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Abstract

Projection Reconstruction Nuclear Magnetic
Resonance (PR-NMR) is a new technique to
generate multi-dimensional NMR spectra, which
have discrete features that are relatively sparsely
distributed in space. A small number of projec-
tions from lower dimensional NMR spectra are
used to reconstruct the multi-dimensional NMR
spectra. We propose an efficient algorithm which
employs a blocked Gibbs sampler to accurately
reconstruct NMR spectra. This statistical method
generates samples in Bayesian scheme. Our pro-
posed algorithm is tested on a set of six pro-
jections derived from the three-dimensional 700
MHz HNCO spectrum of HasA, a 187-residue
heme binding protein.

1 Introduction

Current methods used to determine the structure of
molecules at atomic level resolution include X-ray crys-
tallography and NMR spectroscopy. Whereas determining
molecular structure with X-ray diffraction requires well-
ordered crystals or fibres, NMR spectroscopy has the ad-
vantage of being able to analyse solids, liquids, or even
gaseous states. One of the challenges for NMR spec-
troscopy is chemical shift overlap, which arises quite fre-
quently in the spectra of biomolecules (such as proteins and
nucleic acids) where a large number of nuclei are present.
In order to overcome this, various pulse sequences to in-
crease spectral resolution have been in development. Such
multi-dimensional NMR spectroscopy technologies share
one drawback in that the acquisition times are extremely
long, exponentially increasing with the number of experi-
ments. For example, suppose that k time points are sam-
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pled in each evolution period for a K-dimensional NMR
experiment that detects K nuclei types. In this case, the to-
tal experimental time is determined by the number of time
points (k), the number of scans (Na) averaged directly, and
the duration of each scan (Simon & Sattler, 2004). Thus,
when Na = 10 and there are 60 time points per evolution
period, the minimum experimental time will be 10 minutes
(60 × 10s) for a 2D (K=2), 10 hours for a 3D (K=3), 25
days for a 4D (K=4), and so on. For these reasons, several
investigators have been trying to speed up these measure-
ments by more efficient approaches (Mishkovsky & Fry-
dman, 2009; Felli & Brutscher, 2009; Mok et al., 2007).
Many approaches are based on the concept of accordion
spectroscopy (Bodenhausen & Ernst, 1982). One recent
approach to address this problem is GFT-NMR by Kim
and Szyperski (Kim & Szyperski, 2003). GFT-NMR ex-
periments detect sums and differences of chemical shifts
by linking the various evolution dimensions. Another ap-
proach which is mainly considered in this paper is Projec-
tion Reconstruction NMR (PR-NMR), initially developed
by Freeman and Kupce (Kupce & Freeman, 2003a; Free-
man & Kupce, 2004; Kupce & Freeman, 2004b,a).

To implement the reconstruction of multi-dimensional
NMR spectra, we have investigated the use of several de-
terministic and statistical approaches (Yoon et al., 2006;
Yoon & Godsill, 2006). Although deterministic algo-
rithms, including Back projection and Lowest algorithms,
can reconstruct the spectra rapidly, the reconstructed spec-
tra are rather different from the underlying ground truth.
Meanwhile, the statistical approaches based on a Bayesian
scheme are relatively slow but provide closer reconstruc-
tion to the ground truth than the deterministic approaches.

