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Abstract

A Markov-chain Monte Carlo based algo-
rithm is provided to solve the Simultane-
ous localization and mapping (SLAM) prob-
lem with general dynamics and observation
model under open-loop control and provided
that the map-representation is finite dimen-
sional. To our knowledge this is the first
provably consistent yet (close-to) practical
solution to this problem. The superiority
of our algorithm over alternative SLAM al-
gorithms is demonstrated in a difficult loop
closing situation.

1 Introduction

Simultaneous localization and mapping (SLAM) is a
well-known, intensively studied problem of robotics
(Thrun et al., 2005). In the classical problem a mobile
robot is moving in an unknown environment with a
known control sequence. It is assumed that there are
some landmark points in the environment which the
robot is able to sense and that the robot follows its
control with some uncertainty. The goal of the SLAM
task is to incrementally build a consistent map of the
robot’s environment while simultaneously determining
its location within this map.

SLAM has been formulated and solved as a theoreti-
cal problem in a number of different settings (Durrant-
Whyte and Bailey, 2006; Bailey and Durrant-Whyte,
2006). The two most successful approaches are based
on Kalman filtering and particle filtering. As usual,
the Kalman filter based approaches (such as EKF-
SLAM by Cheeseman and Smith, 1986 and UKF-
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SLAM by Smith et al., 1990) have the obvious draw-
back that they assume linear or linearized dynam-
ics and observation model, and Gaussian noise. The
other successful direction, called FastSLAM (Monte-
merlo et al., 2002, 2003), uses Rao-Blackwellized par-
ticle filtering. Although, for the first sight, FastSLAM
provides a general, consistent solution, it actually fails
to solve the problem reliably as it is discussed by (Bai-
ley et al., 2006). Moreover, the solution given by Fast-
SLAM is not general, as the landmark locations are
represented by Gaussians in each particle.

Consequently the SLAM problem does not have a con-
sistent and robust solution in case of arbitrary dynam-
ics and observation model. In this paper we give a so-
lution to this problem based on a Markov-chain Monte
Carlo (see, e.g., Andrieu et al., 2003) approach under
open-loop control for finite-dimensional maps.

The main challenge in SLAM is the so-called loop-
closing problem. This is the situation when the robot
observes a landmark that has not been seen for a long
time. As the robot moves, its uncertainty in its earlier
positions and the landmark locations increases. When
a landmark that has been seen earlier is observed again
(“a loop is closed”), in theory, this could be used to
refine all previous estimates to a great extent. As-
suming a prior over the landmarks, this can be made
more precise: In normal steps the posterior distribu-
tion over past states and the landmarks usually gets
more diffuse over time, while at loop closing suddenly
it becomes very well concentrated.

As we consider general models, no closed form repre-
sentation of the posterior is possible (as in the linear-
Gaussian case). A standard solution then is to use
particle filtering, where the underlying distribution is
represented by weighted samples (Doucet et al., 2001).
However, when loop closing happens, the broad, un-
certain posterior that is represented by the weighted
particles should be transformed into a peaky (concen-
trated) posterior. This is only possible if at least some
particles “hit” the region of the peak. Since the state-
space of the SLAM problem is huge (and grows with



         853

A Markov-Chain Monte Carlo Approach to Simultaneous Localization and Mapping

time), any practical number of particles might prove
to be too few. As a result, FastSLAM and other parti-
cle filter methods using a bounded number of particles
is determined to fail on some SLAM problem (Bailey
et al., 2006). Some improvements are achievable if the
map learning is separated from the estimation of the
path of the robot, as done by Martinez-Cantin et al.
(2007a,b) using marginal particle filters.

