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Abstract

Latent variable models represent hidden
structure in observational data. To account
for the distribution of the observational data
changing over time, space or some other
covariate, we need generalizations of latent
variable models that explicitly capture this
dependency on the covariate. A variety of
such generalizations has been proposed for
latent variable models based on the Dirich-
let process. We address dependency on co-
variates in binary latent feature models, by
introducing a dependent Indian buffet pro-
cess. The model generates, for each value of
the covariate, a binary random matrix with
an unbounded number of columns. Evolution
of the binary matrices over the covariate set
is controlled by a hierarchical Gaussian pro-
cess model. The choice of covariance func-
tions controls the dependence structure and
exchangeability properties of the model. We
derive a Markov Chain Monte Carlo sampling
algorithm for Bayesian inference, and provide
experiments on both synthetic and real-world
data. The experimental results show that ex-
plicit modeling of dependencies significantly
improves accuracy of predictions.

1 Introduction

Latent variables models are widely used to identify
hidden structure in data. Classic examples of such
models include finite mixture models (McLachlan and
Peel, 2000) and factor analyzers (Bartholomew, 1987).
These parametric models suffer from the restriction
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that the number of features has to be specified a pri-
ori. For a model that attempts to identify unknown
features, the assumption that the number of features
is known beforehand is hard to justify. Bayesian non-
parametric models have emerged as a powerful ap-
proach for addressing this problem. Prominent ex-
amples include the Dirichlet process (DP; Ferguson,
1973) for mixture models, and the Indian buffet pro-
cess (IBP; Griffiths and Ghahramani, 2006) for binary
latent feature models.

In this paper, we build upon the IBP model, which is a
random distribution on binary matrices with a variable
number of columns. When combined with a suitable
likelihood, the matrix entries act as switching vari-
ables which activate or deactivate a feature’s influence
for each observation. Application examples include
nonparametric Bayesian representations of binary fac-
tor analysis (Griffiths and Ghahramani, 2006), tree-
structured models, (Miller et al., 2008), and sparse
nonparametric factor analysis (Knowles and Ghahra-
mani, 2007).

A problem that has recently received much attention
in the context of DP models is dependence of data on
a covariate, such as latent feature models that evolve
over time, or exhibit varying behavior according to
their position in space. MacEachern (1999) proposed a
model, called the Dependent Dirichlet Process (DDP),
which combines Dirichlet and Gaussian process mod-
els to achieve dependence on a covariate: If the cluster
parameters of the components in a Dirichlet process
mixture model are of dimension d, each such param-
eter is substituted by a d-dimensional function drawn
from a Gaussian process, with the covariate as its argu-
ment. If the covariate is time, for example, this can be
regarded as a nonparametric mixture model in which
the characteristics of each component evolve over time.
The DDP idea has triggered a flurry of publications in
nonparametric Bayesian and spatial statistics, see e.g.
Duan et al. (2007) and Griffin and Steel (2006). Dun-
son and Park (2008) model dependence by introducing
kernel-defined weights in the “stick-breaking construc-
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tion” of the DP. Sudderth and Jordan (2009) have ex-
tended the DDP idea to hierarchical models.

In this paper, we address the problem of dependence
for binary latent feature models, and derive a depen-
dent form of the IBP. The DDP idea does not immedi-
ately carry over to the IBP, as the model involves only
binary variables. Roughly speaking, we couple a set of
IBPs by simulating the binary variables as transformed
Gaussian variables. The Gaussian variables can be
represented as marginals of a GP, and the binary vari-
ables couple through the GP’s mean and covariance
function. We show that Bayesian inference for the
dependent IBP model can be conducted by Markov
Chain Monte Carlo (MCMC) sampling. The modu-
lar character of the model permits the combination
of different MCMC techniques to improve efficiency,
such as truncated Gibbs sampling for the model’s IBP
components, and Hybrid Monte Carlo for the GP hy-
perparameters. The advantage of explicitly modeling
dependence on a covariate is demonstrated by experi-
ments on both synthetic data and two real-world data
sets.

2 Background: Indian Buffet Process

The Indian buffet process (IBP; Griffiths and Ghahra-
mani, 2006) is a distribution on binary matrices with
N rows and an infinite number of columns. To gen-
erate such a random matrix Z = (znk), we choose a
scalar parameter α ∈ R+. The distribution IBP(α)
can be sampled as follows:

vj ∼ Beta(α, 1)

bk :=
k∏
j=1

vj

znk ∼ Bernoulli(bk) .