In addition, there are two types of schemes to recon-
struct spectra from projections: the pixel-by-pixel approach
and the peak-by-peak approach. In our previous papers
(Yoon & Godsill, 2006; Yoon et al., 2006; Yoon & Fitzger-
ald, 2009), we demonstrated Maximum Likelihood (ML)
reconstruction, Maximum a Posterior (MAP) reconstruc-
tion and Maximum Entropy (ME) (Mobli et al., 2006)
reconstruction and truncated Gibbs sampling reconstruc-
tion (Yoon & Fitzgerald, 2009) for the pixel-by-pixel ap-
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proach. We also showed that Reversible Jump Markov
Chain Monte Carlo (RJMCMC) reconstruction based on
the peak-by-peak scheme can work better than other ap-
proaches based on the pixel-by-pixel approach in that it
reduces the complexity of the problem and speeds up the
calculation. However, if the shape of the peaks does not fit
to given profiles such as Gaussian or Laplacian distribution,
the peak-by-peak approach may separate a large peak into
a myriad of small peaks to make the large peak. This may
make peak-by-peak approaches less efficiently. Worse, it
may result in unwanted shapes of peaks on the spectra.
Therefore, we can still use the pixel-by-pixel approaches
since they are not dependent on the shape of the peaks and
we showed the superiority of truncated Gibbs sampling re-
construction in the pixel-by-pixel based approaches. How-
ever, it is known that the separate estimation of highly de-
pendent parameters by Gibbs sampling requires a long time
to converge to stationary distribution. Therefore, we pro-
pose an algorithm which is updating the high dimensional
spectra jointly per block while our previous truncated algo-
rithm updates every pixel in a Gibbs scheme. As known,
the blocked Gibbs sampler works more efficiently if the
hidden variables to be inferred are highly dependent.

Three contributions are described in this paper. Firstly,
we introduce a robust mathematical model for PR-NMR,
which is similar to Bayesian mapping of disease model
based on intrinsic Gaussian Markov Random Field. Sec-
ondly, we suggest a heuristic algorithm to build an efficient
approximation of a marginalised precision matrix. Lastly,
the reconstruction of the multi-dimensional NMR spectra
is done in a blocked sampling framework to consider the
highly dependent spatial properties.

2 Mathematical model for PR-NMR

2.1 A hierarchical model for PR-NMR

In PR-NMR, the input dataset is a small number of projec-
tions obtained at different projection angles. Let f be the
underlying NMR spectra of interest. Suppose y is a set of
projections and Λ is a set of projection angles such that y(r)

is a projection of the rth angle where r = 1, · · · , |Λ|. Here,
| · | is the number of elements of a set and φr denotes a scal-
ing factor. Since the projections are the sum of individual
intensity in frequency domains, the PR-NMR data is then
defined as

p(y(r)|η, θ) = N (·;φrGrη, κ
−1
r I)

η = zTβ + f + u (1)

where f represents a random field associated with some
properties of the spatial domain and u is an unstructured
term where u ∼ N (0, ρ−1I). Here, N denotes Normal
distribution and Gr is a linear projection matrix for the rth
angle. With this mathematical model, to reconstruct the
multi-dimensional NMR spectra is equivalent to a problem

to infer f from the posterior p(f |y). We set x = {η, f}
and θ = {κ1:|Λ|, τ, ρ, β, φ1:|Λ|}. We demonstrate a Gibbs
sampler based NMR reconstruction algorithm using Gaus-
sian Markov Random Field (GMRF) prior (Besag, 1974;
Rue & Held, 2005). However, this algorithm is only for
a small size spectra since the projection matrix Gr is ex-
tremely large and it is practically infeasible to calculate the
inverse of the matrix G−1

r , which is often used in recon-
struction. Alternatively, we introduce blocked Gibbs sam-
pler approaches drawing samples from its blocked condi-
tionals in order to reduce the size of projection matrix and
to maintain the Markovian dependency in spatial property.

2.2 Gaussian Markov Random Fields

Gaussian Markov Random fields (GMRFs) are defined as
discrete Gaussian fields with a Markov property of condi-
tional independence of a component with all other given
its neighbours (Mardia, 1988). They have seen widespread
application in statistical modelling, for example in spatio-
temporal models (Besag et al., 1991) and dynamic linear
models (West & Harrison, 1997). The GMRF is also one
of the most popular schemes for images (Weir, 1997; Han-
son & Wecksung, 1983; Hunt, 1977; Therrien, 1993).

