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Abstract

We present an algorithm name cSAT+ for
learning the causal structure in a domain
from datasets measuring different variable
sets. The algorithm outputs a graph with
edges corresponding to all possible pair-
wise causal relations between two variables,
named Pairwise Causal Graph (PCG). Ex-
amples of interesting inferences include the
induction of the absence or presence of some
causal relation between two variables never
measured together. cSAT+ converts the
problem to a series of SAT problems, obtain-
ing leverage from the efficiency of state-of-
the-art solvers. In our empirical evaluation,
it is shown to outperform ION, the first al-
gorithm solving a similar but more general
problem, by two orders of magnitude.

1 Introduction

Modern data-analysis fields, such as machine learn-
ing and statistics, for the most part study the iso-
lated analysis of a single dataset. Several data analysis
subfields have developed methods to integratively ana-
lyze heterogeneous datasets such a Multi-Task Learn-
ing, Transfer Learning, and Meta-Analysis to name a
few, arguably with limited success. In recent work
(Tsamardinos and Triantafillou, 2010), we argue that
the reason for the inability of the methods to soundly
co-analyze a larger set of datasets is due to the preva-
lence of association (correlation) as the conceptual cor-
nerstone of data analysis. Instead, co-analyzing het-
erogeneous datasets is feasible if the analysis is based
on causal models. By making additional assumptions
about the connection of causality and estimable quan-
tities such as probability distributions, the observed
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associations (dependencies and independencies) in one
dataset, constrain the causal mechanism that fits other
datasets. This allows the integrative causal analysis of
datasets obtained under different experimental condi-
tions, different sampling designs, and datasets mea-
suring different, possibly intersecting variable sets. In
this paper, we focus on this latter problem.

We assumed a single (unknown) causal mechanism
over the observed variables O = ∪iOi and latent vari-
ables L (observed in no available dataset) generates
the data. It is also assumed that this mechanism
can be represented by a faithful Causal Bayesian Net-
work, and so the dependencies and independencies of
the marginal over O are captured by a Maximal An-
cestral Graph (MAG) and the m-separation criterion
(Richardson and Spirtes, 2002).

The proposed algorithm accepts the set of datasets as
well as a causal query. The query regards whether
a particular causal hypothesis could be true in the
unknown generating MAG, e.g, whether A directly
causes B. The algorithm then tries to identify a MAG
whose marginal over each Oi fits the corresponding
dataset and simultaneously satisfies the query. If this
is deemed impossible, then the hypothesis that edge
A → B is in the generating MAG is rejected, otherwise
a satisfying MAG model is returned. The key idea of
the algorithm is to convert the problem of identifying
a model with the desired properties to a SAT problem
and gain leverage from the research and technology
of SAT solvers. By repeatedly invoking the algorithm
for each possible type of causal relation between two
variables in O one can construct a new type of causal
graph, that we name Pairwise Causal Graph (PCG).
PCGs summarize the pairwise structural uncertainty
among variables. Other types of queries to the algo-
rithm are possible, e.g, testing whether A is indirectly
causing B.

In our empirical evaluation, we show that the algo-
rithm performs a significant number of non-trivial in-
ferences, compared to the inductions made by analyz-
ing each dataset in isolation. Interesting cases include
the inference that two variables are not associated
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(have no inducing path or latent confounder between
them) even though they are never measured together
in the data. Similarly, that two variables never mea-
sured together are directly causally related. Given the
wealth of different datasets in certain domains, such as
medicine and biology, such inferences have important
ramifications for the future of data analysis and causal
discovery.

We compare the proposed algorithm against ION (Till-
man et al., 2008), the first algorithm that can make
causal inferences from datasets defined over differ-
ent variable sets. ION however, produces all data-
generating PAGs (equivalent classes of MAGs) and so
it is a more general algorithm: for any given query,
one can go through the list of PAGs and check whether
the query holds for any models. If one is interested in
testing the causal possibilities of a single edge, the pro-
posed algorithms obtains a speed-up of about two or-
ders of magnitude over ION and scales to larger prob-
lems. Finally, we also present preprocessing steps that
lead to significant efficiency gains and point to future
directions for gaining efficiency. The code is download-
able from http://www.mensxmachina.org/ .

