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1 Proof of Law for E (KN |UN)

We start by defining Tk = inf {m > Tk−1; Xm /∈
{X1, . . . , Xm−1}}. Tk is the “waiting time” (number of
observations needed) until the kth new cluster is gen-
erated by the uniform process. Under the uniform pro-
cess, Tk =

∑k
i=1 τi where τi ∼ Geometric (θ / (θ+i−1)

and the τi variables are independent, so
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In terms of Tk, KN = max{k; Tk ≤ N} =∑N
k=1 I (Tk ≤ N). We first prove a strong law for

the convergence of Tk. Let ε > 0. From Chebychev’s
inequality and (1), we have the following:

P
(
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)
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ε2k4
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k
. (2)

From (2),

P
(
|Tk2 − E (Tk2)| > εk4

)
≤ C(θ, ε)

k2
,

and so by the Borel-Cantelli lemma, we have
P
(
|Tk2 − E (Tk2)| > εk4

)
= 0. Since ε > 0 was cho-

sen arbitrarily, it follows that Tk2−E (Tk2 )

k4 → 0 almost
surely and hence Tk2

k4 → 1
2θ almost surely. Now, let

m = b
√
kc. Since Tk is increasing, we have:
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Since m+1
m → 1, both sides of the inequality (3) con-

verge to (2θ)−1 almost surely, and so

Tk
k2
→ 1

2θ
almost surely. (4)

The strong law (4) implies a strong law for KN as
follows. TKN

≤ N < TKN+1 and, consequently,

TKN
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≤ N

K2
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<
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.

Since KN → ∞ almost surely and Tk / k
2 → 1 / (2θ)

almost surely, it follows that the left and right hand
side above both converge to 1 / (2θ) almost surely.
Thus, K2

N /N → 2θ almost surely and so

KN√
N
→
√

2θ almost surely. (5)

From the strong law (5) and the dominated conver-
gence theorem, we have the following:

E (KN )
N

→ 0. (6)

Combining (6) with following result from section 2,

E (K2
N ) = E (KN ) + 2θ (N − E (KN )). (7)

gives us

E (K2
N )

N
→ 2θ. (8)

Finally, using (8) together with Fatou’s lemma and
Jensen’s inequality, gives us the following:
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This then proves the result

E (KN )√
N

→
√

2θ

under the uniform process.

2 Result relating E (KN) to E (K2
N)

Recall the definition of Tk from above and now define
MN = KN+1. Consider the “waiting time” TMN

until
the observation that creates the (KN + 1)th unique
cluster. We relate E (KN ) to E (K2

N ) by calculating
E (TMN

) in two different ways. First, observe that
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which, since MN = KN + 1, simplifies to
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Now TMN
= N +

∑
j I (MN+j = MN ) and so

E (TMN
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∑
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which can be simplified to
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θ
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Combining (9) and (10) gives (7):

E (K2
N ) = E (KN ) + 2θ (N − E (KN )).

3 Evaluation Algorithm

The evaluation algorithm used to approximate
logP (Wtest |Wtrain, ctrain, θ,β) is based on the “left-
to-right” evaluation algorithm introduced by Wallach
et al. (2009), adapted to marginalize out test cluster
assignments. Pseudocode is given in algorithm 1.
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initialize l := 0
for each document d in Wtest do

initialize pd := 0
for each particle r = 1 to R do

for d′ < d do
c
(r)
d′ ∼ P (c(r)d′ |Wtest

<d , {c
(r)
<d}\d′ ,Wtrain, ctrain, θ,β)

end for
pd := pd +

∑
c P (wtest

d , c
(r)
d =c |Wtest

<d , c
(r)
<d,Wtrain, ctrain, θ,β)

c
(r)
d ∼ P (c(r)d |wtest

d ,Wtest
<d , c

(r)
<d,Wtrain, ctrain, θ,β)

end for
pn := pn /R
l := l + log pn

end for
logP (Wtest |Wtrain, ctrain, θ,β) ' l

Algorithm 1: “Left-to-right” evaluation algorithm for computing logP (Wtest |Wtrain, ctrain, θ,β).