A random variable f , which denotes spectra, is used to
specify the GMRF. More formally, let f = (f1, · · · , fN )T

have a normal distribution with mean µ and covariance
Σ when there are N pixels in the image where T de-
notes the transpose operation. We define ∆i,j as differ-
enced values of f at site (i, j) on the lattice. In this pa-
per, a second order random walk is defined through letting
∆i,j = fi+1,j + fi−1,j + fi,j+1 + fi,j−1− 4fi,j be indepen-
dent Gaussians, for i, j = 2, . . . , n − 1. The distribution
on f is of Gaussian form but the precision matrix is not of
full rank; this is known as an intrinsic GMRF and they are
widely used as prior distributions in Bayesian latent models
(Rue & Held, 2005). The prior distribution for f is then

p(f |θ) ∝ exp

−τ

2

n−1∑
i=1

n−1∑
j=1

∆2
i,j


= exp

{
−τ

2
(Df)T (Df)

}
= exp

{
−τ

2
fTQf f

}
(2)

where Qf = DTD and τ is a scale parameter for τ ∈ θ.

2.3 Posterior distribution

Our interest is inference of p(x, θ|y) and its conditional
distribution of x given θ is defined by

p(x|y, θ) ∝ exp

−1

2
xTQx+

|Λ|∑
r=1

gr(x)

 (3)
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where gr(x) is log p(y(r)|x, θr). Let x = (xA,x−A)
where A represents a set of indexes of the vector x and
−A denotes the others. For a large size data, we need
the conditional distribution for a blocked area A of x,
which is notated by xA, rather than full joint distribution.
Since our interest turns to p(xA|x−A,y, θ), we need con-
ditional prior for the blocked data, p(xA|x−A, θ). Using
Eq. (1), the conditional prior distribution is defined by
p(xA|x−A, θ) ∝ exp

{
−1

2 (xA − µA)
TQA(xA − µA)

}
where µA =

[
0

−zT
Aβ
ρ

]
and

QA =

[
ρIK×K −ρIK×K

−ρIK×K ρIK×K + τQfA

]
(4)

and the details for derivation of Eq. (4) are described in
Appendix A. Here QfA is obtained by an approximation in
Section 2.3.2. Therefore, the conditional posterior of our
main interest is

p(xA|x−A,y, θ)

∝ exp

−1

2
(xA − µA)

TQA(xA − µA) +

|Λ|∑
r=1

gr(x)


∝ exp

{
−1

2
(xA − µ∗

A)
TQ∗

A(xA − µ∗
A)

}
. (5)

Then we can draw samples xA on the conditional poste-
rior distribution of Eq. (5): xA ∼ q(xA|x−A,y, θ) =
p(xA|x−A,y, θ)IxA≥0(xA) where I is an indicator func-
tion for truncation. It is known that projection reconstruc-
tion is an inverse problem and has a myriad of optima. Un-
der the assumption that the spectra have non-negative in-
tensity, we adapt truncation with the indicator function to
remove such unrealistic local optima. We describe only
equations for the blocked update for xA in main sections
and the estimation for the other parameters θ is illustrated
in Appendix B.

2.3.1 Approximating p(xA|x−A,y, θ)

The next stage is to obtain µ∗
A and Q∗

A of Eq. (5). Let η and
η

′
denote the current and proposed values of η and partition

η into ηA and η−A for an index subset A. After rearranging

the order of elements, we now have η =

[
ηA
η−A

]
and

η
′
=

[
η

′

A

η−A

]
when ηA is only updated to η

′

A. Thus we

have η
′
= η −

[
ηA

η−A = 0

]
+

[
η

′

A

η−A = 0

]
. Therefore

the second part of the right-hand side of Eq. (3), which
means log likelihood (L), is

L =

|Λ|∑
r=1

gr(x) = log p(y|x, θ)

= −1

2

|Λ|∑
r=1

(
y(r) − φrGrη

′
)T

κrI
(
y(r) − φrGrη

′
)

