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Abstract

Lévy processes play an important role in the
stochastic process theory. However, since
samples are non-i.i.d., statistical learning re-
sults based on the i.i.d. scenarios cannot be
utilized to study the risk bounds for Lévy
processes. In this paper, we present risk
bounds for non-i.i.d. samples drawn from
Lévy processes in the PAC-learning frame-
work. In particular, by using a concentra-
tion inequality for infinitely divisible distri-
butions, we first prove that the function of
risk error is Lipschitz continuous with a high
probability, and then by using a specific con-
centration inequality for Lévy processes, we
obtain the risk bounds for non-i.i.d. samples
drawn from Lévy processes without Gaus-
sian components. Based on the resulted risk
bounds, we analyze the factors that affect
the convergence of the risk bounds and then
prove the convergence.

1 Introduction

Most existing results of statistical learning theory,
e.g., probably approximately correct (PAC) learning
framework (Valiant, 1984), are based on some clas-
sical statistical results (e.g., the central limit theo-
rem), which are valid for the independent and iden-
tically distributed (i.i.d.) samples.1 One of the ma-
jor concerns in statistical learning theory is the risk
bound. Risk bounds of learning algorithms measure
the probability that a function produced by an algo-
rithm has a sufficiently small error. Vapnik (1999)

1Note that Kolmogorov’s central limit theorem is valid
for identically distributed samples (Petrov, 1995).
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gave asymptotic risk bounds in terms of complexity
measures of function classes such as VC dimensions.
Various risk bounds can be obtained by using dif-
ferent concentration inequalities and symmetrization
inequalities. Bartlett et al. (2002) introduced lo-
cal Rademacher complexities and presented sharp risk
bounds for a particular function class. Sridharan et al.
(2008) showed that the empirical minimizer can con-
verge to the optimal value at rate 1/N if the empiri-
cal minimization of a stochastic objective is λ-strongly
convex and the stochastic component is linear. Tsy-
bakov (2004) presented a classifier that automatically
adapts to the margin condition and its error bound
approaches to zero at a fast rate 1/N . In a hypothesis
with some noise conditions, the rates of error bounds
are always faster than 1/

√
N (Bousquet, 2002). How-

ever, these results share an identical assumption that
the samples are i.i.d., and they are no longer valid for
non-i.i.d. samples.

In practical applications, the i.i.d. assumption for
samples is not always valid. For example, some fi-
nancial and physical behaviors are temporally depen-
dent and thus the aforementioned research results are
unsuitable. Mohri and Rostamizadeh (2008) gave the
Rademacher complexity-based risk bounds for station-
ary β-mixing sequences. They can be deemed as tran-
sitions between i.i.d. scenarios and non-i.i.d. scenar-
ios, where the dependence between samples diminishes
along time. Especially, by utilizing a technique of in-
dependent blocks (Yu, 1994), the samples drawn from
a β-mixing sequence can be transformed to an i.i.d.
case and some classical results for i.i.d. cases can be
applied to obtain the risk bounds. Moreover, there are
also some works about the uniform laws for dependent
processes (Nobel and Dembo, 1993).

In this paper, we focus on risk bounds for Lévy pro-
cesses that are the stochastic processes with stationary
and independent increments.

Definition 1.1 A stochastic process (Zt)t≥0 on Rd is
a Lévy process if it satisfies the following conditions:

1. Z0 = 0, a.s.
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2. For any n ≥ 1 and 0 ≤ t0 ≤ t1 ≤ · · · ≤ tn the
random variables

Zt0 , Zt1 − Zt0 , · · · , Ztn − Ztn−1

are independent.

3. The increments are stationary, i.e., the distribu-
tion of Zs+t − Zs is independent of s.

4. The process is right continuous, i.e., for any s ≥
t ≥ 0 and ϵ > 0, we have

lim
s→t

P
[
|Zt − Zs| > ϵ

]
= 0.

