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Abstract

With the goal to generate more scalable algo-
rithms with higher efficiency and fewer open
parameters, reinforcement learning (RL) has
recently moved towards combining classi-
cal techniques from optimal control and dy-
namic programming with modern learning
techniques from statistical estimation the-
ory. In this vein, this paper suggests the
framework of stochastic optimal control with
path integrals to derive a novel approach
to RL with parametrized policies. While
solidly grounded in value function estimation
and optimal control based on the stochastic
Hamilton-Jacobi-Bellman (HJB) equations,
policy improvements can be transformed into
an approximation problem of a path inte-
gral which has no open parameters other
than the exploration noise. The resulting
algorithm can be conceived of as model-
based, semi-model-based, or even model free,
depending on how the learning problem is
structured. Our new algorithm demon-
strates interesting similarities with previous
RL research in the framework of proba-
bility matching and provides intuition why
the slightly heuristically motivated proba-
bility matching approach can actually per-
form well. Empirical evaluations demon-
strate significant performance improvements
over gradient-based policy learning and scal-
ability to high-dimensional control problems.
We believe that Policy Improvement with
Path Integrals (PI2) offers currently one of
the most efficient, numerically robust, and
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easy to implement algorithms for RL based
on trajectory roll-outs.

1 Introduction

While reinforcement learning (RL) is among the most
general frameworks of learning control to create truly
autonomous learning systems, its scalability to high-
dimensional continuous state-action systems, e.g., hu-
manoid robots, remains problematic. Classical value-
function based methods with function approximation
offer one possible approach, but function approxima-
tion under the non-stationary iterative learning pro-
cess of the value-function remains difficult when one
exceeds about 5-10 dimensions. Alternatively, direct
policy learning from trajectory roll-outs has recently
made significant progress (Peters, 2007), but can still
become numerically brittle and full of open tuning pa-
rameters in complex learning problems. In new de-
velopments, RL researchers have started to combine
the well-developed methods from statistical learning
and empirical inference with classical RL approaches
in order to minimize tuning parameters and numeri-
cal problems, such that ultimately more efficient al-
gorithms can be developed that scale to significantly
more complex learning system (Koeber and Peters,
2009, Peters and Schaal, 2008b, Toussaint and Storkey,
2006).

In the spirit of these latter ideas, this paper addresses a
new method of probabilistic reinforcement learning de-
rived from the framework of stochastic optimal control
and path integrals, based on the original work of (Kap-
pen, 2007, Broek et al., 2008). As will be detailed in
the sections below, this approach makes an appealing
theoretical connection between value function approx-
imation using the stochastic HJB equations and direct
policy learning by approximating a path integral, i.e.,
by solving a statistical inference problem from sam-
ple roll-outs. The resulting algorithm, called Policy
Improvement with Path Integrals (PI2), takes on a
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surprisingly simple form, has no open tuning param-
eters besides the exploration noise, and performs nu-
merically robustly in high dimensional learning prob-
lems. It also makes an interesting connection to previ-
ous work on RL based on probability matching (Dayan
and Hinton, 1997, Peters and Schaal, 2008a, Koeber
and Peters, 2009) and explains why probability match-
ing algorithms can be successful.

2 Stochastic Optimal Control

In the analysis that follows we are making use of the
control theoretic notation from trajectory-based op-
timal control, however, with an attempt to have as
much overlap as possible with the standard RL nota-
tion (Sutton and Barto, 1998). We start our analysis
by defining a finite horizon reward function for a tra-
jectory τ i starting at time ti in state xti and ending
at time tN

R(τ i) = φtN +
∫ tN

ti

rt dt (1)

with φtN = φ(xtN ) denoting a terminal reward at time
tN and rt denoting the immediate reward at time t. In
stochastic optimal control framework (Stengel, 1994),
the goal is to find the controls ut that minimize the
value function:

V (xti) = Vt = min
uti:tN

Eτ i [R(τ i)] (2)

where the expectation Eτ i [.] is taken over all trajec-
tories starting at xti . We consider the rather general
control system

ẋ = f(xt, t) + G(xt) (ut + εt) = ft + Gt (ut + εt) (3)

with xt ∈ "n×1 denoting the state of the system,
Gt = G(xt) ∈ "n×p the control matrix, ft = f(xt) ∈
"n×1 the passive dynamics, ut ∈ "p×1 the control vec-
tor and εt ∈ "p×1 Gaussian noise with variance Σε.
As immediate reward we consider rt = r(xt,ut, t) =
qt + utRut where qt = q(xt, t) is an arbitrary state-
dependent reward function, and R > 0 is weight ma-
trix of the quadratic control cost with the inequal-
ity expressed in the positive definite sense. The HJB
equation (Stengel, 1994, Fleming and Soner, 2006) as-
sociated with this stochastic optimal control problem
is expressed as follows:

∂tVt = qt + (∂xVt)T ft −
1
2
(∂xVt)T GtR−1GT

t (∂xVt)

(4)

+
1
2
trace

(
(∂xxVt)GtΣεGT

t

)

The ∂x and ∂xx symbols refer to the Jacobian and Hes-
sian, respectively, of the value function with respect to

the state x, while ∂t is the partial derivative with re-
spect to time. The HJB is a second order nonlinear
PDE. For notational compactness, we will mostly use
subscripted symbols to denote time and state depen-
dencies, as introduced in the equations above.

2.1 Exponential Transformation of HJB

In order to find a solution to the HJB equation above,
we use a logarithmic transformation of the value func-
tion Vt = −λ log Ψt as well as the assumption
λGtR−1GT

t = GtΣεGT
t = Σ(xt) = Σt. Thus, we

obtain

−∂tΨt = − 1
λ

qtΨt+fT
t (∂xΨt)+

1
2
trace

(
(∂xxΨt)GtΣεGT

t

)

(5)
with boundary condition: ΨtN = exp

(
− 1

λφtN

)
. The

PDE in (5) corresponds to the so-called Kolmogorov
backward PDE which is of second order and linear.
Analytical solutions of (5) cannot be found in general
for general nonlinear systems and cost functions. How-
ever, there is a connection between solutions of PDEs
and their representation as stochastic differential equa-
tion (SDEs), which goes back to the Feynman-Kac for-
mula (Oksendal, 2003),(Yong, 1997). The Feynman-
Kac formula can be used to find distributions of ran-
dom processes which solve certain SDEs as well as to
propose numerical methods for solving certain PDEs.

According to the generalized version (Yong, 1997) of
Feynman-Kac theorem: Let xt satisfies the following
SDE dx = f(xt, t)dt + G(xt)dω with t ∈ [ti, tN ] where
x(ti) = xti , (t,x) ∈ " × "n×1 and dω is a standard
brownian motion.Then

Ψti = Eτ i

(
ΨtN e−

R tN
ti

1
λ qtdt

)
(6)

= Eτ i

[
exp

(
− 1

λ
φtN −

1
λ

∫ tN

ti

qt dt

)]

If and only if Ψti satisfies the Backward - Kolmogorov
PDE:

−∂tΨt = − 1
λ

qtΨt+fT
t (∂xΨt)+

1
2
trace

(
(∂xxΨt)GtΣεGT

t

)

(7)

with the boundary condition ΨtN = exp
(
− 1

λφtN

)
.

This insight allows to represented the stochastic opti-
mal control problem as an approximation problem of
a path integral.