(1)

This is the “stick-breaking construction” of the IBP
(Teh et al., 2007), where the variables bk represent a
set of “sticks” of decaying length. As the construction
shows, a given matrix Z will have non-zero probability
under the IBP if and only if the number of columns
containing non-zero entries is finite. By removing all
columns containing only zeros, Z can therefore be re-
garded as a random binary N ×K matrix, for which
the number of non-empty columns K is itself a random
variable that varies from draw to draw.

The IBP can be used as a Bayesian prior in latent fea-
ture models, where the binary entries znk of an IBP
random matrix encode whether feature k is used to
explain observation n. The IBP is combined with a
parametric likelihood p(X(t)|Z(t),Θ). A common ex-
ample of such a likelihood is a linear Gaussian model
(see e.g. Griffiths and Ghahramani, 2006). Given a

binary N ×K matrix Z(t), a data X(t) is assumed to
be generated drawing each row X(t)

n as

X(t)
n ∼ N (Z(t)

n A, ε2XI) , (2)

where the K × D feature matrix A is generated
column-wise as Ad ∼ N (0, ε2AI). Such a likeli-
hood represents a binary factor analysis model. It is
parametrized by Θ := (εX , εA). A number of other
likelihood models have been used with the IBP, see for
example Navarro and Griffiths (2008) and Miller et al.
(2009).

Inference in IBP models can be conducted by Gibbs
sampling. The MCMC algorithm samples the latent
variables znk and bk, the parameters Θ of the likeli-
hood, and the IBP hyperparameter α. To cope with
the variable number of active features, and hence the
variable dimension of the sampling space, samplers
may truncate the number of features at some reason-
ably large value, in a manner similar to truncated sam-
pling methods for the Dirichlet process. As an alter-
native to Markov chain sampling for the IBP, Doshi-
Velez et al. (2009) propose a variational algorithm for
approximate inference, which permits application of
IBP methods to large data sets.

3 Dependent Indian Buffet Processes

The dependent Indian buffet process (dIBP) derived
in this section substitutes the individual binary ma-
trix Z generated by an IBP with a set of matrices Z(t)
for t ∈ T . Each matrix Z(t) contains a column Zk(t)
corresponding to feature k at covariate t. For each
feature, these columns for different values of t are cor-
related. The covariate tmay be time, space, or another
suitable index set.1For example, if t represents a time
index, Z(t) is a sequence of matrices, and each feature
k evolves over time. The number N(t) of items (rows)
in the matrix Z(t) may vary for different values of t.

Coupling over T is modeled by representing the
Bernoulli variables znk(t) as transformed Gaussian
variables, and assembling these into a Gaussian pro-
cess indexed by t. More precisely, an arbitrary
Bernoulli variable z ∼ Bernoulli(β) can be represented
as

u ∼ N (µ, σ2)

z := I{u < F−1(β |µ, σ2)} ,
(3)

1The special case of dependence of an IBP on a discrete
time variable has been recently considered by Van Gael
et al. (2009) and used to define a generalization of hidden
Markov models. In contrast to their model, the dIBP in-
troduced in this section allows dependence on arbitrary,
possibly vector-valued, covariates, does not have Markov
and time-invariance restrictions, and has IBP marginals at
any covariate value.
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with normal cumulative distribution function
F ( . |µ, σ) and indicator function I. (This repre-
sentation follows Sudderth and Jordan (2009), and
is due to Duan et al. (2007) and, more generally,
MacEachern (2000).)

To generate a coupled set of variables z(t) for t ∈ T ,
the individual Gaussian distributions can be regarded
as the t-marginals of a Gaussian process GP(m,Σ)
indexed by T . Draws from the GP are functions
g : T → R. For fixed t, the Bernoulli variable z(t)
is generated according to (3) using the marginal of the
process at t, which is just N (m(t),Σ(t, t)). To gener-
ate a set of dependent IBPs, a collection {hnk} of ran-
dom functions is drawn from Gaussian processes, and
is then used to generate the random variables znk(t).