Lévy processes play an important role in financial
mathematics, physics, engineering and actuarial sci-
ence (Barndorff-Nielsen et al., 2001; Applebaum,
2004a). Lévy processes contain many important spe-
cial examples, e.g., Brownian motion, Poisson pro-
cesses, stable processes and subordinators. Lévy pro-
cesses have been regarded as prototypes of semimartin-
gales and Feller-Markov processes (Applebaum, 2004b;
Sato, 2004). Figueroa-López and Houdré (2006) used
projection estimators to estimate the Lévy density,
and then gave a bound to exhibit the discrepancy be-
tween a projection estimator and the orthogonal pro-
jection by using the concentration inequalities for func-
tionals of Poisson integrals. This paper is focused on
the risk bounds for Lévy processes in the PAC-learning
framework.

The PAC-learning framework was proposed by Valiant
(1984) and intends to obtain, with high probability,
a hypothesis that is a good approximation to an un-
known target by successful learning. In this frame-
work, a learner receives some samples and then selects
an appropriate function from a function class based
on these samples. The selected function has a low risk
error with a high probability. Given an input space
X ∈ RI and its corresponding output space Y ∈ RJ ,
formally, we define Z = (X ,Y) ⊂ RI×J and assume
that Z = {Zt}t≥0 is a Lévy process without Gaussian
components with Zt = (xt,yt).

We expect to find a function T : X → Y that, given a
new input xt (t > 0), accurately predicts the output
yt. Particularly, for a loss function ℓ : Y2 → R, the
target function T minimizes the expected risk, for any
t > 0,

Et(ℓ(T (xt),yt)) =

∫
ℓ(T (xt),yt)dPt, (1)

where Pt stands for the distribution of Zt = (xt,yt).
Since Pt is unknown, T usually cannot be directly ob-
tained by using (1). Therefore, given a function class G
and a sample set {Ztn}Nn=1 ⊂ Z with Ztn = (xtn ,ytn),
the estimation to the target function T is determined
by minimizing the following empirical risk

EN (ℓ(g(x),y)) =
1

N

N∑
n=1

ℓ(g(xtn),ytn), g ∈ G, (2)

which is considered as an approximation to the ex-
pected risk (1). Next, we define the loss function class

F = {Z 7→ ℓ(g(x),y) : g ∈ G}.

and call F the function class in the rest of the paper.
For any t > 0 and a sample set {Ztn}Nn=1 ∈ Z (t1 <
t2 < · · · < tN ), we shortly denote, for any f ∈ F ,

Etf(Zt) =

∫
f(Zt)dPt , ENf =

1

N

N∑
n=1

f(Ztn),

and define the risk error function with respect to Zt
as

Φ(Zt) = sup
f∈F

∣∣∣ENf − Etf(Zt)
∣∣∣.

Similar to the processes of obtaining risk bounds for
i.i.d. samples, e.g., (Bartlett et al., 2002), we use a
specific concentration inequality to obtain risk bounds
for the empirical processes of Lévy processes. Houdré
and Marchal (2008) discussed median, concentration
and fluctuations for Lévy processes and gave a con-
centration inequality for Lévy processes without Gaus-
sian components under the 1-Lipschitz continuity. Ac-
cording to the discussions in (Houdré and Marchal,
2008) and (Houdré, 2002), the concentration inequal-
ity also holds for the λ-Lipschitz continuity (λ > 0).
By using the new concentration inequality, we achieve
an upper bound of risk error Φ(Zt) under the PAC-
learning framework, wherein Zt is drawn from an un-
known Lévy process Z without Gaussian components.
Its characteristic exponent ψ1(θ) of Z1 ∈ Z is given,
for all θ ∈ RI×J , by

ψZ(θ) =i < θ,a > +

∫
RI×J

(ei<θ,y>

− 1− i < θ, y > 1∥y∥≤1)ν(dy), (3)

where a ∈ RI×J and ν ̸≡ 0 is a Lévy measure. More-
over, in (3), < ·, · > and ∥ · ∥ are the Euclidean inner
product and a norm in RI×J , respectively. Then, for
any t > 0, we have

Et exp(i < θ, Zt >) = exp (tψ1(θ)) . (4)

The above (4) implies the process Z is completely de-
termined by the distribution of Z1 and (a, 0, ν) is the
generating triplet of Z. In the next section, we provide
details of (3) and (4).