3 Generalized Path Integral
Formulation

In many stochastic dynamical systems only some of
the states are controlled, such that the state vec-
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tor can be partitioned into x = [x(m)T
x(c)T

]T
with uncontrollable part x(m) ∈ "k×1 and control-
lable part x(c) ∈ "l×1. Thus, the control variable
u ∈ "p×1 has dimensionality smaller than the state,
i.e., p < n. Subsequently, the passive dynamics term
and the control transition matrix can be partitioned
as ft = [f (m)

t

T
f (c)
t

T
]T with fm ∈ "k×1, fc ∈ "l×1 and

Gt = [0k×p G(c)
t

T
]T with Gc

t ∈ "l×p. For such sys-
tems it can been shown that the solution (6) becomes:

Ψtj = lim
dt→0

∫ (
ΠN−1

i=j p
(
x(c)

ti+1
|xti

))
(8)

× exp− 1
λ

(
φtN +

N−1∑

i=0

qtidt

)
dτ j

Since τ j =
(
xtj ,xtj+1 , .....,xtN

)
are sample paths

starting at state xtj , the integration above is taken
with respect to dτ j =

(
dxtj , .....,dxtN

)
. Assuming a

Gaussian state transition probability:

p
(
x(c)

ti+1
|xti

)
=

(
(2π)l|Σti |

)−1/2
exp

(
− 1

2λ
γtidt

)

(9)
where γti = αT

ti
h−1

ti
αti , hti = G(c)

ti
R−1G(c)

ti

T , and
αti = x(c)

ti+1
− x(c)

ti
− f (c)

ti
dt . Substitution of the tran-

sition probability into (8) results in:

Ψtj = lim
dt→0

∫
e−

1
λ Z(τ j)dτ j (10)

where Z(τ j) = S(τ j) + λ
2

∑N−1
i=j log |hti | +

λNl
2 log (2πdtλ) and S(τ j) = −φtN − 1

2

∑N−1
i=j γtidt −

∑N
i=j qtidt. By taking the limit as dt → 0 we can

calculate the logarithmic value function Ψtj which is
the solution of (5) . The term Z(τ j) is the total cost
of the sample path τ j .

4 Optimal Controls

The optimal controls are given as utj =
−R−1GT

tj
(∂xtj

Vtj ). Due to the logarithmic
transformation of the value function, the equa-
tion of the optimal controls can be written as
utj = λR−1Gtj (∂xtj

Ψtj )/Ψtj . After substituting Ψtj

with (10) and dropping the state independent terms
of the cost we have:

utj = lim
dt→0



λR−1GT
tj

∂xtj

(∫
e−

1
λ S̃(τ j)dτ j

)

∫
e−

1
λ S̃(τ j)dτ j



 (11)

with S̃(τ j) = S(τ j)+ λ
2

∑N−1
i=j log |htj |. Further anal-

ysis of the equation above leads to a simplified ver-
sion of the equation for optimal controls formulated as

utj =
∫

P (τ j)u (τ j) dτ j with the probability P (τ j)
and local controls u (τ j) defined as

P (τ j) =
e

1
λ S̃(τ j)

∫
e

1
λ S̃(τ j)dτ j

(12)

u (τ j) = −R−1G(c)
tj

T lim
dt→0

(
∂
x(c)

tj

S̃(τ j)
)

(13)

The path cost S̃(τ j) is a generalized version of the
path cost in (Broek et al., 2008, Kappen, 2007), which
only considered systems with state independent con-
trol transition. 1 To find the local controls u (τ j) we
have to calculate the limdt→0 ∂

x(c)
tj

S̃(τ j). Due to space

limitations, we do not provide the detailed derivations.
The final result is expressed as follows:

lim
dt→0

(
∂
x(c)

tj

S̃(τ j)
)

= −h−1
tj

(
G(c)

tj
εtj − btj

)
(14)

where the new term btj is defined as btj = λhtjΦtj

and Φtj ∈ "l×1 a vector with the jth element defined
as:

(
Φtj

)
j

= trace

(
h−1

tj
· ∂

x(cj)
tj

htj

)
(15)

The local control can now be expressed as:

u(τ j) = R−1G(c)
tj

T h−1
tj

(
G(c)

tj
εtj − btj

)
(16)