We define the dependent IBP model as follows: First
generate stick length parameters bk, which are not de-
pendent on t, as vj ∼ Beta(α, 1) and bk :=

∏k
j=1 vj

according to (1). Then generate the variables znk(t)
for all t as

gk ∼ GP(0,Σk)
hnk ∼ GP(gk,Γnk)

znk(t) := I{hnk(t) < F−1(bk|0,Σ(t,t)
k + Γ(t,t)

nk )} .
(4)

The model (4) defines a hierarchical Gaussian process,
similar to the hierarchical Dirichlet process (Teh et al.,
2006). By means of the hierarchy, information can
be shared within columns (features). Different choices
of the GP covariance structure define different model
properties:

General model: Hierarchical sharing. The hier-
archy in (4) shares information within features. The
covariances Σk define a general profile for each feature
k, with the second layer modeling individual variations
per item. If, for example, Σk is chosen as a large-scale
covariance function, and Γnk to model small-scale fluc-
tuations, hnk will vary significantly for different values
of k, but on a smaller scale between different items n
within a fixed feature k. The GP draws coupled fea-
tures over T . Consequently, for two index values t1
and t2, item n at t1 has to correspond to item n at t2.

Exchangeable model: Bag of items. If Γnk is
chosen independently of n, e.g. Γnk = ρ2I, items be-
come exchangeable, i.e. the item index set {1, . . . , N}
may be permuted by any fixed permutation applied
over all t ∈ T , without changing the overall prob-
ability of the observed process. We obtain a model
with a “bag of items” property at each value of t. For
each t, the marginal distribution of Z(t) is an IBP,
and IBP matrices have exchangeable rows. For covari-
ance ρ2I, the second layer GP can be interpreted as
adding noise variables, which do not couple over T .
The items (rows) within a matrix Z(t1) can therefore

be permuted independently of Z(t2), without changing
the probability of the overall sample. In other words,
item n at t1 does not generally correspond to item
n at t2 for this choice of Γnk. Such a parametrization
would be suitable, for example, to model data sets rep-
resenting the development of scientific journal articles
over a given period of time, where a journal issue is a
bag of articles, and there is no obvious correspondence
between articles at time t1 and articles at time t2. At
different times t1 and t2, the respective numbers N(t1)
and N(t2) need not be identical.

Collapsed model: Tracking individual items. If
the objective is to model the evolution of features over
T specific to each item, the covariance Σk in the first
layer (and hence the coupling structure shared over
items) can be set to zero. In the zero covariance limit,
the hierarchy collapses into

hnk ∼ GP(0,Γnk)

znk(t) := I{hnk(t) < F−1(bk|0,Γ(t,t)
nk )} .

(5)

Without the hierarchy, the model does not impose a
shared covariance structure of the latent functions hnk.
For a fixed feature k, the variables znk(t1) and zn′k(t2)
are coupled by their shared stick length bk, which con-
trols the probability of feature k being selected, and
does not depend on n or t. Additionally, for a fixed
item n and feature k, znk(t1) and znk(t2) are corre-
lated through the latent function hnk. This version
of the model would, for example, be applicable to the
tracking of patients over time in a longitudinal study.

4 MCMC Inference

The dIBP can be used as a prior in conjunction with
a parametric data likelihood p(X(t)|Z(t),Θ). The ob-
jective of an inference algorithm is to estimate the la-
tent variables bk, gk and hnk (which define the matri-
ces Z(t)), as well as the model hyperparameters, from
the data X. For the sake of simplicity, we derive the
MCMC steps for the case Γnk = ρ2I.

The random draws generated in the dIBP model (4)
are the stick lengths bk and the GP draws gk and hnk.
Evaluation of the functions on a finite set of data yields
a finite set of real-valued variables gk(t) and hnk(t). If
the hyperparameters sk of the GP models are to be es-
timated from data, these have to be sampled as well.
An MCMC sampler then performs a random walk in
the space spanned by the variables bk, sk, gk(t) and
hnk(t). The number of active features is a random
variable of unbounded value. The unbounded number
of features is accomodated by an infinite-dimensional
space. As for many nonparametric Bayesian models,
infinite dimensionality can be addressed either by ap-
proximate methods, e.g. by truncating the number of
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represented features at a suitably large value K, or
by asymptotically exact inference algorithms, such as
slice sampling (Neal, 2003).

To achieve computational efficiency and make the
dIBP model applicable to real-world data, we use an
approximate inference strategy based on Gibbs sam-
pling. Derivation of a Gibbs sampler means derivation
of the full conditionals of the target variables, as given
below. The Gibbs sampler on a truncated set of vari-
ables is combined with a hybrid Monte Carlo approach
(Duane et al., 1987) for updates of the GP hyperpa-
rameters.