The rest of this paper is organized as follows. Sec-
tion 2 introduces Lévy processes. The main results
are presented in Section 3. Section 4 gives the proofs
of some lemmas and theorems and Section 5 concludes
the paper.
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2 Lévy Processes

In this section, we briefly introduce Lévy processes.
Details are given in (Applebaum, 2004b; Sato, 2004).

We first introduce the infinitely divisible distributions
which are strongly related to Lévy processes. After-
ward, we show that for a Lévy process {Zt}t≥0, if
Zt ∈ {Zt}t≥0 (t > 0), the distribution of Zt is in-
finitely divisible.

Definition 2.1 A real-valued random variable Z has
an infinitely divisible distribution if for any N =
1, 2, · · · , there is a sequence of i.i.d. random variables

{Z(N)
n }Nn=1 such that Z ∼ Z

(N)
1 + · · ·+ Z

(N)
N where ∼

is equality in distribution.

According to the definition, if a random variable has
an infinitely divisible distribution, it can be separated
into the sum of arbitrary number of i.i.d. random vari-
ables. Next, we introduce the characteristic exponent
of an infinitely divisible distribution (Sato, 2004). Be-
fore the statement, we need the following definition
(Applebaum, 2004b).

Definition 2.2 Let ν be a Borel measure defined on
Rd\{0}. This ν will be a Lévy measure if∫

Rd\{0}
min{∥y∥2, 1}ν(dy) <∞, (5)

and ν({0}) = 0.

The Lévy measure describes the expected number of a
certain height jump in a time interval of unit length 1.
Then, the characteristic exponent of an infinitely di-
visible random variable is shown in the following the-
orem.

Theorem 2.3 (Lévy-Khintchine) A Borel proba-
bility measure µ of a random variable Z ∈ Rd is in-
finitely divisible if there exists a triple (a,A, ν), where
a ∈ Rd, a positive-definite symmetric d × d matrix A
and a Lévy measure ν on Rd\{0} such that, for all
θ ∈ Rd, the characteristic exponent ψµ is of the form

ψµ(θ) =i < a, θ > −1

2
< θ,Aθ > +

∫
Rd\{0}

[
ei<θ,y>

− 1− i < θ, y > 1∥y∥≤1

]
ν(dy). (6)

As stated above, an infinitely divisible distribution can
be completely determined by a triple (a,A, ν) wherein
“a” stands for the drift of a Brownian motion, “A” is
a Gaussian component and “ν” is a Lévy measure.

Next, we show that for any Lévy process, there must be
an infinitely divisible random variable corresponding
to it, and vice versa. It is to be pointed out that

for any Lévy process {Zt}t≥0, the distributions of Zt
(t > 0) are all determined by the distribution of Z1.
The issue has been sketched in (Applebaum, 2004b).

Lemma 2.4 Let {Zt}t≥0 be a Lévy process.

(i) For any t > 0, Zt has an infinitely divisible distri-
bution.

(ii) For any t > 0 and θ ∈ Rd, let the characteristic
exponent

ψt(θ) = log(Et
(
eiθt)

)
. (7)

Then we have

ψt(θ) = tψ1(θ), (8)

where ψ1(t) is the characteristic exponent of Z1.

The above lemma shows that any Lévy process has the
property that for all t ≥ 0,

Et
(
eiθZt

)
= etψ1(θ), (9)

where ψ1(t) is the characteristic exponent of Z1 that
has an infinitely divisible distribution, i.e., any Lévy
process corresponds to an infinitely divisible distribu-
tion. The next theorem shows (Sato, 2004) that, given
an infinitely divisible distribution, one can construct a
Lévy process {Zt}t≥0 such that Z1 has that distribu-
tion.

Theorem 2.5 Suppose that a ∈ Rd, A is a positive-
definite symmetric d × d matrix and ν is a measure
concentrated on R\{0} such that

∫
(1 ∧ ∥y∥2)ν(dy) <

∞. By the triple (a,A, ν), for each θ ∈ Rd, define

ψ(θ) =i < a, θ > −1

2
< θ,Aθ > +

∫ (
ei<θ,y> − 1

− i < θ, y > 1∥y∥<1ν(dy)
)
. (10)

Then, there exists a Lévy process {Zt}t≥0 where Z1

has the characteristic exponent in the form of (10).