By substituting htj = G(c)
tj

R−1G(c)
tj

T in the equation
above we get our main result for the local controls
of the sampled path for the generalized path integral
formulation:

u(τ j) = R−1G(c)
tj

T
(
G(c)

tj
R−1G(c)

tj

T
)−1 (

G(c)
tj

εtj − btj

)

(17)

This is the generalized expression for the local controls
and it includes special cases based on the properties of
the control transition matrix involved in the stochastic
dynamics. More precisely for systems with one dimen-
sional controllable state space:

u(τ i) =
R−1g(c)

ti
g(c)T

ti

g(c)T
ti

R−1g(c)
ti

(
εti −Σε∂x(c)

ti

g(c)
ti

)
(18)

In the case that g(c)
ti

does not depend on x(c)
ti

, the dif-
ferentiation with respect to x(c)

ti
results to zero and

therefore the local controls simplify to:

u(τ i) =
R−1g(c)

ti
g(c)T

ti

g(c)T
ti

R−1g(c)
ti

εti (19)

1More precisely if G(c)
ti

= Gc then the term
λ
2

PN−1
i=0 log |htj | drops since it is state independent and

it appears in both nominator and denominator in (12). In
this case, the path cost is reduced to S̃(τ j) = S(τ j).



         831

Learning Policy Improvements with Path Integrals

Systems with square and state dependent control tran-
sition matrix:u(τ i) = εti −G(c)

ti

−1
bti . If the control

transition matrix is not state dependent then we will
have that:u(τ i) = εti . Previous work in (Kappen,
2005a, 2007, 2005b, Broek et al., 2008) are special cases
of our generalized formulation. 2

5 Parametrized Policies

Equipped with the theoretical framework of stochas-
tic optimal control with path integrals, we can now
turn to its application to reinforcement learning
with parametrized policies. For this kind of di-
rect policy learning, a general cost function J =∫
τ p(τ )R(τ )dτ is usually assumed (Peters, 2007)

and optimized over state xt and action at trajec-
tories τ = (xt0 ,ato , ...,xtN , ). Under the Markov
property, the probability of a trajectory is p(τ ) =
p(xto)Π

N−1
i=1 p(xti+1 |xti ,ati)p(ati |xti). As suggested in

(Koeber and Peters, 2009), the mean of the stochastic
policy p(ati |xti) is linearly parametrized as:

ati = gT
ti

(θ + εti) (20)

where gti is a vector of basis functions and θ is a pa-
rameter vector. For Gaussian noise ε the policy dis-
tribution is p(ati |xti) = N

(
θT gti ,Σti

)
. In our work,

we use a special case of parametrized policies in form
of Dynamic Movement Primitives (DMPs) (Ijspeert
et al., 2003), which are expressed as:

1
τ

żt = ft + gT
t (θ + εt), (21)

1
τ

ẏt = zt,
1
τ

ẋt = −αxt

with ft = αz(βz(g − yt) − zt). These policies code
a learnable point attractor for a movement from yt0

to the goal g, where θ determines the shape of the
attractor – for more details and the definition of the
basis functions gt see (Ijspeert et al., 2003). The DMP
equations are obviously of the form of our control sys-
tem (3), just with a row vector as control transition
matrix G(c)

t = gt
T ∈ "1×p. Thus, we can treat the

parameters θ as if they were control commands, and,
after some algebra and simplifications, we derive the
Policy Improvement with Path Integrals (PI2) which
is summarized in table 1.

The PI2 is an iterative algorithm. As it is illustrated
in Table 1, at every iteration we create K sample paths

2In fact, for stochastic systems with state independent
control transition matrix G(c)

to
= G(c) the term bto =

0l×1 since hto becomes state independent and therefore
∂
x
(cj)
to

hto = 0. In such case the local controls are reduced

to u(τ o) = εt0 .