= −1

2

|Λ|∑
r=1

(
y(r) − φrGrη + φrGr

[
ηA

η−A = 0

]
−φrGr

[
η

′

A

η−A = 0

])T

κrI

×
(
y(r) − φrGrη + φrGr

[
ηA

η−A = 0

]
−φrGr

[
η

′

A

η−A = 0

])
. (6)

Let ȳ(r) = y(r)−φrGrη and Gr = (Ḡr,¬Ḡr) where Ḡr

is a set of columns which are associated with ηA and ¬Ḡr

is its complement, then we have the following equation:

L = −1

2

|Λ|∑
r=1

(
ȳ(r) + φrḠrηA − φrḠrη

′

A

)T

×κlI
(
ȳ(r) + φrḠrηA − φrḠrη

′

A

)
= −1

2

|Λ|∑
r=1

(
η

′

A −
Ḡ−1

r ȳ(r)

φr
− ηA

)T

×κrφ
2
rḠ

T
r Ḡr

(
η

′

A −
Ḡ−1

r ȳ(r)

φr
− ηA

)
. (7)

Note the comparison between Gr and Ḡr. When y(r) is a
K×1 vector and the η is a N ×1 vector, Gr is K×N . In
case of blocked area, ȳ(r) is represented by a n× 1 vector
so the size of Ḡr is K × n where N >> n. Finally, we
have the following posterior distribution:

log p(xA|x−A,y, θ)

= −1

2

|Λ|∑
r=1

(
η

′

A −
Ḡ−1

r ȳ(r)

φr
− ηA

)T

×κrφ
2
rḠ

T
r Ḡr

(
η

′

A −
Ḡ−1

r ȳ(r)

φr
− ηA

)
−1

2
(xA − µA)

TQA(x− µA) + const

= −1

2
(xA − µ∗

A)
T
Q∗

A (xA − µ∗
A) + const (8)

where Q∗
A =

[ ∑|Λ|
r=1 κrφ

2
rḠ

T
r Ḡr 0

0 0

]
+QA and µ∗

A =

Q∗−1
A Ψ where

Ψ =

{[ ∑|Λ|
r=1 κrφ

2
rḠ

T
r Ḡr(

Ḡ−1
r ȳ(r)

φr
+ ηA)

0

]
+QAµA

}

2.3.2 Approximating QfA

In Eq. (4), we find that QfA is not equal to Qf which is
a precision matrix of the intrinsic GMRF of Eq. (2) since
QfA is a marginalized precision matrix on fA. Thus, we
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cannot easily build an intrinsic GMRF for fA to build QfA

by using Eq. (2). However, it is rather difficult to obtain
exact values of the marginalized precision due to following
reasons. Firstly, it is intractable to calculate the marginal-
ized precision matrix given a large precision matrix Qf

while it is straightforward to find marginalized covariance

ΣfA given a covariance Σf where Σf =

[
ΣfA Σ2

ΣT
2 Σ3

]
.

Worse, in a high dimensional application domain such as
a 512 × 512 image, the size of the full precision ma-
trix is 5122 × 5122, which is impractical computationally.
Therefore, heuristic approximation algorithms to build the
marginalized precision matrix without such huge computa-
tional load are required. Fig. 1 exemplifies the basic idea
of the heuristic approximation which we propose in this pa-
per. We name this algorithm Proportional increase approx-
imation. Blue and bright grey squares represent a chopped
(blocked) area of interest and a whole area (spectra). The
heuristic algorithm for the efficient selection makes an or-
ange area which is larger than the chopped area but still
much smaller than the whole area. After linking each cor-
ner between blue and bright grey squares, the orange area
is determined by varying the parameter t for 0 ≤ t ≤ 1.
Now we can simply obtain the marginalized precision by
inverting the precision matrix of the orange area, which is
much cheaper than inverting the whole area.