2 Preliminaries

Maximal Ancestral Graphs is a type of model that
represents both causal relations among a set of vari-
ables O as well as probabilistic properties, such as con-
ditional independencies (independence model). The
causal semantics of an edge A → B imply that A is
probabilistically causing B, i.e., a manipulation of A
results in a change of the distribution of B. Edges
A ↔ B imply that there is a latent (not in O) common
cause of A and B. Under certain conditions, the inde-
pendencies implied by the model are given by a graphi-
cal criterion called m-separation, defined below. Thus,
MAGs are useful in probabilistic reasoning both when
observing a system and under manipulation (control)
of the system. A desired property of MAGs is that
they are closed under marginalization: any marginal
distribution can be represented by a MAG. MAGs can
also represent the presence of selection bias, but this
is out of the scope of the present paper. We present
the key theory of MAGs.

A path in G is a sequence of distinct vertices
〈V0, V1, . . . , Vn〉 s.t for 0 ≤ i < n, Vi and Vi+1 are
adjacent in G. A path from V0 to Vn is directed if
for 0 ≤ i < n, Vi is a parent Vi+1. X is called an
ancestor of Y and Y a descendant of X if X = Y or
there is a directed path from X to Y in G. AnG(X)
is used to denote the set of ancestors of node X in G.
A directed cycle in G occurs when X → Y ∈ E and
Y ∈ AnG(X). An almost directed cycle in G occurs

when X ↔ Y ∈ E and Y ∈ AnG(X).

Definition 2.1 A mixed graph is ancestral if the
graph does not contain any directed or almost directed
cycles.

Given a path p = 〈V0, V1, . . . , Vn〉, node Vi, i ∈
1, 2, . . . , n is a collider on p if both edges incident to
Vi have an arrowhead towards Vi. We also say that
triple (Vi−1, Vi, Vi+1) forms a collider. Otherwise Vi is
called a non-collider on p. A triple of nodes (X,Y, W )
is called unshielded if X is adjacent to Y , Y is ad-
jacent to W , and X is not adjacent to W . A path
p = 〈X, . . . , W, V, Y 〉 is called a dicriminating path for
V if X is not adjacent to Y , and every vertex between
X and Y is a collider on p and a parent of Y .

The criterion of m-separation will lead to a graphical
way of determining the probabilistic properties stem-
ming from the causal semantics of the graph:

Definition 2.2 In a mixed graph G = (V, E), a path
p between A and B is m-connecting relative to (con-
dition to) a set of vertices Z , Z ⊆ V \ {A,B} if

1. Every non-collider on p is not a member of Z.

2. Every collider on the path is an ancestor of some
member of Z.

A and B are said to be m-separated by Z if there
is no m-connecting path between A and B relative to
Z. Otherwise, we say they are m-connected given Z.
We denote the m-separation of A and B given Z as
MSep(A; B|Z).

For the remainder of the paper, we make the assump-
tion that a single (unknown) causal mechanism over
the observed variables O = ∪iOi and possibly other
latent variables L (observed in no available dataset)
generates the data. It is also assumed that this mecha-
nism can be represented by a faithful Causal Bayesian
Network. Causal Bayesian Networks assume Causal
Markov Condition holds: every variable is indepen-
dent of its non-effects given its direct causes in O∪L.
The condition directly implies certain independencies
hold and entails other independencies. If all and only
the independencies among O ∪ L are entailed by the
Markov Condition, the network follows the Faithful-
ness Condition. In the remainder of the paper we as-
sume that both conditions hold. Notice that, the two
conditions connect causality with estimable properties
such as independencies. We define the set J of all
pairwise conditional independencies X⊥Y |Z:

J ≡ {〈X, Y |Z〉, s.t.,X⊥Y |Z and {X}, {Y },Z ⊆ O}
Similarly, we define the set J (G) of all m-separations
MSep(X; Y |Z) in an ancestral graph G. Under the
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state assumptions, the independencies correspond to
m-separations:

J = J (G)

This result connects the probability distribution with
the corresponding graph.