Here we explore an alternative solution. A very elegant
way of representing arbitrary distributions is to use
the stationary distributions of stable Markov chains.
The theory of Markov-chain Monte Carlo (MCMC)
methods gives recipes to construct Markov chains with
any desired stationary distributions (see, e.g., Andrieu
et al., 2003). In this paper we will show that the so-
lution of the general SLAM problem is possible with
MCMC methods: we will construct a provably consis-
tent yet (close-to) practical method to sample from the
SLAM posterior. The main advantage of our method
is that MCMC is able to efficiently track the change in
the posterior even in the case of loop closing. We will
argue that the special structure of the SLAM prob-
lem makes it possible to implement the algorithm effi-
ciently.

To the best of our knowledge prior to this work MCMC
has only been used for solving sub-tasks of the SLAM
problem (see, e.g., Kaess and Dellaert, 2005; Ran-
ganathan and Dellaert, 2005), but it has not been used
to attack the SLAM problem itself. The idea most
closely related to ours is to use the standard MCMC
algorithm to sample marginals in a Bayes-net (see, e.g.,
Pearl, 1987). However the SLAM-problem generates a
very special Bayes-net, and hence in our case a more
efficient solution is possible than the one based on the
standard algorithms.

The rest of the paper is organized as follows. The
problem is defined in Section 2. The MCMC-SLAM
algorithm is defined and analyzed in Sections 3 and 4.
Efficiency issues are considered in Section 5 and ex-
periments are reported in Section 6. The paper closes
with conclusions in Section 7.

2 Preliminaries

Consider a dynamical system whose states
x0, x1, x2, . . . , xn evolve in the d-dimensional Eu-
clidean space Rd, where the transition between xt and
xt+1 is defined by some conditional probability density
function p(xt|xt−1) for t = 1, . . . , n and (without the
loss of generality) x0 = 0.1 At time t = 0, . . . , n, M
random variables zit, i = 1, . . . ,M , with conditional

1To simplify the notation we will denote all densities
with p. The actual random variables p corresponds to will
be clear from the arguments of p. Also, controls are sup-

probability density functions p(zit|xt, θi) are observed.
Here θi ∈ Rd are some static parameters. The vari-
ables zit are assumed to be conditionally independent
given the object states x0:n = (x0, x1, . . . , xn) and the
static parameter set θ1:M = (θ1, . . . , θM ).2 The task
is to estimate x0:n and θ1:M .

The system defined above can be viewed as a natural
generalization of the SLAM problem. A slight differ-
ence in the notation is that in the SLAM problem the
state transition p(xt|xt−1) is governed by a known con-
trol signal ut, and p(xt|xt−1) = p(xt|xt−1, ut) for some
conditional density function p(xt|xt−1, ut). Note that
this formulation implies that the number of parame-
ters, M , to be estimated is fixed and given. Another
assumption is that the control should not depend on
the observations – an assumption that is typical in the
system identification literature (see, e.g., Katayama,
2006) but is admittedly restrictive. Extensions of this
work to the cases not covered by these assumptions
are left for future work.

In this paper we take the Bayesian approach to sys-
tem identification: we assume that a known prior dis-
tribution p(θ1:M ) is available which θ1:M is sampled
from before the state of the system is reset to x0. The
problem is to determine, or just sample from the pos-
terior density p(x0:n, θ1:M |z0:n) of the past state vari-
ables and the parameters. The next statement gives
a trivial formula for the posterior. Given the assump-
tions, the proof is trivial and is hence omitted.

Proposition 1. The posterior density of x0:n and
θ1:M given the observations z0:n can be computed as

p(x0:n, θ1:M |z0:n) =

C(z0:n)p(θ1:M )

(
n−1∏
t=0

p(xt+1|xt)

)
n∏
t=0

M∏
i=1

p(zit|xt, θi)

where C(z0:n) is a normalizing constant that depends
on z0:n only.

To sample from the posterior, we transform the prob-
lem to what we call an inference graph problem.