We assume that the number of features is truncated at
K. For a finite data set consisting of measurements at
index values {t1, . . . , tM} =: T, all continuous objects
on T have to be evaluated on T. We will generally de-
note the resulting vectors by bold letters, such that gk
is represented as the vector gk = (gk(t1), . . . , gk(tn)),
Σk as the matrix Σk =

(
Σk(t, t′)

)
t,t′∈T etc. For re-

moval of an individual element from a vector x, we
use the notation x−i := (x1, . . . , xi−1, xi+1, . . . , xI).

Stick lengths. The full conditional of a stick length
bk is the distribution p(bk|b−k,Z(t),gk), and can be
obtained as the posterior of the likelihood p(z(t)

nk |bk,gk)
for all n, and prior p(bk|α). As shown in Appendix A,
the full conditional is

p(bk|b−k,hnk,gk) ∝

bαK
bk

∏
t∈T

N(t)∏
n=1

(γ(t)
k )znk(t)(1− γ(t)

k )1−znk(t) , (6)

where γ
(t)
k := F

(
F−1(bk|0,Σ(t,t)

k + ρ2) − g(t)
k

∣∣0, ρ2
)
.

Dependence on hnk is encoded by the binary variables
znk(t), which are deterministic functions of hnk. We
use a Metropolis-Hastings algorithm in the space of
F−1(bk) to sample from (6).

Gaussian process draws. The Gaussian process
random functions gk and hnk are evaluated on T as the
random vectors gk ∼ N (0,Σk) and hnk ∼ N (gk, ρ2I).
Given all hnk, the full conditional of gk is

p(gnk|{hnk},b) ∝ pNormal(gk|0,Σk)

·
∏
t∈T

N(t)∏
n=1

pNormal(h
(t)
nk|g

(t)
k , ρ2) .

(7)

Sampling hnk is slightly more complicated: These la-
tent variables provide the actual link to the data, as
the data likelihood p(X(t)|Z(t),Θ) is parametrized by
the values z(t)

nk , which are in turn functions of hnk.
However, since the Gaussian values enter in the like-
lihood only indirectly, through the binary values z(t)

nk ,
sampling has to proceed in two steps, by first obtaining

estimates of z(t)
nk , and then sampling hnk conditional on

those.

For the stick lengths estimates, we already derived
the distributions p(z(t)

nk |bk,gk) as Bernoulli(γ(t)
k ). If

these are used as priors for z(t)
nk , the full condition-

als p(z(t)
nk |bk,g

(t)
k ,X(t),Θ) are given by the correspond-

ing posteriors under the data likelihood. Given sam-
ples of z(t)

nk , we now obtain samples of hnk. In (4),
z
(t)
nk is defined by thresholding h(t)

nk on the thresh-
old value b̃

(t)
k := F−1(bk|0,Σ(t,t)

k + ρ2). Condition-
ing on z

(t)
nk restricts the possible values of h(t)

nk to ei-
ther above or below the threshold, which turns the
Gaussian distribution into a truncated Gaussian on
the corresponding half-line. Hence, the full conditional
p(h(t)

nk|g
(t)
k , bk, z

(t)
nk) is obtained by restricting the Gaus-

sian density pNormal(h
(t)
nk|g

(t)
k , ρ2), either to (−∞, b̃(t)k ]

for z(t)
nk = 1, or to (b̃(t)k ,+∞) for z(t)

nk = 0. An ef-
ficient approach for sampling truncated Gaussians is
described by Damien and Walker (2001).

Hyperparameters. The model hyperparameters
consist of the beta distribution parameter α, and the
parameters of the GP covariance functions. The beta
parameter α is sampled using Metropolis-Hastings
steps. All experiments reported in Sec. 5 use expo-
nential kernels,

Σk(t, t′) := σ2 exp
(
− (t− t′)2

s2k

)
. (8)

Due to the smoothness and special geometry of the
problem, GP hyperparameters can be sampled much
more efficiently than with general Metropolis-Hastings
algorithms, and we sample s2k by means of a Hybrid
Monte Carlo method (Duane et al., 1987; Neal, 1997).