Definition 2.3 An ancestral graph G is called maxi-
mal if for every pair of non-adjacent vertices (X, Y ),
there is a (possibly empty) set Z, X, Y /∈ Z such that
〈X,Y,Z〉 ∈ J (G).

Hence, every non-adjacency in a Maximal Ancestral
Graph (MAG) implies at least one corresponding inde-
pendence between the non adjacent variables in the in-
dependence model. Maximality can also be expressed
in term of a special kind of paths, called inducing
paths, as described in (Richardson and Spirtes, 2002).

Definition 2.4 In an ancestral graph G = (V,E), a
path π between X and Y is inducing relative to (with
respect to) a set of vertices L , L ⊆ V \ {X, Y } if
every collider on π is an ancestor of X or Y , and
every non-collider is in L. If L = ∅, π is called a
primitive inducing path.

It is entailed by the definition of m-separation that if
p is an inducing path between X and Y relative to L,
then there is no subset Z of L that renders them condi-
tionally independent: ∀Z ⊆ L \ {X,Y }, 〈X,Y |Z〉 6∈ J .
Thus, in a maximal ancestral graph there is no prim-
itive inducing path between two variables if and only
if the variables are non-adjacent. We denote the in-
dependence model stemming from marginalizing over
variables L as J [L, i.e.

J [L≡ {〈X, Y |Z〉 ∈ J ; (X ∪ Y ∪ Z) ∩ L = ∅}
A simple graphical transformation for a MAG G with
independence model J exists that provides a unique
MAG G[L that represents the causal ancestral rela-
tions and the independence model J [L after marginal-
izing out variables in L. Formally,

Definition 2.5 Graph G[L has vertex set V \ L, and
edges defined as follows: If X, Y are s.t. , ∀Z ⊆ V \
(L ∪ {X, Y }), 〈X,Y |Z〉 /∈ J (G) and

X /∈ AnG(Y ); Y /∈ AnG(X)
X ∈ AnG(Y ); Y /∈ AnG(X)
X /∈ AnG(Y ); Y ∈ AnG(X)

then
X ↔ Y
X → Y
X ← Y

in G[L

The following result have been proved in (Richardson
and Spirtes, 2002):

Theorem 2.1 If G is a MAG over V, and L ⊂ V,
then G)[L is also MAG and

J (G)[L= J (G[L)

Different MAGs encode different causal information,
but may share the same independence models. Such
statistically indistinguishable MAGs define a Markov
equivalence class. The following result has been proved
in (Spirtes and Richardson, 1997):

Proposition 2.1 Two MAGs over the same vertex
set are Markov equivalent if and only if:

1. They share the same edges

2. They share the same unshielded colliders

3. if a path p is discriminating for a vertex V in both
graphs, V is a collider on the path on one graph
if and only if it is a collider on the path on the
other.

A Partial Ancestral Graph is a graph containing (up
to) three kinds of endpoints: arrowhead (>), tail (−),
and circle (◦), and represents a MAG Markov equiva-
lence class in the following manner: It has the same ad-
jacencies as any member of the equivalence class, and
every non-circle endpoint is invariant in any member
of the equivalence class. Circle endpoints correspond
to uncertainties; the definitions of paths are extended
with the prefix possible to denote that there is a con-
figuration of the uncertainties in the path rendering
the path ancestral, inducing or m-connecting. For ex-
ample if X ◦ − ◦ Y ◦ → W , 〈X,Y,W 〉 is a possible
ancestral path from X to W, but not a possible ances-
tral path from W to X. Example PAGs are shown in
Figure 1(b-c). FCI (Spirtes et al., 2000; Zhang, 2008)
is an asymptotically correct algorithm which outputs
a PAG over a set of variables V when given access to
an independence model over V.