3 Inference graphs and the
generalized SLAM problem

Consider a graph G = (V,E), where V is the set of
vertices and E is the set of edges. Assume that each
vertex v ∈ V is labeled with a k1-dimensional real
vector l(v) ∈ V ⊂ Rk1 and also assume that for each
edge e ∈ E there is a labeling function se : V × V →

pressed in the notation p(xt|xt−1).
2Throughout the paper we use the notation ak:l =

(ak, ak+1, . . . , al) for any sequence.
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Rk2 , and a probability density function Je on the image
space of se. In what follows, for simplicity, and without
loss of generality, we assume that k = k1 = k2.3 Then
G equipped with l, (se)e∈E , and (Je)e∈E is called an
inference graph.

We will assume that the edge labeling functions are
invertible in both of their parameters, that is, for each
e ∈ E and vertex labels l1, l2 ∈ V, there are func-
tions s−1e,1 and s−1e,2 such that s−1e,1(se(l1, l2), l2) = l1 and

s−1e,2(l1, se(l1, l2)) = l2.

The vertex labeling function l defines a labeling on
the edges which, by slightly abusing notation, we shall
also denote by l: l(e) = se(l(v), l(v′)) for e = (v, v′).
This shows how to go from node labels to edge labels.
We can also ask if the reverse is possible. That is,
given arbitrary labels l(e), e ∈ E, is there a vertex
labeling function l such that l(e) = se(l(v), l(v′)) for
all e ∈ E where e = (v, v′)? If this holds, we call the
edge labeling consistent.

In what follows we assume that the label of an arbi-
trary fixed vertex v0 is set to the zero vector; then the
vertex and edge labels uniquely determine each other
(provided that the edge labels are consistent) because
of the invertibility of the edge labeling functions se.

The posterior density of a consistent (edge/vertex) la-
beling l on the inference graph G is defined as

π(l) = p(l(e), e ∈ E) = p(l(v), v ∈ V )

= C
∏

e=(v,v′)∈E

Je(se(l(v), l(v′))) (1)

where C is a suitable normalizing constant.

The inference graph sampling problem is to sample
consistent edge labels from π. Notice that the set of
consistent edge labels is a low-dimensional manifold
M in Rk×|E| specified by the consistency constraints.
This makes sampling from π difficult as the sampler
must stay on the manifold M. Before deriving the
sampling procedure, we show how to transform the
SLAM problem to such an inference graph problem.

3.1 The SLAM inference graph

We define an inference graph G for the parameter es-
timation problem considered in Section 2. For each
state xt, t = 0, . . . , n and parameter θi, i = 1, . . . ,M
we define a vertex in the graph: vertices corresponding
to states (parameters) will be denoted by vx,t (resp.,
by vθ,i). Two vertices are connected by an edge if
their underlying variables are connected via some con-

3Our results would still apply even if the dimensions
of the label spaces were dependent on the edge/vertex la-
beled.

ditional distribution in the definition of the system.
That is, the edges of G are defined by

E = {(vx,t−1, vx,t), t = 1, . . . , n}
∪{(vx,t, vθ,i), t = 0, . . . , n, i = 1, . . . ,M}.

Note that in this way all states are connected to all pa-
rameters (as needed for an unambiguous definition of
the posterior). What happens when in a SLAM prob-
lem some landmarks (θk) are not “visible” in certain
states? To address this, the observation space would
contain a special signal that indicates “no informa-
tion” so that all landmarks can generate some obser-
vation in all time steps. Note that the graph grows
with n: at each time step a new vertex and M +1 new
edges are introduced. However, for simplicity, here we
concentrate on the case when n is fixed; issues related
to incremental implementation of our algorithm will
be discussed in Section 5.2.

The vertex labels are defined as l(vx,t) = xt and
l(vθ,i) = θi. Furthermore, we assume that the edges
have a common labeling function s, that is, an edge
(v, v′) ∈ E has label l(e) = s(l(v), l(v′)): for an edge
(vx,t−1, vx,t) the label is s(xt−1, xt), and for an edge
(vx,t, θi) the label is s(xt, θi). Also recall that s has to
be invertible in both of its variables.