Note that according to Lemma 2.4 and Theorem 2.5,
a Lévy process {Zt}t≥0 can be distinguished by the
triple (a,A, ν) of the Z1’s distribution. Thus, we call
(a,A, ν) the generating triplet of {Zt}t≥0. Further-
more, according to Lemma 2.4 and Theorem 2.5, we
can obtain the following result (Sato, 2004), which is
necessary for providing the main results.

Lemma 2.6 Let (a,A, ν) be the generating triplet of
a Lévy process {Zt}t≥0. Then, at any time t > 0,
Zt ∈ {Zt}t≥0 has an infinitely divisible distribution
with the triplet (at,At, νt).

This paper mainly concerns the Lévy process with the
generating triplet (a, 0, ν) wherein the Gaussian com-
ponent is zero, as shown in (3).2

2We refer to the reference (Sato, 2004) for the detailed
discussion about the effect of a triple (a,A, ν) to the path
of the corresponding Lévy process.
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3 Main Results

Given a Lévy process {Zt}t≥0 with the Lévy mea-
sure ν, we give the following definitions (Marcus and
Rosiński, 2001). For any C > 0, define

V (C) =

∫
∥y∥≤C

∥y∥2ν(dy), (11)

and

M(C) =

∫
∥y∥≥C

∥y∥ν(dy). (12)

Next, let ν be the tail of ν, i.e.,

ν(C) =

∫
∥y∥>C

ν(dy). (13)

Moreover, given a function class F and a Lévy process
{Zt}t≥0 with characteristic exponent (3), for any t ≥
0, let

Φ(Zt) = sup
f∈F

∣∣∣ENf − Etf(Zt)
∣∣∣, (14)

and let ft be the solution to the supremum of Φ(Zt)
over the function class F . Then, let F∗ = {ft}t≥0 be
the set of all ft (t ≥ 0).

In this paper, we need the following mild assumptions:

(A1) The Lévy process Z = (Zt)t≥0 has a finite ex-
pectation and is centered, i.e., for any t ≥ 0,

EtZt = 0. (15)

(A2) There exists a constant K such that for every
C > 0, we have

M(C) ≤ K
V (C)

C
. (16)

(A3) There exists a constant A > 0 such that, for any
C > 0, we have

ν(C) ≤ A
V (C)

C2
. (17)

(A4) For any s, t > 0 and s ̸= t, there exists a positive
constant α such that

|ft(Zt)− fs(Zs)| ≤ α∥Zt − Zs∥, (18)

where Zs, Zt ∈ Z and fs, ft ∈ F∗.

(A5) There exists a positive constant β such that for
any f ∈ F and Z ′, Z ′′ ∈ RI×J , we have

|f(Z ′)− f(Z ′′)| ≤ β∥Z ′ − Z ′′∥. (19)

Remark:

(i) If Z has non-centered finite mean, one can consider
the Lévy process {Zt−EZt}t≥0, where the assumption
(A1) holds.

(ii) The assumption (A5) implies that elements of F
satisfy the β-Lipschitz continuity.

Subsequently, we begin the main discussion of this pa-
per. First, we prove that the function Φ(Zt) (cf. (14)),
with a high probability, is Lipschitz continuous with
respect to Zt. Afterward, according to a concentra-
tion inequality for Lévy process (Houdré and Marchal,
2008), we obtain the risk bound of Φ(Zt) in the PAC-
learning framework. Then, we analyze the terms in
the resulting bound and prove the convergence.

3.1 Risk Bounds

Under the above assumptions, we first consider the
Lipschitz continuity of the function Φ(Zt).