3 An Algorithm for Finding
Consistent MAGs

We assume that we are given access to a set of inde-
pendence models {Ji}K

i=1 over corresponding subsets
of variables Oi. For example, we may be given datasets
from which the independencies in the models can be
determined by the use of statistical tests. For the pur-
poses of this paper, we assume an oracle of conditional
independencies and do not deal with possibility of sta-
tistical errors. We define the problem of identifying a
MAG consistent with all Ji where we use the notation
Oi ≡ O \Oi.

Definition 3.1 (Find Consistent MAG) Given
independence models {Ji}K

i=1 over subsets of variables
Oi, induce a MAG M s.t., for all i

J (M [Oi
) = Ji
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We now present an algorithm that converts the prob-
lem above to a satisfiability problem, s.t. a MAG is
consistent iff corresponds to a truth-setting assignment
to the SAT instance that does not induce directed cy-
cles. First, we discuss how the problem can be recast
in graph-theoretic terms. Let Pi be the PAG rep-
resenting the Markov equivalence class of all MAGs
consistent with the independence model Ji. Pi can
be constructed with a sound and complete algorithm
such as FCI. We can thus recast the problem above as
identifying a MAG M such that, M [Oi

∈ Pi, for all i
(abusing the notation to denote with Pi the equiva-
lence class).

In turn, the above observation implies that MAG M
should be such that M[Oi

has the same edges (adja-
cencies), the same unshielded colliders and the same
discriminating colliders(colliders discriminated by dis-
criminating paths) as Pi. If an edge is missing from
Pi due to independence 〈X,Y |Z〉, this implies X and
Y should be m-separated given Z in M. Similarly, if
an edge is present in Pi, there should be an inducing
path relative to Oi in M. These constraints on the
graph are converted to a SAT instance. The primitive
variables in this instance correspond to edge existence
and endpoint orientations.

1. edge(X, Y ) = edge(Y,X) is true when X is adja-
cent to Y .

2. arrowhead(X, Y ) is true when X is into Y

Based on the above we also define:

1. collider(X, Y, Z) where X,Y, Z is an ordered
triple, is true when X, Y, Z forms a collider. Ob-
viously collider(X, Y, Z) ⇔ collider(Z, Y, X)

2. ancestor(X,Y) is true when X is an ancestor of
some Y ∈ Y.

3. ancestral(X1, X2, . . . , Xn) is true when
〈X1, X2, . . . , Xn〉 is a directed path (possi-
bly empty) from X1 to Xn.

4. inducing(X1, X2, . . . , Xn,L) is true when
〈X1, X2, . . . , Xn〉 is an inducing path between X1

and Xn w.r.t L.

5. mconnecting(X1, X2, . . . , Xn,Z) is true when
〈X1, X2, . . . , Xn〉 is an m-connecting path be-
tween X1 and Xn condition to Z

The above concepts can be expressed in terms of the
primitive components of the graph, based on the def-
initions of m-separation, inducing path, and standard

Algorithm 1: Find Consistent MAG (FCM)

Input: PAGs {Pi}N
i=1 over variables {Oi}N

i=1

Input: Causal Query Φq

Result: MAG K
K ←InitializeGraph ({Pi}N

i=1);1

Φc ← Φq;2

Φc ←GenerateConstraints ({Pi}N
i=1,K);3

repeat4

L ← solveSAT (Φc);5

if L = ∅ then6

return ∅7

end8

K ← makeChanges (K, L);9

for each (almost) directed cycle in K do10

add constraints to Φc preventing cycle11

end12

until K has no (almost) directed cycles ;13

return K;14

Function InitializeGraph({Pi}N
i=1)

K ← complete unoriented graph over O =
⋃

i Oi ;1

Transfer non-adjacencies and orientations from all Pi2

to K ;
Mark all edges as uncertain;3

return K4

graph concepts (see (Triantafillou, 2010) for full de-
tails). Any truth-setting assignment to the primitive
variables uniquely determines a mixed graph.