Figure 1: The size of approximated area in Proportional
increase approximation is determined with varying t: (t :
1− t) = (a1 : a2) = (b1 : b2) = (c1 : c2) = (d1 : d2) for
0 ≤ t ≤ 1

In Fig. 2, three heuristic algorithms are described: regular
increase (a, d), infinite increase (b, e) and proportional in-
crease (c, f) models. Graphs (a, b, c) and (d, e, f) of this
figure explain the possible expansion of the area in smaller
and larger areas respectively. Black arrows shows the pos-
sibility of the expansion for each method.

We highlighted the performance of this heuristic approach
with other naive heuristics as shown in Figs. 3 and 4. Fig.
3 shows the comparison of standard deviations of differ-
ences of elements between a true precision and an approx-
imated precision by three different approaches. In order

Regular Infinite Proportional

(a) (b) (c)

(d) (e) (f)

Figure 2: Algorithms of three approaches to approximate
the marginal precision: Regular increase approach (a, d),
infinite increase approach (b, e) and proportional increase
approach (c, f). White square and blue square represent
a large N × N image and a blocked n × n image. An
orange square represent a chopped image to obtain an ap-
proximated precision where its volume is V ≈ L2. (a, b,
c) and (d, e, f) are for smaller orange squares and for larger
orange squares.

to validate the performance comparison, we generated 100
random samples with Ni, ni, V where n is the size of a
chopped area, N is the size of a whole area and V is the vol-
ume of the areas of the orange area obtained by the heuris-
tic approximation. Afterwards, we calculated the averages
of Area Under Curves (AUC) of Fig. 3 in terms of n as
shown in Fig. 4 for the 100 random samples. In these fig-
ures, we find that proportional increase model is superior
to approximate the marginalized precision matrix.

5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

V0.5

δ

Regular Marginals
Infinate Marginals
Proportional Marginals

Figure 3: Comparison of standard deviations of differences
of elements between a truly marginalized precision and an
approximately marginalized precision by three different ap-
proaches



         944

Yoon, Wilson, Mok

2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

16

18

20

A
U

C

n

Regular Marginals
Infinate Marginals
Proportional Marginals

Figure 4: Comparison of AUCs of Fig. 3 in terms of ran-
domly selected parameters including N , n and V .

3 Algorithms

Our main interest is to obtain a reconstructed NMR spectra
f and to estimate other hidden variables, including scaling
factors φ and noise precision κ and τ . We obtain the under-
lying surface by inferring the marginal posterior distribu-
tion p(x|y) = 1

p(y)

∫
θ
p(y|x, θ)p(x|θ)p(θ)dθ. However, it

is rather difficult to jointly estimate x from p(x|y) because
(1) the size of x is too large to calculate inverse matrix and
(2) marginalizing the system parameters θ is not so easy
since it often does not have any closed form. To address the
two problems, we applied two strategies: we sequentially
estimate partial regions using conditional Gibbs sampling
and then we throw away and ignore samples of the θ after
convergence.

Algorithm 1 Reconstruction by Blocked Gibbs sampler
1: for k = 1 to Nconv do
2: Sample x(k) from p(x|y, θ).
3: Partition x into Np regions {Ai}

Np

i=1.
4: for i = 1 to i = Np do
5: xAi ∼ q(xAi |x−Ai ,y, θ) where ∪Np

i=1Ai = A
and Ai ∩Aj = {} for i ̸= j.

6: end for
7: x(k) ← ∪Np

i=1xAi

8: φ(k) ∼ p(φ|x,y, θ−φ).
9: ρ(k) ∼ p(ρ|x,y, θ−ρ).

10: κ(k) ∼ p(κ|x,y, θ−κ).
11: τ (k) ∼ p(τ |x,y, θ−τ ).
12: β(k) ∼ p(β|x,y, θ−β).
13: end for
14: x̂ = 1

Nconv
2 −1

∑Nconv

k=Nconv
2 +1

x(k).