Lemma 3.1 Given a Lévy process Z = {Zt}t≥0 with
characteristic exponent (3), {Ztn}Nn=1 is an ordered
sample set drawn from Z. If assumptions (A4)− (A5)
are valid, then we have that, for any η > 0 and
Zs, Zt ∈ Z (s ̸= t), with the probability at least
1− δt − δs,

|Φ(Zt)− Φ(Zs)| ≤ (2α+ 6η)∥Zt − Zs∥, (20)

where

δt = exp
{η∥Zt − Zs∥

βS
−
(
η∥Zt − Zs∥

βS
+
tV

S2

)
× log

(
1 +

η∥Zt − Zs∥S
tβV

)}
, (21)

and

δs = exp
{
−η∥Zt − Zs∥

βS
+

(
η∥Zt − Zs∥

βS
− sV

S2

)
× log

(
1− η∥Zt − Zs∥S

sβV

)}
(22)

with S = inf{ρ > 0 : ν(y : ∥y∥ > ρ) = 0}.

The above lemma shows that for a given sample set
{Ztn}Nn=1, Φ(Zt) is Lipschitz continuous with a high
probability.

For some positive real number c, let

hc(t) = inf

{
C > 0 :

V (C)

C2
=
c

t

}
, t > 0. (23)

Then, we can arrive at the main theorem of this paper.
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Theorem 3.2 Given a function class F and a sample
set {Ztn}Nn=1 drawn from a Lévy process with charac-
teristic exponent (3). If the assumptions (A1)− (A5)
are valid and there exists a constant λ such that
(2α + 6η) ≤ λ, then with probability at least δL − δ,
the following bound holds

Φ(Zt) ≤ (b+ λcK)hc(t) +
β

N

N∑
n=1

E|t−tn|

∥∥∥Z|t−tn|

∥∥∥, (24)
where

δ = Ac+ exp

{
b

λ
− (

b

λ
+ c) log

(
1 +

b

λc

)}
, (25)

and δL is the probability that makes Lemma 3.1 hold.

The above theorem gives a bound of Φ(Zt). In Lemma
3.1, we have proven that the Lipschitz continuity of
Φ(Zt) holds with a high probability. Thus, Theorem
3.2 is valid with a high probability.

3.2 Convergence Analysis

We analyze the terms at the right hand side of (29)
and discuss some factors that affect the convergence.
The following lemma gives a bound to the fluctuations
of Zt (t > 0) (Houdré and Marchal, 2008).

Lemma 3.3 Let C0(t) (t > 0) be the solution in C of
the equation:

V (C)

C2
+
M(C)

C
=

1

t
. (26)

If the assumption (A1) is valid, then

1

4
C0(t) ≤ Et∥Zt∥ ≤ 17

8
C0(t), (27)

and the factor 17/8 can be replaced by 5/4 when
{Zt}t≥0 is symmetric.

Furthermore, if assumptions (A1) − (A2) are both
valid, then we have

h 1
1+K

(t) ≤ C0(t) ≤ h1(t). (28)

The above lemma shows that if assumptions (A1) −
(A2) are valid, we can use hc(t) to bound E∥Zt∥.
Therefore, by combining Theorem 3.2 and Lemma 3.3,
we have the following result.

Corollary 3.4 Given a function class F and a sam-
ple set {Ztn}Nn=1 drawn from a Lévy process with char-
acteristic exponent (3). If assumptions (A1) − (A5)
are valid and there exists a constant λ such that

(2α + 6η) ≤ λ, then with probability at least δL − δ,
the following bound holds

Φ(Zt) ≤ (b+ λcK)hc(t) +
17β

8N

N∑
n=1

h1(|t− tn|), (29)

where

δ = Ac+ exp

{
b

λ
− (

b

λ
+ c) log

(
1 +

b

λc

)}
, (30)

δL is the probability that makes Lemma 3.1 hold, and
the factor 17/8 can be replaced by 5/4 when {Zt}t≥0

is symmetric.

The terms at the right hand side of (29) affect the
convergence of the risk bound with respect to N (the
number of samples). Next, we present a convergence
theorem about the risk bound for Lévy processes.