We assume that the conditional distributions
p(xt|xt−1) and p(zit|xt, θi) depend on (xt−1, xt) and
(xt, θi) via s only:

Assumption 1. There exist functions Kt such that

Kt(s(xt−1, xt)) = p(xt|xt−1),

and there exist functions rt such that

rt(z
i
t|s(xt, θi)) = p(zit|xt, θi).

Finally, we need to define the density functions Je for
each edge. Let

Je(s) =


Kt(s)∫
Kt(s′)ds′

, if e = (vt−1, vt);
rt(z

i
t|s)∫

rt(zit|s′)ds′
, if e = (vt, θi),

where we assume that the integrals above are finite.4

The next statement shows the connection between the
posterior densities of the labeling on the graph G and
the original problem.

Proposition 2. Under Assumption 1 the posterior
density of the dynamical system is given by

p(x0:n, θ1:M |z0:n) = C1(z0:n)p(θ1:M )π(l)

4Note that the general MCMC-SLAM algorithm to
be defined later only needs proportions of the form
Je(s)/Je(s′), hence computing the normalizing integrals is
unnecessary.
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where

π(l) = C2(z0:n)
∏

e=(v,v′)∈E

Je
(
s (l(v), l(v′))

)
and C1(z0:n) and C2(z0:n) are suitable normalizing
constants that depend on z0:n only.

Proof. First notice that since s is invertible and x0 =
0, the edge labels {l(e), e ∈ E} and the variables
(x0:n, θ1:M ) uniquely determine each other. Now, it
follows from Proposition 1 and Assumption 1 that

p(x0:n, θ1:M |z0:n) = C(z0:n)p(θ1:M )·

·

(
n−1∏
t=0

K(s(xt+1, xt))

)
n∏
t=0

M∏
i=1

r(zit|s(xt, θi))

= C1(z0:n)p(θ1,M )π(l)

for some constant C1(z0:n).

It follows from the above result that if we can sam-
ple efficiently from the posterior underlying the infer-
ence graph then we can sample from the posterior by
accept-reject sampling (Andrieu et al., 2003) provided
the density of the prior distribution p(θ1:M ) is bounded
by some constant L > 0. That is, first we sample an
edge labeling l from π(l), and determine x0:n and θ1:M
from l. Then (x0:n, θ1:M ) is accepted with probability
p(θ1:M )/L. The following theorem is a trivial conse-
quence of Proposition 2 and the standard result on
accept-reject sampling (Andrieu et al., 2003).

Theorem 1. Assume there is an L > 0 such that
p(θ1:M ) ≤ L for all possible values of θ1:M . Then in
the above sampling procedure, (x0:n, θ1:M ) follows the
posterior distribution p(x0:n = ·, θ1:M = · |z0:n).

Note that if p(θ1:M ) is uniform on its support then
the accept-reject procedure always accepts (with the
choice of L ≡ p(θ1:M )). Hence our goal is to sample
from π(·). We use MCMC to do so.

4 MCMC for inference graphs

MCMC is a strategy for generating samples from a
distribution that is hard to sample from otherwise.
The idea is to construct an irreducible and aperiodic
Markov chain with kernel Q that has the desired den-
sity p as stationary density. This is easy to achieve if
the Markov transition kernel Q satisfies the detailed
balance equation

p(y′)Q(y|y′) = p(y)Q(y′|y).

It is the spectral structure of Q that determines the
convergence rate of the resulting chain (Andrieu et al.,
2003). Many MCMC algorithms of various charac-
ter are known in the literature. In this paper we use

the Metropolis-Hastings algorithm. The algorithm is
parametrized by a transition kernel Q(y′|y), called the
proposal distribution. Starting from an arbitrary state
y0 the algorithm generates a sequence {yτ} as follows:

1. At time τ generate a new sample y according to
the conditional distribution Q(y|yτ−1).

2. Accept the move with probability

A(y|yτ−1) = min

{
1,

p(y)Q(yτ−1|y)

p(yτ−1)Q(y|yτ−1)

}
,

that is, in this case let yτ = y, otherwise let yτ =
yτ−1.

