose
value is mostly 1 but is zero in a small neighborhood
of the circle’s center. The resulting product will be
unchanged in the region of interest, but the function
will be globally differentiable. This is done for the sake
of formality, because ∆CDF (W ) keeps the parameters
near γ which is far from the circle’s center, so F ’s
values at its neighborhood are irrelevant.

5 THE FIXED POINTS OF CD

We previously demonstrated negative statements
about the CD update, but now we show a more posi-
tive result. While we wish to show that CD converges,
we show instead that the L2-regularized CD has fixed
points, where a fixed point is a setting of the parame-
ters that is unchanged by the CD update. This is in-
teresting because if fixed points did not exist, we could
not even hope for CD to converge. The main result of

this section states that the regularized CD update of
fully visible Boltzmann Machines (BM) (Ackley et al.,
1985) has fixed points. A fully visible BM with binary
variables V ∈ {0, 1}n defines a probability distribution
by the expression

P (V ) = exp
(

V ⊤WV/2
)

/Z (17)

where W are its parameters, and its CD update is

∆CD(W ) = ED(V )

[

V V ⊤
]

− ER(V )

[

V V ⊤
]

(18)

where a sample from R(V ) is obtained by running a
number of Gibbs sampling sweeps initialized at the
distribution D(V ). Although our theorem is also valid
for standard RBMs, there is a subtlety that makes the
theorem less interesting in this case which we explain
later.

Our simple technical result is fairly general, stating
that any L2-regularized continuous weight update
U : R

n → R
n of bounded magnitude has a fixed

point. It implies the above, because the CD update
is continuous and bounded for binary (R)BMs. This
results in the following theorem.

Theorem 1. If U : R
n → R

n is a continous

bounded function and 0 < λ < 1, then the regularized

update Uλ(W ) = U(W ) − λW has a fixed point:

there is a setting of the parameters W ∗ so that

0 = Uλ(W ∗) = U(W ∗) − λW ∗.

When the distribution to be estimated, D(V ),4 is ex-
actly representable by a distribution of a BM with pa-
rameters W ∗ (say P (V ); so D(V ) = P (V )), then CD
is consistent in the sense that ∆CD(W ∗) = 0. This is
because the Gibbs sampling Markov chain leaves P (V )
invariant, causing the distributions D(V ), P (V ), and
R(V ) to be equal. However, no such result is known in
the general case, when D(V ) cannot be precisely ex-
pressed as the distribution of an BM—which is the typ-
ical situation when working with finite training sets.
Nonetheless, CD was suspected to have fixed points
on the basis of careful empirical evidence (Carreira-
Perpinan and Hinton, 2005).

The statement of the theorem is about the regularized
CD update, which does not apply to the pure CD up-
date ∆CD, which is a drawback. Nonetheless, there
are two reasons for which such regularization is desir-
able. First, parameter estimation methods are rarely
used without regularization, so the result is relevant to
the way CD is used in practice. Second, unregularized,
even the gradient of the log probability does not nec-
essarily have a fixed point, and, in particular, does not

4If we have an RBM, then D(V, H) = D(V )P (H|V ).
However, if we have a fully visible BM, then we only work
with D(V ).
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Figure 3: An illustration of Theorem 2 and of the effect of the L2 regularization on the CD update. Left: the
update defined by CD without regularization. The update has no fixed point in the plotted region (although it
may have a fixed point outside of it). Right: the update defined by CD with 0.2 L2 regularization. Observe
that all the arrows on the boundary of the square point to its inside, and hence, according to Brower’s fixed
point theorem, it must have a fixed point (which is found near (−1,−1)). In both figures, the axes correspond
to the parameters of the RBM described in section 4.

converge. To see why, consider the fully-visible binary
Boltzmann machine with one unit:

P (V = 1) = exp(θ)/(exp(θ) + exp(0))

P (V = 0) = exp(0)/(exp(θ) + exp(0))

If the training data consists of the single point {1},
then the gradient of dataset’s log probability,

∇θ log P (V = 1) = 1 − P (V = 1),

is never zero, implying that regularization is necessary
if we wish to obtain a statement of convergence or fixed
points.

5.1 THE FORMAL PROOF

In this section we prove Theorem 1. The proof uses
Brower’s fixed point theorem (e.g., Henle, 1994):

Theorem 2. Let B be any closed ball in R
k,

and let f : B → B be any continuous function

whose outputs are contained in B. Then f has a

fixed point—namely, there is an x∗ ∈ B such that

f(x∗) = x∗.

To prove Theorem 1, consider the function

f(W ) = W − Uλ(W ) = W − U(W ) − λW (19)

Let u be the upper bound on U , so ‖U(W )‖ ≤ u for
all W .

Now, for all W such that ‖W‖ ≤
u

λ
,

‖W − λW + U(W )‖ ≤ (1 − λ)‖W‖ + ‖U(W )‖

≤ (1 − λ)
u

λ
+ u

=
u

λ
(20)

where we used the triangle inequality and the fact that
1 − λ > 0. Therefore, when R = u/λ and B is the
closed ball {W : ‖W‖ ≤ R}, the function f satisfies
f(B) ⊆ B; furthermore, f is continuous since both U
update and the L2 regularization are continuous. This
lets us apply Brower’s fixed point theorem to f and
conclude that there is a W ∗ ∈ B such that f(W ∗) =
W ∗, or equivalently, that Uλ(W ∗) = 0.

5.2 APPLICATION TO RESTRICTED

BOLTZMANN MACHINES

We stated earlier that the above theorem is applica-
ble to the fully visible BM as well as to the standard
RBM, although we deemphasized the application to
the standard RBM. This was done because the theo-
rem is uninteresting for RBMs, as we can show that
fixed points trivially exist. Namely, by setting the
weights and the hidden biases to zero (W = 0 and
bH = 0 as in eq. 2), and fitting the visible biases
bV so that the marginal distributions P (Vi) match the
data marginal distributions D(Vi), the unregularized
CD can be seen to leave this parameter setting un-
changed. The result can be seen to remain valid even
if we introduce L2 regularization and slightly modify
the visible biases. This effect does not occur when CD
is used with fully visible BMs, because they do not
have trivial fixed points. Nonetheless, our theorem is
valid when we regularize the parameters to a non-zero
point, or, more ambitiously, blend the regularization
gradient with the gradient of an autoencoder objec-
tive, both of which will prevent the zero weights from
being stable.
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6 DISCUSSIONS AND

CONCLUSIONS

In this paper we gave proofs showing that CD is not
the gradient of any function and that it is possible to
construct regularization functions that cause it to fail
to converge. We also showed that regularized CD has
fixed points, which must be the case if CD really is
convergent. However, the main task of proving that
CD converges remains open.
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