5 Results

We experimentally evaluate the dIBP model on
both synthetic and real-world data. The likelihood
p(X(t)|Z(t),Θ) in all experiments reported here is the
linear Gaussian model described in Sec. 2. Both the
likelihood and the MCMC inference method are cho-
sen to make experiments comparable to other meth-
ods, and to focus on the properties of the dIBP model.
Other likelihoods developed for the IBP, such as the
ICA model of Knowles and Ghahramani (2007) and
the relational model of Miller et al. (2009), could be
used with the dIBP as well. Similarly, efficient approx-
imate inference methods developed for the GP could
be adapted to the dIBP.

Since the likelihood parameters Θ := (εX , εA) are scat-
ter parameters, vague gamma priors are used in the
sampler. As covariance functions Σk and Γnk in model
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Figure 1: Hierarchical model, synthetic data: The true generating features (top) and their time-varying prob-
abilities (second row), compared to dIBP estimates of the features (third row) and posterior sample of the
probabilities (fourth row).

(4), we use squared exponential covariance kernels of
the form (8) for Σk, with individual length scale pa-
rameters for each feature, and Γnk := ρ2I indepen-
dently of n and k.

5.1 Synthetic Data

Hierarchical model: Bag of items. To illustrate
the behavior of the hierarchical model (4), we use the
eight 8 × 8 images in Fig. 1 (top row) as features.
Data is generated by collecting the eight images in
a K ×D = 8× 64 feature matrix A. Synthetic binary
matrices Z(t) are obtained by first drawing K sam-
ples with T = 40 time steps from a GP with Matern
kernel (ν = 5

2 ) and passing them through a sigmoid
function. At each time value t, the resulting functions
represent the probability for z(t)

nk = 1, and are shown
for each feature over the 40 time steps in the second
row in Fig. 1. From these functions, the matrices Z(t)

for t = 1, . . . , 40 are generated as in (4), and the syn-
thetic data is generated by superimposing the images
as X(t) = Z(t)A+noise, where the noise term is Gaus-
sian with variance 0.25.

For inference, we run the sampler derived in Sec. 4
with a truncation level of 20. The third row in Fig. 1
shows the 8 most commonly observed features learned
by our model, arranged to correspond to the true fea-
tures in the first row. The fourth row shows a sample
from the posterior of the time-varying probability as-

sociated with each of these features. We note that
the posterior samples capture the shape, but not the
scale of the true probabilities shown above. The dif-
ferent scale of the estimates represents the remaining
uncertainty of the model after observing only a lim-
ited amount of data. Values close to zero or one in the
true probabilities (in the second row) express certainty.
The posterior under limited sample size concentrates
its mass on estimate probabilities that avoid certainty.

Collapsed model: Evolving item. The collapsed
version (5) of the model is used to track the evolu-
tion of a single item (N=1) over 100 time steps. We
generate a Markov chain of binary matrices Z(t), by
drawing transition probabilities qk for each feature at
random as qk ∼ Beta(1, 10), and generating the initial
matrix Z(t1) according to a standard IBP. From these
and the features used in the previous experiment, data
X(t) is generated by the same steps as above, result-
ing in 100 time steps of 64-dimensional observations.
Fig. 2 shows the recovered features, that is, the poste-
rior mean (over all time steps) of A, given the data X
and conditional on the model’s estimate of the Z(t). As
shown in Fig. 3, the model’s recovery of the matrices
Z(t) is almost perfect.

5.2 Real-world data

To evaluate whether the incorporation of covariate
data leads to an improvement in model quality, we
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Figure 2: Collapsed model, synthetic data: True features (top row) and recovered features (bottom row).

compared the dIBP model to the basic IBP model on
two real-world datasets where each data-point is asso-
ciated with a position in some covariate space.

Piano music data. This data set, which is due to
Poliner and Ellis (2007), consists of features extracted
from audio recordings of piano music. It consists of 161
continuous-valued spectral features sampled at 10ms
intervals. We scaled and centered a subset of the
dataset consisting of 120 consecutive time-points. The
data was randomly divided into ten folds, each con-
sisting of twelve time-points, selecting nine folds as
the training set and one as the test set. For each data-
point in the test set, ten features (selected at random)
were retained, and the prediction task was to predict
the values of the remaining features.

We modeled the data using both an IBP and a dIBP
model with linear Gaussian likelihood. The covariate
is time. Inference in the IBP model follows the trun-
cated inference scheme of Teh et al. (2007), and both
the IBP and the dIBP sampler use a truncation level of
50. We used 100 samples from the resulting posterior
distribution to predict the held-out features of the test
dataset, and calculated the RMSE of these predictions
against the true values. Table 1 shows that, by incor-
porating temporal information, the dIBP achieves sig-
nificantly lower root mean-squared error (RMSE) on
the held-out test data.