Under very general conditions on Q the generated se-
quence will converge, in distribution, to p (Tierney,
1998).

In what follows we will show how to construct a
Metropolis-Hastings algorithm to sample labelings
from the posterior density underlying a general infer-
ence graph.

As we mentioned earlier, sampling a labeling from the
posterior (1) of an inference graph G is hard because
the densities are defined in terms of the edges while the
consistency of a labeling is defined via the vertices.

To address this issue we propose the following proce-
dure. Fix a spanning tree T of G. Next:

1. randomly choose an edge e of T ;

2. choose a new label for this edge from some distri-
bution;

3. change the vertex labels on T to make the labeling
consistent while keeping all edge labels except for
that of the chosen edge e;

4. adjust the edge labels on the edges outside of T
to make the labeling consistent on G.

It is easy to see that almost any edge labeling is consis-
tent on a tree (the only constraint is that if the labels
of two vertices are equal then the edges that connect
these vertices to a third vertex must have the same
label), and any consistent labeling on a spanning tree
T uniquely determines a consistent labeling on G.

When the label of an edge e of the spanning tree T is
changed, we make the labeling consistent in the tree
in the following way: Let Te,1 and Te,2 be the two
subtrees obtained by deleting e from T . To make the
choice unique, we assume that v0 ∈ Te,1 (recall that
the label of v0 is fixed at zero). Then, for any v ∈ Te,1
the labels are kept unchanged, that is, l′(v) = l(v),
while for v ∈ Te,2 the labels l(v) are changed to make
the new labels consistent on T (that this can be done
and in a unique manner follows from the fact that se
is invertible for any e ∈ E). Finally, we recompute the
labels of those edges that have one vertex in Te,1 and
another one in Te,2.
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Define the proposal distribution for the labeling l as

QT (l′|l) =
∑
e∈E

pT (e|l)QT (l′|l, e), (2)

where, for all consistent l, pT (e|l) is a user-chosen
distribution supported on the edges of T , that is,
pT (e|l) > 0 if e ∈ T and pT (e|l) = 0 if e 6∈ T . Further,
QT (l′|l, e) is defined as follows: If e is not an edge of
T , then QT (l′|l, e) = 0 for all labelings l, l′. For any
edge e ∈ T , QT (l′|l, e) is defined through the following
procedure: Sample l′(e) according to the distribution
Je. For any other edge e′ ∈ T , e 6= e′, let l′(e) = l(e).
For any vertex v ∈ V , the label l′(v) is defined in the
unique way that results in a consistent labeling for l′

on T while keeping the edge labels and l′(v0) = 0 fixed.
Note that in this way we can only change the label of a
vertex v if v ∈ Te,2 and l′(v) = l(v) if v ∈ Te,1. Finally,
for any edge (v, v′) let l′((v, v′)) = s(v,v′)(l

′(v), l′(v′)).
For this l′, QT (l′|l, e) = Je(l

′(e)).

Theorem 2. Let the proposal distribution QT (l′|l) be
defined by (2), and define the acceptance probability as

AT (l′|l) = min

{
1,
π(l′)QT (l|l′)
π(l)QT (l′|l)

}
.

if l and l′ differ on the edges of T in at most once, and
let AT (l′|l) = 0 otherwise. Then the resulting MCMC
converges to the posterior distribution π.