4 Experimental Results

Fig. 5 shows the experimental projected spectral dataset
for reconstruction of NMR spectra using the Gibbs sam-

pler reconstruction. They are projections of 13C15N corre-
lation peaks in the 700MHz HNCO spectrum of the protein
HasA. Fig. 6 (a) shows the contour images of a desired
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Figure 5: Experimental NMR spectra with its 6 Projections

target map. The F1F2 plane extracted from the full three-
dimensional HNCO experiment on HasA, performed by the
conventional method where both evolution times are incre-
mented independently.

We compared the results of the blocked Gibbs sampler
reconstruction with those of back projection reconstruc-
tion (Kupce & Freeman, 2003b), lowest value reconstruc-
tion, Maximum Entropy reconstruction (Reis & Roberty,
1992) which are well-known methods in NMR and trun-
cated Gibbs sampler reconstruction. A contour of an ex-
perimental target map is shown in Fig. 6 (a). The additive
back projection and lowest value reconstructions of Fig. 6
(b) and (c) show that there are a lot of artifacts and un-
wanted ridges and we cannot distinguish the false alarms
from real signals. Fig. 6 (d) shows that the reconstructed
spectra from Maximum Entropy has serious problems with
poor detection of peaks, since weak signals are regarded as
noise (Yoon & Godsill, 2006). Truncated Gibbs sampler
and blocked Gibbs sampler detect almost all peaks includ-
ing very small peaks as in Fig. 6 (e) and (f). We compared
the detected positions with varying thresholds into the re-
constructed spectra. Fig. 7 shows the comparsion of ROC
and accuracy the reconstructed spectra by the several ap-
proaches. Blocked Gibbs sampler has higher specificity
given sensitivity and high accuracy with varying thresh-
olds.

5 Discussion

We focused on how to apply Gibbs sampler to the latent
Gaussian model with Gaussian Markov Random Fields
(GMRF) prior in a large image for projection reconstruc-
tion in this paper. It was our initial intention to adapt Inte-
grated Nested Laplace Approximation (INLA) rather than
Gibbs sampler to our model because INLA had seemed
promising (Rue et al., 2009). However, the difficulty of
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(a) Ground truth (b) Additive Back Projection (c) Lowest value algorithm

(d) Maximum Entropy (e) Truncated Gibbs sampler (f) Blocked Gibbs sampler

Figure 6: Contour maps of reconstructed spectra for experimental dataset

processing data by INLA comes from two factors: the very
large size and high dependency. The original INLA can-
not work in an extremely large size dataset such as ours. A
blocking technique is introduced to make INLA feasible;
however in doing so the blocking technique prevented us
from managing stationary systematic parameters and from
keeping the dependency between neighbours since the pa-
rameters were differently estimated per each block. There-
fore we eventually decided on using Gibbs sampling. To
reduce the information loss by the blocking technique, a
heuristic algorithm is used to calculate the marginalized
precision matrix. We also reduce the information loss by
enlarging the size of the block since the precision matrix Q
is sparse matrix. In addition, we can also employ the well-
known library GMRFLib to update blocks in the Gibbs
scheme (Rue & Held, 2005).

6 Conclusion

With a small number of projections, Projection Reconstruc-
tion NMR (PR-NMR) can reconstruct multi-dimensional
NMR spectra efficiently. In this paper, Blocked Gibbs sam-
pler is applied to reconstruct discrete NMR spectra from a
small number of projections. The blocked Gibbs sampler
reconstruction algorithm with reasonable heuristic approx-

imation is efficient in reconstructing multi-dimensional
NMR spectra compared to other pixel-by-pixel based ap-
proaches.
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Appendix

A Conditional Prior for a blocked area, xA

The conditional prior for a blocked (chopped) area is de-
fined by

p(xA|x−A, θ) ∝

exp
{
− τ

2 f
T
AQfAfA −

ρ
2

(
ηA − zTAβ − fA

)T (
ηA − zTAβ − fA

)}
= exp

{
− 1

2 (xA − µA)
TQA(xA − µA)

}
where µA =[

0

−zT
Aβ
ρ

]
and QA =

[
ρIK×K −ρIK×K

−ρIK×K ρIK×K + τQfA

]
.