Table 1: Pseudocode of the PI2 algorithm for a 1D Pa-
rameterized Policy (Note that the discrete time step
dt was absorbed as a constant multiplier in the cost
terms). In step 4, the parameter vector is updated
coefficient wise, using m to denote each of the p coeffi-
cients. The weights wp,ti in this update come from the
basis functions representation that is used in the non-
linear function ft of the DMPs in (22) (cf. (Ijspeert
et al., 2003)).

• Given:

– An immediate cost function rt = qt + θT
t Rθt

– A terminal cost term φtN

– A stochastic parameterized policy at = gT
t (θ +

εt) (cf. 20)

– The basis function gti from the system dynamics

– The variance Σε of the mean-zero noise εt

– The initial parameter vector θ

• Repeat until convergence of the trajectory cost R:

– step 1: Create K roll-outs of the system from
the same start state x0 using stochastic param-
eters θ + εt at every time step

– step 2: For all K roll-outs, compute:

∗ step 2.1: Mtj ,k =
R−1gtj ,k gT

tj,k

gT
tj,kR−1gtj ,k

∗ step 2.2: Compute the cost for each sampled
trajectory: S(τ i,k) = φtN ,k +

PN−1
j=i qtj ,k+

1
2

PN−1
j=i+1(θ +Mtj ,kεtj ,k)T R(θ +Mtj ,kεtj ,k)

∗ step 2.3: P (τ i,k) = e
− 1

λ
S(τ i,k)

PK
k=1[e

− 1
λ

S(τ i,k)
]

– step 3: For all i time steps, compute:

∗ step 3.1: δθti =
PK

k=1 [P (τ i,k)Mti,k εti,k]

– step 4: Compute δθm =
PN−1

i=0 (N−i)wm
ti

δθm
tiPN−1

i=0 (N−i)wm
ti

– step 5: Update θ ← θ + δθ

– step 6: Create one noiseless roll-out to check
the trajectory cost R = φtN +

PN−1
i=0 rti

starting from the initial state and ending in the tar-
get state. To create these rollouts we propagate the
stochastic dynamics forward given an initial control
(parameter) vector. Given the sample paths we are
calculating the correction in controls δθ. For the case
of an horizon of length T with discretization step dt
and K rollouts there are T/dt different δθti vectors of
dimensionality δθti ∈ "K×1. Each δθti is calculated
in step (3.1). The main intuition here is based on the
observation that εti,k is the sampled control variation
at time ti that was used to create the k-th sample
path and S(τ i,k) in step (2.2) is the cost of the re-
sulting k-th sample path. At every time ti there are



         832

Running heading author breaks the line

K different sampled controllers εti,k that correspond
to the K rollouts. The correction term δθti is finally
calculated by a weighted average of the sampled con-
trollers (spatial averaging). The weights are function
of the corresponding cost S(τ i,k). Paths with high
cost have low weight or probability, while paths with
low cost have high probability and therefore will more
strongly affect the correction term δθti . This averag-
ing process is repeated for all time instances of the
time horizon. Since we are performing sampling in an
iterative way, the resulting control corrections δθti are
averaged over the time horizon step (4) (time averag-
ing). The resulting control correction δθ is used for the
final update θ(new) = θ(old) + δθ in step (5). The last
two operations of time averaging and parameter up-
date, are motivated from the need to avoid the curse
of dimensionality which results from batch sampling
of the entire state space. The entire PI2 formulation
allows an incremental updating of θ. The new param-
eter vector θnew, with the addition of Gaussian noise
ε, corresponds to the control that is used to create the
K sample paths in the next iteration.

The parameter λ regulates the sensitivity of the ex-
ponentiated cost and can automatically be optimized
for every time step i to maximally discriminate be-
tween the experienced trajectories. Moreover, a con-
stant term can be subtracted from the cost S(τ i) as
long as all S(τ i) is positive. Thus, for a given number
of roll-outs, we compute the exponential term in (12)
as

e
1
λ S(τ i) = exp

(
−c

S(τ i)−minS(τ i)
max S(τ i)−minS(τ i)

)
(22)

with c = 10 in all our evaluations – this procedure
eliminates λ and leaves the variance of the exploration
noise ε as the only open parameter for PI2. It should
be noted that the equations for PI2 have no numerical
pitfalls: no matrix inversions and no learning rates 3,
rendering PI2 to be very easy to use.