Proof. We start with a few trivial observations: (i) the
support of QT (·|l, e) contains consistent labelings only;
(ii) for almost all l′ (with respect to QT (·|·)) there is
an edge el,l′ ∈ T (dependent on l and l′) such that

QT (l′|l) = pT (el,l′ |l)QT (l′|l, el,l′); (3)

(iii) QT (l′|l) > 0 if and only if QT (l|l′) > 0; (iv) the
resulting Markov chain is irreducible. Here (ii) follows
since given any consistent l, for almost all l′, l′ and
l differ on exactly one edge of T with probability 1.
Calling this edge el,l′ yields (3). Then it follows from
the general state-space Metropolis-Hastings theorem5

due to Tierney, 1998 (cf. Theorem 2 and the following
discussion) that the resulting Markov chain converges
to the stationary distribution π.

5 Efficiency

The efficiency of this algorithm depends on several fac-
tors, such as the accept-rate (more generally, the spec-
tral structure of the chain) and the cost of a single
step.

5Note that standard textbook versions are not applica-
ble since the support M of the Markov kernel is a low-
dimensional manifold.

5.1 Label preserving transformations

The complexity of computing the acceptance probabil-
ity depends mainly on the number of likelihood evalu-
ations needed to compute the acceptance probability.
It follows from the results of Section 4 and (1) and (3)
that if l and l′ are two successive edge labelings and
el,l′ is the unique edge they differ on in T then

AT (l′|l) = min

1,
pT (el,l′ |l′)
pT (el,l′ |l)

∏
e 6∈T

Je(l
′(e))

Je(l(e))

 .

As the set of edges of G not belonging to T can be
large, below we derive an alternate form to the above
that needs fewer evaluations of Je.

This is done under the assumption that the labeling
functions se have some nice structure which allows to
localize the changes in the edge labels. A function
g : V → V is called a label preserving transformation
for the inference graph G equipped with l and {se} if
se(l1, l2) = se(g(l1), g(l2)) for any labels l1, l2 ∈ V and
edge e ∈ E.

Assume that the label s of e = (v, v′) ∈ T is changed
to s′ so that the new label of v′ is obtained by a label
preserving transformation g(·) = g(·, s, s′). Then the
new (consistent) labels for any v̂ ∈ T can be computed
as

l′(v̂) =

{
l(v̂), if v̂ ∈ Te,1;

g(l(v̂)), if v̂ ∈ Te,2.
(4)

Furthermore, the label preserving condition implies
that for any edge ê = (v, v′) ∈ Te,2,

l′(ê) = sê (g(l(v)), g(l(v′))) = sê(l(v), l(v′)) = l(ê).

Clearly, for ê ∈ Te,1 we have l′(ê) = l(ê). Thus, the
edge labels have to be recomputed only for those edges,
different to e, which have one vertex in Te,1 and one in

Te,2. Denote this set of edges by Ê(Te). In summary,
the new edge labels for all ê = (v, v′) 6= e can be
computed as

l′(ê) =

{
sê(l

′(v), l′(v′)), if ê ∈ Ê(Te);

l(ê), otherwise.
(5)

One step of the resulting MCMC algorithm is shown
in Figure 1. It follows easily form (1) and (3) that the
computational requirements of the acceptance proba-
bility are reduced significantly:

Theorem 3. If the edge labeling functions se allow the
application of label preserving transformations g, then
the acceptance probability can be computed as follows:
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1. Draw randomly an edge e of the spanning
tree T according to the law pT (e|l), and
split T into the subtrees Te,1 and Te,2.

2. Sample a new label l′(e) from Je and find
a label preserving transformation g for
which l′(e) = se(v, g(v′)) where v ∈ Te,1
and v′ ∈ Te,2 are the vertices of e.

3. Update the vertex labels according to (4)
and the edge labels according to (5).

4. Accept the move with probability AT (l′|l)
given by (6).

5. If the move is accepted change all l to l′.

Figure 1: One step of the efficient MCMC-SLAM al-
gorithm with an arbitrary spanning tree T and label
preserving transformations.