The algorithm is shown in Algorithm 1. It accepts a
set of PAGs {Pi}N

i=1 and a causal query Φq that we as-
sume null for the moment and returns a MAG K con-
sistent will all marginal PAGs. Alternatively, it can
accept a set of independence models or datasets and
use FCI to induce the PAGs. The algorithm begins
with the complete unoriented graph over all variables
O =

⋃
i Oi. Missing edges and endpoint orientations

are transferred from each Pi. At this point, a SAT vari-
able is implicitly introduced for every non-missing edge
and every unoriented edge-endpoint. Subsequently, all
the constraints induced by each PAG are added to a
CNF formula Φc by calling GenerateConstraints. A
SAT solution is sought by calling solveSAT and if no
solution is found, an empty graph is returned. Oth-
erwise, the truth-value of the primitive variables is
applied on the graph by calling makeChanges. The
resulting graph K is checked for directed or almost di-
rected cycles and if none is found, K is the sought after
MAG and returned. Otherwise, the cycle is detected
and a SAT clause forbidding the cycle is appended in
the SAT instance. This is repeated until a solution
is found, or not other SAT solutions exist. We note
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(a) (b) (c) (d) (e)

Figure 1: An example of algorithm cSAT.(a) The underlying causal network.(b)The PAG when D is not ob-
served.(c) The PAG when C is not observed.(d) The initial graph resulting from Function InitializeGraph.
(e) The PCG returned by cSAT, which coincides with the PAG over the union of variables. Notice that there is
a solid edge between variables C and D, even though they have never been measured together; also, edge (C, F )
is missing even though it is present in graph (c), the only one that includes both variables.

that all cycle-preventing constraints could be added
in advance so that any truth-assignment to the SAT
instance corresponds to a consistent MAG; however,
in anecdotal preliminary experiments, we determined
that post-adding constraints is more time efficient.

Function GenerateConstraints({Pi}N
i=1)

for all Pi over Oi do1

if X, Y are adjacent in Pi then2

Φc ← Φc ∧3

AdjacencyConstraints(X, Y,Oi,K)
end4

else if X,Y are not adjacent in Pi then5

Φc ← Φc ∧ MSeparationConstraints(X, Y ,6

SXY , K)
end7

end8

Φc → Φc ∧ AdditionalConstraints(K);9

return Φc ;10

In function GenerateConstraints (lines 2-4) every
edge that has been encountered in at least one Pi

is considered. For each such edge, a set of boolean
constraints are introduced to ensure that in the inte-
grated model over O, either the edge is present or a
relative inducing path w.r.t. to Oi is present. Func-
tion adjacencyConstraints describes the generation
of these constraints. The inducing paths attempting to
substitute for an edge are required to be non-primitive
(imposed by ¬inducing(path, ∅)) (line 8). This way
the resulting graph maintains the maximality prop-
erty. Procedure possibleInducingPaths(X, Y,L,K)
returns all paths between X and Y in K for which
there exists an assignment to the primitive variables
that makes them inducing w.r.t. L.

In function GenerateConstraints (lines 5-8), edges
that have been eliminated from some Pi are consid-

Function AdjacencyConstraints(X,Y,L,K)
Φc ← ∅;1

paths←possibleInducingPaths(X,Y,L,K);2

for each path ∈ paths do3

Φc ← Φc ∨ inducing(path,L);4

end5

if X, Y are adjacent in K then6

Φc ← Φc ∨ edge(X, Y );7

for each path ∈ paths do8

Φc ← Φc ∧ (edge(X,Y ) ∨ ¬inducing(path, ∅));9

end10

end11

return CNF(Φc)12

MSeparationConstraints(X, Y,Z,K)