B Gibbs update for θ

B.1 Sampling β from the conditionals

The posterior of the regression parameter β has the follow-
ing analytical form and we can draw sample from the dis-
tribution.

π(β) = p(β|x,y, θ−β) ∝ p(x|θ)p(β)
∝ exp

{
−ρ

2
(η − zTβ − f)T (η − zTβ − f)

−1

2
βTQββ

}
= N (·;µβ , Q

∗−1
β )

where Q∗
β = ρzzT +Qβ and µβ = Q∗−1

β ρ(η − f)T zT .

B.2 Sampling φ
(i)
r from the conditionals

The posterior of the scaling factor φ(i)
r also has the follow-

ing analytical equation and we can generate samples from
the distribution:

log π(φ) = log p(φ|x,y, θ−φ) ∝ log p(y|x, θ) + log p(φ)

∝ −1

2

|Λ|∑
r=1

(
y(r) − φrGrη

)T

κrI
(
y(r) − φrGrη

)
= −1

2

|Λ|∑
r=1

(
φr − (Grη)

−1y(r)
)T

×κrη
TGT

r Grη
(
φr − (Grη)

−1y(r)
)

= −1

2
(φ− µφ)

TQφ(φ− µφ)

where Qφ = diag(κ1η
TGT

1 G1η, · · · , κ|Λ|η
TGT

|Λ|G|Λ|η)

and µφ =
[
(G1η)

−1y(1), · · · , (G|Λ|η)
−1y(|Λ|)]T where

we assume the prior distribution is uniform distribution.

B.3 Sampling κr from the conditionals

The posterior of the noise precision for each projection, κr

also has the following analytical equation and we can gen-
erate samples from the distribution:

π(κ) = p(κ|x,y, θ−κ) = p(y|x, θ)p(κ)

∝
|Λ|∏
r=1

κm/2
r

× exp

{
−κr

2

(
y(r) − φrGrη

)T (
y(r) − φrGrη

)}
×κακ−1

r exp(−κr/βκ)

=

|Λ|∏
r=1

κακ+m/2−1
r exp {−κr

×
[
(y(r) − φrGrη)

T (y(r) − φrGrη)

2
+

1

βκ

]}
= G(·; [α∗

1, · · · , α∗
|Λ|]

T , [β∗
1 , · · · , β∗

|Λ|]
T )

where

α∗
r = ακ +m/2

β∗
r =

[(
y(r) − φrGrη

)T (
y(r) − φrGrη

)
2

+
1

βκ

]−1

B.4 Sampling ρ from the conditionals

The posterior of the precision for Gaussian Markov Ran-
dom Field, ρ also has the following analytical equation:

π(ρ) = p(ρ|x,y, θ−ρ) = G(·;α∗
ρ, β

∗
ρ)

where α∗
ρ = αρ +N/2 and

β∗
ρ =

[
(η − f − zTβ)T (η − f − zTβ)

2
+

1

βρ

]−1

.

B.5 Sampling τ from the conditionals

The posterior of the noise precision for reconstructed spec-
tra, τ also has the following analytical equation:

π(τ) = p(τ |x,y, θ−τ ) = G(·;α∗
τ , β

∗
τ )

where α∗
τ = ατ + N/2 and β∗

τ =
[
fTQf f

2 + 1
βτ

]−1

.

Here fTQf f is calculated easily without building Q by us-
ing the characteristics of the intrinsic GMRF: fTQf f =∑n−1

i=1

∑n−1
i=1 ∆2

ij according to Eq. (2).