AT (l′|l) = 1 if l(e) = l′(e) for all edges e ∈ T . If l and
l′ agree in all but one edge of T , then

AT(l
′|l)=min

1,
pT (el,l′ |l′)
pT (el,l′ |l)

∏
e∈Ê

(
Te
l,l′

)
Je(l

′(e))

Je(l(e))

 (6)

where el,l′ is the unique edge in T where l and l′ differ.

For structured graphs containing many edges corre-
sponding to “no information”, such as a real SLAM
graph, the computational savings can be large.

5.2 Implementation and heuristics

As we have seen, in the simplest version of the MCMC-
SLAM algorithm all vertices in Tel,l′ ,2 and all edges
that have at least one vertex in Tel,l′ ,2 have to be re-
labeled. This is costly. If a label preserving transfor-
mation can be applied, it suffices to relabel only the
vertices in Tel,l′ ,2 and the edges in Ê(Tel,l′ ) (and, obvi-
ously, el,l′). Since Je(·) needs to be evaluated exactly
for those edges that are relabeled, this way we can
greatly reduce the computational needs of the algo-
rithm. Note that label preserving is naturally satisfied
in most practical SLAM problems and the gain is usu-
ally significant.

Consider now the problem when the algorithm is used
not with a fixed number of observations but in an
online situation when observations arrive sequentially
and after each observation we need samples from the
posterior. In this case the size of the SLAM graph (the
number of edges) grows linearly both in time n and
the number of landmarks M , and so the algorithm’s
computational complexity is O(n2MN), where N is

the number of MCMC moves per round. In a typical
SLAM graph only a bounded number of landmarks are
visible from each state, and so the number of edges cor-
responding to “real” observations grows only as O(n2),
hence the computational complexity becomes O(n2N).
One idea (not explored here) is to use an adaptive
number of MCMC moves or mix the algorithm with
some approximate algorithm. Another idea is to store
only the edge labels and compute the vertex labels
only when needed. This way only |Ê(Tel,l′ )| edge la-
bels must be recomputed after each accepted MCMC
move. Exploiting the problem’s geometry, usually an
update can be implemented efficiently using the labels
of edges in a small vicinity of the edge to be updated.

Other heuristics may help to speed up the conver-
gence of the MCMC sampling. For example, choos-
ing pT (e|l) such that edges with “good” labels are
picked rarely can help. One way to do this is to set
pT (e|l) ∝ 1/Je(l(e)) (this is the choice used in the
experiments below). The choice of the spanning tree
also influences the cost, and several heuristics (not dis-
cussed here) can be applied to improve performance.

As already noted one can also combine the MCMC ap-
proach with some other “fast” (O(n)) algorithm, like
an algorithm based on particle filters. The chain’s
burn-in time is expected to be short if the chain is
started from the state encoded by a randomly selected
particle. This idea is similar to that explored by Lee
(2001).

6 Experiments

We tested the above MCMC sampling algorithm on a
standard SLAM problem (Thrun et al., 2005): A sim-
ulated robot moves around the plane under some de-
terministic control and continuously observes the dis-
tances and viewing angles to some landmarks. The
robot follows the control only with some uncertainty,
and our goal is to estimate the robot’s trajectory, as
well as the positions of the landmarks based on these
observations and the control sequence.

The robot’s state is described by its position (xt, yt) on
the plane and a heading parameter ϕt (all measured
relative to the robot’s original pose). The robot is
controlled by specifying the pair (vt, ωt). The robot’s
state (xt, yt, ϕt) evolves according to

xt = xt−1 −
vt
ωt

sinϕ+
vt
ωt

sin(ϕ+ ωt∆t),

yt = yt−1 +
vt
ωt

cosϕ− vt
ωt

cos(ϕ+ ωt∆t),

ϕt = ϕt−1 + ωt∆t+ γt∆t,

where γt is a robot-specific rotation-noise parameter
and ∆t is the duration of a time step.
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As said before, the robot observes the distance and
viewing angle of the landmarks. Let the position of
the ith landmark be θi = (θi,1, θi,2). If the robot is
close to the landmark, it observes zit = (dit, ϕ

i
t), where

dit =
√

(θi,1 − xt)2 + (θi,2 − yt)2 + εσ2
r
,

ϕit = arctan

(
θi,2 − yt
θi,1 − xt

)
− ϕt + εσ2

φ
,

where εσ2
r

and εσ2
φ

are zero-mean Gaussian random

variables with respective standard deviations σr and
σφ. If the robot is far from the landmark, the robot’s
observation for the ith landmark is zit = #, meaning
“no-information”. The probability of no information
is solely determined by the distance dit.