Φc ← ∅;1

paths←possibleMConnectingPaths(X, Y,Z,K);2

for each path ∈ paths do3

Φc ← Φc ∧¬mconnecting(path,Z);4

end5

return CNF(Φc)6

ered. A missing edge (X, Y ) corresponds to at least
one conditional independence 〈X,Y |SX,Y 〉 found by
FCI when inducing Pi. The separating sets SX,Y

are cached during execution of the FCI algorithm so
they are not rediscovered. For every missing edge
(X,Y ), a set of constraints is added to the formula
requiring that no m-connecting path exists in K be-
tween (X, Y ) condition on SX,Y . Notice that for
each missing edge only one m-separation is imposed
on K; however, these are all the m-separations iden-
tified by FCI when inducing Pi. Given that the
latter algorithm is sound and complete, these are
enough to entail all the same independencies in K[Oi

as in K. Functions possibleMConnectingPaths and
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possibleInducingPaths are implemented as an ex-
tension to the algorithm in (Neapolitan, 2003) for de-
termining d-separation.

Finally, procedure AdditionalConstraints adds the
constraint that all edges in K should have at least
one arrowhead; in addition, that marked definite non-
colliders in any K are also non-colliders in K. Proce-
dure CNF converts a boolean formula to an equisat-
isfiable formula in Conjunctive Normal Form of size
linear to the size of the input; we used the algorithm
in (Jackson and Sheridan, 2005) to avoid an exponen-
tial explosion of clauses during conversion. Figure 1
provides an illustrative example; any MAG output by
the algorithm belongs in the equivalence class of PAG
shown in Figure 1e (in general, there are typically mul-
tiple PAGs consistent with all independence models).
We prove the algorithm is sound and complete in the
sense that it returns a MAG if and only if it is con-
sistent will all Pi and the query (the proof is in (Tri-
antafillou, 2010)).

4 The Causal SAT Algorithm

Under the assumptions stated and when Φq = ∅, FCM
will always return a consistent MAG that fits the data.
However, one may be interested in testing whether
there exists a MAG with a specific property, e.g., the
existence or absence of an edge or the presence of a
path (indirect causation). Properties that can be ex-
pressed using the primitive graph terms of edge and
arrowhead can be tested by augmenting the SAT for-
mula with corresponding constraints, passed as param-
eter Φq to the algorithm. If FCM returns null, there is
no fitting MAG with the given property. For example,
the causal query Φq = edge(X,Y )∧arrowhead(X, Y )∧
¬arrowhead(Y,X) will fail if X cannot be a parent of
Y . There may be many MAGs fitting the marginal
distributions provided, however, they may belong to
different Markov equivalence classes, i.e., are repre-
sented by different PAGs. There is currently no known
compact representation of this set of solutions. One
way to succinctly present causal information is to cap-
ture all possible pairwise causal relations among vari-
ables:

Definition 4.1 Let {Pi}N
i=1 be a set of partial ances-

tral graphs over Oi
N
i=1. A Pairwise Causal Graph U is

a partially oriented mixed graph over
⋃

i Oi with two
kinds of edges (99, —) and three kinds of endpoints(>,
-, ◦) with the following properties:

1. X 99Y in U if X is adjacent to Y in at least one
M consistent with all Pi.

2. X —Y in U if X is adjacent to Y in every M
consistent with all Pi.

Algorithm 6: cSAT+
Input: {Pi}N

i=1

Output: U , the Pairwise Causal Graph over
O =

⋃N
i=1 Oi

U ← InitializeGraph (P);1

repeat2

Apply preprocessing steps 1 and 2;3

until no step is applicable ;4

for every edge X, Y in U do5

if FCM ({Pi}N
i=1, edge(X, Y )) == ∅ then6

Remove edge from U7

end8

else if FCM ({Pi}N
i=1,¬edge(X, Y ) == ∅ then9

Mark edge as solid10

end11

end12

for every unoriented endpoint X ∗ · · · ◦ Y in U do13

if FCM14

({Pi}N
i=1, edge(X, Y ) ∧ arrowhead(X,Y )) == ∅

then
Orient X out of Y15

end16

else if FCM17

({Pi}N
i=1, edge(X, Y ) ∧ ¬arrowhead(X,Y )) == ∅

then
Orient X into Y18

end19

end20

return U21

3. X is into (out of) Y in U if X is into (out of) Y
in every M consistent with all Pi, where X and
Y are adjacent.

The presence of dashed edge in a PCG denotes that
there exists at least one possible data-generating MAG
where this edge is present, whereas solid edges rep-
resent adjacencies that are present in every possible
data-generating MAG. Similarly, an oriented endpoint
corresponds to an invariant orientation in every pos-
sible data-generating MAG where the respective edge
exists. For non oriented endpoints (denoted by circles)
there are consistent MAGs with either endpoint config-
uration. Pairwise Causal Graphs semantically repre-
sent the causal possibilities between two variables, and
cannot be used to produce Maximal Ancestral Graphs
consistent with the data without further reasoning. An
example of a PCG is shown in Figure 1e.

The Causal SAT algorithm (cSAT) repeatedly in-
vokes FCM with a causal query for every uncertainty
present after initializing graph K. Each rejected query
is imposed on K which is returned as the output Pair-
wise Causal Graph.
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4.1 Speeding up the algorithm

The size of the SAT problem depends on the number
of possible inducing and m-connecting paths after ini-
tialization. Removing or orienting edges reduces the
number of paths and improves efficiency. We have
identified two preprocessing steps that perform lim-
ited, polynomial-time reasoning to remove and orient
certain edges in advance.

Proposition 4.1 (Preprocessing Step 1) If X ←
Y in Pi, and MSep(X,W |Z) in Pj, Y /∈ Oj with
Z ∩Oi = ∅, remove Y ◦99◦W from U .

Proposition 4.2 (Preprocessing Step 2) If X →
Y in Pi, and MSep(X, W |Z) in Pj with Z ∩Oi = ∅,
orient Y ◦99◦W as Y L99 ◦W in U .

The idea is that the presence of the removed edge (pre-
processing step 1) or rejected orientation (preprocess-
ing step 2) would be m-connecting the variables that
have been found independent. Algorithm cSAT+
checks every triplet (X, Y, Z) to apply the steps be-
fore generating the constraints (proofs of correctness
in (Triantafillou, 2010)).

5 Results

Evaluation of Inference Capabilities. We empir-
ically quantify the inference capability of cSAT+ on
7 common networks in the literature (see (Triantafil-
lou, 2010) for full details). The networks are named
Cancer(5 variables), Burglar(5 variables), Jouet5(7
variables), Asia(8 variables), Incinerator(9 variables),
Car(12 variables), and ALARM (37 variables). For
each network, the variable set is partitioned in two
disjoint subsets of common and non-common variable
set. The non-common variable set is then randomly
partitioned into two disjoint non-empty subsets. The
resulting sets are joined with the common set to form
two overlapping sets. FCI algorithm with an oracle of
conditional independence is used to create the PAGs
over the two subsets which are then fed to cSAT+.
This procedure is iterated for non-common sets of size
2 to half of the variables of every network (except for
ALARM), and repeated for 20 (cancer and burglar net-
works) or 50 (jouet5, asia, incinerator and car) random
sets. MINISAT2.0 (Eén and Sörensson, 2004) is used
to solve the SAT instances and the PCG corresponding
to each example was constructed.