IBP dIBP
Music data 1.08 ± 0.06 0.69 ± 0.04
UN data 0.93 ± 0.06 0.79 ± 0.07

Table 1: Root mean-squared error (RMSE) obtained
with the dIBP and IBP on real-world data. The covari-
ates are time (music data) and gross domestic product
(UN data).

UN development data. The second data set con-
sists of 13 development indicators, such as public
health spending and illiteracy rates, recorded for 144
countries. This dataset was obtained from the UN

Human Development Statistics database. The covari-
ate in this case is each country’s GDP, and the linear
Gaussian likelihood is applied to the logarithms of the
indicator variables. The data was randomly split into a
training set of 130 countries, and a test set of 14 coun-
tries. For each test country, one randomly selected
indicator was observed, and the remainder held out
for prediction. Inference was conducted in the same
manner as for the piano music data described above.
The dIBP achieves lower RMSE on each of the ten
folds. The average RMSE with standard deviation,
obtained by 10-fold cross validation, is compared for
both models in Table 1.

6 Conclusion

We have presented a framework for dependent model-
ing in Indian buffet processes, drawing a parallel with
the considerable body of work on dependent model-
ing in Dirichlet processes (MacEachern, 1999; Griffin
and Steel, 2006; Duan et al., 2007; Sudderth and Jor-
dan, 2009). By using Gaussian processes to model the
dependency, we draw on the flexibility of GPs, and
more generally kernel methods, in creating the depen-
dence structure. Moreover, we can leverage the well-
developed toolbox for learning the parameters of GP
covariance functions from data.

Our model uses GPs with the stick-breaking construc-
tion of the IBP (Teh et al., 2007) to create a countably
infinite collection of dependent sticks, each of which
is marginally drawn from a beta distribution. When
coupled with a base measure B0, this infinite collec-
tion of beta random variables {bk} can be used to de-
fine a beta process (Hjort, 1990), which is a stationary
independent increment (i.e. Lévy) process with beta
distributed increments. The base measure defines the
location of independently drawn points with masses
bk. An alternative method for generating dependent
IBPs would be by means of dependent beta processes.
We leave this for future work.
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Figure 3: Collapsed model, synthetic data: Recovery of the matrices Z(t) over time. Rows correspond to features,
the horizontal axis is time. Each row is split in a top half (column k of true Z(t)) and a bottom half (column k
of estimated Z(t)). Each estimate is a single sample of Z(t) from the MCMC run.

A Stick Lengths Conditionals

To derive the probability p(z(t)
nk |bk,gk), we note that

for an arbitrary Gaussian variable y with CDF Fy,
the variable z := I{y < F−1

y (b)} is Bernoulli(b)-
distributed. According to the hierarchical generation
of the functions hnk in (4), the variable h(t)

nk can be
represented as a sum h(t)

nk = g(t)
k + y with an auxiliary

Gaussian variable y ∼ N (0, ρ2). Then

z
(t)
nk = I{h(t)

nk < F−1(bk|0,Σ(t,t)
k + Γ(t,t)

nk )}

= I{g(t)
k + y < F−1(bk|0,Σ(t,t)

k + Γ(t,t)
nk )}

= I{y < F−1(bk|0,Σ(t,t)
k + Γ(t,t)

nk )− g(t)
k } .

Since y is again Gaussian with CDF F (y|0, ρ2), and
since Γ(t,t)

nk = ρ2, this means that znk is Bernoulli with
parameter

γ
(t)
k := F

(
F−1(bk|0,Σ(t,t)

k + ρ2)− g(t)
k

∣∣0, ρ2
)
. (9)

Since the stick lengths bk are generated sequentially
according to (1), the probability of the complete set

b = (b1, . . . , bK) is

p(b|α) = p(b1|α)
K∏
k=2

p(bk|bk−1, α) = αKbαK

K∏
k=1

b−1
k .

(10)
Combined with the likelihood p(z(t)

nk |bk,gk), the corre-
sponding posterior, and hence the full conditional of
bk, is

p(bk|b−k,hnk,gk)

∝ bαK
bk

∏
t∈T

N(t)∏
n=1

(γ(t)
k )z

(t)
nk (1− γ(t)

k )1−z
(t)
nk . (11)
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