6 Evaluations

We evaluated PI2 in several synthetic examples in
comparison with REINFORCE, GPOMDP, eNAC,
and, when possible, PoWER. Except for PoWER, all
algorithms are suitable for optimizing immediate re-
ward functions of the kind rt = qt + utRut. PoWER
requires that the immediate reward behaves like an
improper probability. This property is incompatible
with rt = qt +utRut and requires some special nonlin-
ear transformations, which usually change the nature
of the optimization problem, such that PoWER opti-
mizes a different cost function. Thus, only one of the

3R is a user design parameter and usually chosen to be
diagonal and invertible.

examples below has a compatible cost function for all
algorithms, including PoWER. In all examples below,
exploration noise and, when applicable, learning rates,
were tuned for every individual algorithms to achieve
the best possible numerically stable performance. Ex-
ploration noise was only added to the maximally ac-
tivated basis function in a motor primitive4, and the
noise was kept constant for the entire time that this
basis function had the highest activation – empirically,
this trick helped improving the learning speed of all al-
gorithms.

6.1 Learning Optimal Performance of a 1
DOF Reaching Task

The first evaluation considers learning optimal param-
eters for a 1 DOF DMP (cf. Equation 22). The im-
mediate cost and terminal cost are, respectively:

rt = 0.5f2
t + 5000 θT θ

φtN = 10000(ẏ2
tN

+ 10(g − ytN )2)

with yt0 = 0 and g = 1 – we use radians as units
motivated by our interest in robotics application, but
we could also avoid units entirely. The interpretation
of this cost is that we would like to reach the goal
g with high accuracy while minimizing the accelera-
tion of the movement and while keeping the parame-
ter vector short. Each algorithm was run for 15 trials
to compute a parameter update, and a total of 1000
updates were performed. Note that 15 trials per up-
date were chosen as the DMP had 10 basis functions,
and the eNAC requires at least 11 trials to perform a
numerically stable update due to its matrix inversion.
The motor primitives were initialized to approximate a
5th order polynomial as point-to-point movement (cf.
Figure 1a,b), called a minimum-jerk trajectory in the
motor control literature; the movement duration was
0.5 seconds, which is similar to normal human reaching
movements. Gaussian noise of N(0, 0.1) was added to
the initial parameters of the movement primitives in
order to have different initial conditions for every run
of the algorithms. The results are given in Figure 1.
Figure 1a,b show the initial (before learning) trajec-
tory generated by the DMP together with the learning
results of the four different algorithms after learning –
essentially, all algorithms achieve the same result such
that all trajectories lie on top of each other. In Fig-
ure 1c, however, it can be seen that PI2 outperforms
the gradient algorithms by an order of magnitude.

Figure 1d illustrates learning curves for the same task
as in Figure 1c, just that parameter updates are com-
puted already after two roll-outs – the eNAC was ex-

4I.e., the noise vector in (20) has only one non-zero com-
ponent.
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Figure 1: Comparison of reinforcement learning of an
optimized movement with motor primitives. a) Posi-
tion trajectories of the initial trajectory (before learn-
ing) and the results of all algorithms after learning
– the different algorithms are essentially non distin-
guishable. b) The same as a), just using the velocity
trajectories. c) Average learning curves for the differ-
ent algorithms with 1 std error bars from averaging 10
runs for each of the algorithms. d) Learning curves for
the different algorithms when only two roll-outs are
used per update (note that the eNAC cannot work in
this case and is omitted).

cluded from this evaluation as it would be too heuris-
tic to stabilize its ill-conditioned matrix inversion that
results from such few roll-outs. PI2 continues to
converge much faster than the other algorithms even
in this special scenario. However, there are some
noticeable fluctuation after convergence. This noise
around the convergence baseline is caused by using
only two noisy roll-outs to continue updating the pa-
rameters, which causes continuous parameter fluctua-
tions around the optimal parameters. Annealing the
exploration noise, or just adding the optimal trajec-
tory from the previous parameter update as one of the
roll-outs for the next parameter update can alleviate
this issue – we do not illustrate such little “tricks” in
this paper as they really only affect fine tuning of the
algorithm.