For this problem a suitable edge labeling function is
defined by s(xt+1, xt) = xt+1 − xt and

s(xt, θi) =

 xt,1 − θi,1
xt,2 − θi,2

arctan
(
θi,2−yt
θi,2−xt

)
− ϕt

 ,

the latter of which gives the distance vector together
with the viewing angle of the landmark position θi
from state xt. It is easy to see that s(·, ·) is invertible.
Furthermore, it is easy to verify that any Euclidean
transformation g is label preserving with these labeling
functions.

Thus, we can apply our efficient MCMC sampling al-
gorithm of Section 5. In the algorithm at each time
instant we use a trivial spanning tree of the SLAM-
graph that includes all the edges between state-nodes.
Further, for each landmark node, the state-landmark
edge which connects the landmark node to the state
where the landmark was seen from for the first time is
included.6 We use pT (e|l) ∝ 1

Je(l(e))
as discussed in

Section 5, and a uniform prior for the landmark posi-
tions, obviating the need for the accept-reject step.

We compared our algorithm, MCMC-SLAM, to Fast-
SLAM 2.0 (Montemerlo et al., 2003) and EKF-SLAM
(Cheeseman and Smith, 1986) (for the latter two we
used the implementations of Bailey, all algorithms run
in Matlab) on two artificial examples with the above
described dynamics and observation model. We used
online, sequential computations (which is disadvanta-
geous for our algorithm unless one is interested in es-
timating the unknowns in each time step). The first
“small” problem is taken from Bailey, while in the sec-
ond, “large” problem the landmarks are arranged in an

6Our choice of spanning tree is not optimal in the sense
that usually the densities underlying the dynamics are less
concentrated than those of the observation model. Hence
guessing these links well is less important. Our choice is
dictated by simplicity.

equidistant grid and the robot follows a circular path
with a radius 8 times bigger than the grid parameter.
MCMC-SLAM was used with 1, 10, and 100 MCMC
proposals per time step, while FastSLAM 2.0 was used
with 100, 1000, and 10000 particles. The average
mean-squared errors of the estimated landmark po-
sitions and the cumulative state errors, together with
the running times slightly after the loop closing, aver-
aged over 100 runs, are given in Table 1. EKF-SLAM
is fast, but it is highly inaccurate, in terms of both the
landmark and state errors. FastSLAM 2.0 is more ac-
curate, but its accuracy is limited and improves only
moderately when run with more particles. In this ex-
ample, MCMC-SLAM outperforms FastSLAM 2.0 if
an accurate solution is needed and the algorithms are
given enough time.

Figure 2 shows the results of a typical run of the al-
gorithms for the “small” problem before and after a
loop closing happens. Noticeable is that after loop
closing our algorithm’s landmark (and trajectory) es-
timates are significantly more accurate than the esti-
mates computed by the other algorithms.

7 Conclusions

We considered the SLAM problem with general dy-
namics and observation model. We gave an MCMC
based algorithm, MCMC-SLAM, which, to our knowl-
edge, is the first provably consistent algorithm with
close-to practical run-time. Our experiments have
shown that the new algorithm is superior than pre-
vious state-of-the-art algorithms if high accuracy esti-
mates are needed. Problems for future work include
how to improve the run-time, e.g., by combining the
algorithm with particle filtering or by making the sam-
pling part adaptive.
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