We try to quantify the number of inferences as fol-
lows. For an edge in a PCG we count the number of
models it admits: from a minimum of 1 if the edge
is absent or fully oriented and solid, to a maximum
of 4 if the edge is fully unoriented and dashed. We

quantify the total structural uncertainty conveyed by
the graph G as the sum of this number over all edges,
denoted by SU (G). Let K0, U , P be the graphs re-
turned by InitializeGraph, cSAT+, and FCI over
the complete set of variables. These correspond to the
structures learnt by analyzing the datasets in isola-
tion and trivially conjoining the results, by integrative
analysis, and the optimal structure inferred when all
variables are measured together. The inference rate
IR = SU (K0)−SU (U)

SU (K0)−SU (P) denotes the percentage of infer-
ences made compared to P scaled to [0,1]. IR is zero
when no additional inferences are made and 1 when the
structure coincides with P, the structure learnt from
all variables. The figure clearly shows the inferential
advantages gained by integrative analysis: most infer-
ence rates are significantly higher than zero. Some-
what surprisingly, for the larger network (ALARM)
the inference rates remain above 0.9 for all sizes of set
differences between the variable sets tested: the results
are close to the graph learnt given all 37 variables.

Preprocessing Improves Efficiency. We have
tested cSAT+ (with preprocessing) against cSAT.
Without preprocessing the algorithm does not scale
to the ALARM network. For smaller networks, Figure
2b presents the ratio of the median SAT clauses cre-
ated by the two algorithms. The results show that the
polynomial-time preprocessing step reduces the size of
the SAT problem. In some cases, the number of clauses
is reduced by a factor of 3 or more. The smaller SAT
problems translate to overall computational efficiency;
Table 1 shows the median times spent by each algo-
rithm.

Comparison with ION. We compare the algorithm
with ION, a similar but more general algorithm. Table
1 presents the timing results, where the missing values
are the cases where ION runs out of memory in all
iterations. ION never scales to problems where the
set difference between the variable sets is more than 3
variables. ION enumerates all fitting PAGs taking up
to 2 orders of magnitude more time than cSAT+.

Scaling Up. The proposed algorithm cSAT+ allows
us to scale up integrative causal analysis to non-trivial
problems, such as the ALARM network. Using the
same design as for the other networks, we generate two
random variable sets, with the size of non-overlapping
variables ranging from 2 to 8. We repeat the experi-
ment with 100 random variable splits for each parame-
ter value and present mean and median execution time
in Figure 2c. It is interesting to note that this dif-
ference increases with the number of non-overlapping
variables. This implies that the execution time greatly
depends on the graph structures of the marginal dis-
tributions and so certain large problems may still be
solved efficiently.
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Figure 2: Experimental Results

Table 1: Execution times in seconds for the ION, cSAT, and cSAT+.
Net JOUET5(7v) ASIA(8v) INCINERATOR(9v) CAR(12v)

SetDiff 2 3 4 2 3 4 2 3 4 5 2 3 4 5 6
Ion 0.37 2.30 - 10.47 64.06 - 24.30 - - - 8.61 330.28 - - -

cSAT 0.37 0.62 1.57 0.45 0.88 1.81 0.71 1.35 3.38 7.97 0.40 0.67 1.15 4.14 2.69
cSAT+ 0.32 0.54 0.98 0.37 0.63 1.32 0.65 1.15 2.48 4.62 0.38 0.61 0.91 2.19 2.32

6 Conclusions and Discussion

We present an algorithm for learning the causal struc-
ture in a domain from datasets measuring different
variables sets, named cSAT+. The algorithm improves
efficiency over ION by two orders of magnitude for
the larger problems. We also introduce the Pairwise
Causal Graph (PCG) to summarize the structural un-
certainty of the solution set. Our results show that a
large number of additional inferences is possible when
datasets are integratively analyzed, compared to anal-
ysis in isolation. The existence or absence of associa-
tion between variables never measured together is pos-
sibly inferred; surprisingly, the absence of edge (X, Y )
may also be inferred even when (X, Y ) is present in all
marginal structures measuring both X and Y . These
preliminary results are encouraging to further develop
the methods to scale to larger and more realistic sizes,
and in situations where there is no perfect knowledge
of independencies (statistical errors).

Acknowledgements

We are grateful to Robert Tillman for providing us
with an implementation of ION, and the VPH NoE GA
no 223920 and REACTION GA 248590 EU projects,
and the University of Crete for partial funding.

References
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