6.2 Learning Optimal Performance of a 1
DOF Via-Point Task

The second evaluation was identical to the first evalu-
ation, just that the cost function now forced the move-
ment to pass through an intermediate via-point at
t = 300ms. This evaluation is an abstract approxima-
tion of hitting a target, e.g., as in playing tennis, and
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Figure 2: Comparison of reinforcement learning of an
optimized movement with motor primitives for passing
through an intermediate target G. a) Position trajec-
tories of the initial trajectory (before learning) and
the results of all algorithms after learning. b) Aver-
age learning curves for the different algorithms with 1
std error bars from averaging 10 runs for each of the
algorithms.

requires a significant change in how the movement is
performed relative to the initial trajectory (Figure 2a).
The cost function was

r300ms = 100000000(G− yt300ms)
2 φtN = 0

with G = 0.25. Only this single reward was
given. For this cost function, the PoWER algorithm
can be applied, too, with cost function r̃300ms =
exp(−1/λ r300ms) and r̃ti = 0 otherwise. This trans-
formed cost function has the same optimum as r300ms.
The resulting learning curves are given in Figure 2 and
resemble the previous evaluation: PI2 outperforms the
gradient algorithms by roughly an order of magnitude,
while all the gradient algorithms have almost identical
learning curves. As was expected from the similarity
of the update equations, PoWER and PI2 have in this
special case the same performance and are hardly dis-
tinguishable in Figure 2. Figure 2a demonstrates that
all algorithms pass through the desired target G, but
that there are remaining differences between the al-
gorithms in how they approach the target G – these
difference have a small numerical effect in the final
cost (where PI2 and PoWER have the lowest cost),
but these difference are hardly task relevant.

6.3 Learning Optimal Performance of a
Multi-DOF Via-Point Task

A third evaluation examined the scalability of our
algorithms to a high-dimensional and highly redun-
dant learning problem. Again, the learning task was
to pass through an intermediate target G, just that
a d = 2, 10, or 50 dimensional motor primitive was
employed. We assume that the multi-DOF systems
model planar robot arms, where d links of equal length
l = 1/d are connected in an open chain with revo-
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lute joints. Essentially, these robots look like a multi-
segment snake in a plane, where the tail of the snake
is fixed at the origin of the 2D coordinate system, and
the head of the snake can be moved in the 2D plane by
changing the joint angles between all the links. Fig-
ure 3b,d,f illustrate the movement over time of these
robots: the initial position of the robots is when all
joint angles are zero and the robot arm completely co-
incides with the x-axis of the coordinate frame. The
goal states of the motor primitives command each
DOF to move to a joint angle, such that the entire
robot configuration afterwards looks like a semi-circle
where the most distal link of the robot (the endeffec-
tor) touches the y-axis. The higher priority task, how-
ever, is to move the endeffector through a via-point
G = (0.5, 0.5). To formalize this task as a reinforce-
ment learning problem, we denote the joint angles of
the robots as ξi, with i = 1, 2, ..., d, such that the first
line of (22) reads now as ξ̈i,t = fi,t + gT

i,t(θi + εi,t)
– this small change of notation is to avoid a clash of
variables with the (x.y) task space of the robot. The
endeffector position is computed as:

xt =
1
d

d∑

i=1

cos(
i∑

j=1

ξj,t)

yt =
1
d

d∑

i=1

sin(
i∑

j=1

ξj,t)

The immediate reward function for this problem is de-
fined as

rt =

∑d
i=1(d + 1− i)

(
0.1f2

i,t + 0.5 θT
i θ

)

∑d
i=1(d + 1− i)

(23)

∆r300ms = 1e8
(
(0.5− xt300ms)

2 + (0.5− yt300ms)
2
)

φtN = 0

where ∆r300ms is added to rt at time t = 300ms, i.e.,
we would like to pass through the via-point at this
time. The individual DOFs of the motor primitive
were initialized as in the 1 DOF examples above. The
cost term in (23) penalizes each DOF for using high
accelerations and large parameter vectors, which is a
critical component to achieve a good resolution of re-
dundancy in the arm. Equation (23) also has a weight-
ing term d+1− i that penalizes DOFs proximal to the
origin more than those that are distal to the origin
— intuitively, applied to human arm movements, this
would mean that wrist movements are cheaper than
shoulder movements, which is motivated by the fact
that the wrist has much lower mass and inertia and is
thus energetically more efficient to move.

Algorithm 2-DOFs 10-DOFs 50-DOFs
PI2 98000 ± 5000 15700 ± 1300 2800 ± 150
REINFORCE 125000 ± 2000 22000 ± 700 19500 ± 24000
PG 128000 ± 2000 28000 ± 23000 27000 ± 40000
NAC 113000 ± 10000 48000 ± 8000 22000 ± 2000
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Figure 3: Comparison of learning multi-DOF move-
ments (2,10, and 50 DOFs) with planar robot arms
passing through a via-point G. a,c,e) illustrate the
learning curves for different RL algorithms, while
b,d,f) illustrate the endeffector movement after learn-
ing for all algorithms. Additionally, b,d,f) also show
the initial endeffector movement, before learning to
pass through G, and a “stroboscopic” visualization
of the arm movement for the final result of PI2 (the
movements proceed in time starting at the very right
and ending by (almost) touching the y axis).

The results of this experiment are summarized in Fig-
ure 3. The learning curves in the left column demon-
strate again that PI2 has an order of magnitude faster
learning performance than the other algorithms, irre-
spective of the dimensionality. PI2 also converges to
the lowest cost in all examples:

Figure 3 also illustrates the path taken by the endeffec-
tor before and after learning. All algorithms manage to
pass through the via-point G appropriately, although
the path particularly before reaching the via-point can
be quite different across the algorithms. Given that
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PI2 reached the lowest cost with low variance in all ex-
amples, it appears to have found the best solution. We
also added a “stroboscopic” sketch of the robot arm for
the PI2 solution, which proceeds from the very right
to the left as a function of time. It should be emapha-
sized that there was absolutely no parameter tuning
needed to achieve the PI2 results, while all gradient
algorithms required readjusting of learning rates for
every example to achieve best performance.

7 Discussion

We introduced Policy Improvement with Path In-
tegrals (PI2) as a novel algorithm for learning a
parametrized policy in reinforcement learning. PI2

has a very sound foundation in first order principles of
stochastic optimal control. It is a probabilistic learn-
ing method without open tuning parameters, except
for the exploration noise. In our evaluations, PI2 out-
performed gradient algorithms significantly. It is also
numerically simpler and has easier cost function design
than previous probabilistic RL methods that require
that immediate rewards are pseudo-probabilities. The
similarity of PI2 with algorithms based on probabil-
ity matching indicates that the principle of probability
matching seems to approximate a stochastic optimal
control framework. PI2 makes a strong link to the dy-
namic system to be optimized. Complete knowledge
of the control system allows a model-based approach,
while partial knowledge of the control transition ma-
trix could allow a semi-model based approach. Our
learning of motor primitives was essentially a model-
free application of path-integrals, where only the para-
metric form of the control policy was given. Our sim-
ulated robot learning example demonstrated that PI2

can scale to high dimensional control systems.
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