Theorem 3.5 Follow the notations and conditions of
Theorem 3.2 and Corollary 3.4, and assume that 0 <
c << 1/A, c = o(1) and 0 < b = o(

√
c) as N →

∞, wherein o(·) stands for the infinitesimal of higher

order. If
∑N
n=1 h1(|t − tn|) = o(N) and there exists a

constant Cν such that∫
RI×J

∥y∥2ν(dy) < Cν , (31)

then we have that for any given t > 0, with probability
at least δL − δ,

lim
N→0

Φ(Zt) = 0. (32)

On the one hand, from the proof of Theorem 3.5, if
there exists a positive constant Cν satisfying (31), for
any t > 0, the rate of (b+ λcK)hc(t) → 0 (N → ∞) is
completely determined by the selection of b, c. On the
other hand, according to (30), the probability δ can be
deemed as a function of b and c, and thus the values of
b and c must satisfy the constraint δ < 1. According
to (30), it is clear that if b, c > 0 and c << 1/A, the
constraint δ < 1 holds. Therefore, in Theorem 3.5,
(b + λcK)hc(t) can reach zero at an arbitrary rate
and the convergence is mainly affected by the term
(1/N)

∑N
n=1 h1(|t− tn|).

Recalling the definition of h1(t) (cf. (23)), we have
that for a given t > 0, the convergence of Φ(Zt) is
determined by the Lévy measure ν. According to the
definition of Lévy measure ν (cf. (5)), if many large
jumps frequently appear in the path of a Lévy process,
the term (1/N)

∑N
n=1 h1(|t−tn|) may be infinite when

N approaches to infinity and thus the convergence is
not valid.
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4 Proofs of Lemmas and Theorems

In this section, we prove Lemma 3.1, Theorem 3.2 and
Theorem 3.5, respectively.

4.1 Proof of Lemma 3.1

To prove this lemma, it is necessary to have the con-
centration inequality proposed by Houdré (2002).

Lemma 4.1 Let ν have bounded support with

S = inf{ρ > 0 : ν({y : ∥y∥ > ρ}) = 0},

and let V =
∫
Rd ∥y∥2ν(dy). If f is a λ-Lipschitz func-

tion, then for any x ≥ 0, we have

P
(
f(Z)− EZf(Z) > x

)
≤ exp

(
x

λS
−
(
x

λS
+
V

S2

)
log

(
1 +

Sx

λV

))
. (33)

Lemma 4.2 Given a Lévy process with a generating
triple (a, 0, ν), let ν have bounded support with

S = inf{ρ > 0 : ν({y : ∥y∥ > ρ}) = 0},

and let V =
∫
Rd ∥y∥2ν(dy). If assumptions (A4)−(A5)

are valid, then we have that with probability at least
1 − δt − δs, for any real numbers s, t > 0 (s ̸= t) and
any η > 0,

|Etft(Zt)− Etfs(Zs)| ≤ (α+ 2η)∥Zt − Zs∥, (34)

and for any Z ′, Z ′′ ∈ Z, we have that

|ft(Z ′)− fs(Z
′′)| ≤ (α+ 4η)∥Zt − Zs∥, (35)

where

δt = exp
{η∥Zt − Zs∥

βS
−
(
η∥Zt − Zs∥

βS
+
tV

S2

)
× log

(
1 +

η∥Zt − Zs∥S
tβV

)}
,

and

δs = exp
{
−η∥Zt − Zs∥

βS
+

(
η∥Zt − Zs∥

βS
− sV

S2

)
× log

(
1− η∥Zt − Zs∥S

sβV

)}
.

Proof of Lemma 4.2.

According to Lemma 2.4 and Lemma 2.6, Zt and Zs
have infinitely divisible distributions with the triples
(at, 0, νt) and (as, 0, νs), respectively. According to
Lemma 4.1, for any x ≥ 0, we have

P
(
ft(Zt)− Etft(Zt) > x

)
≤ δ

(x)
t , (36)

and

P
(
fs(Zs)− Esfs(Zs) < −x

)
≤ δ(−x)s , (37)

where

δ
(x)
t = exp

{ x

βS
−
(
x

βS
+
tV

S2

)
log

(
1 +

xS

tβV

)}
,

(38)

and

δ(−x)s = exp
{
− x

βS
+

(
x

βS
− sV

S2

)
log

(
1− xS

sβV

)}
.

(39)

Then, we have that, with probability at least 1− δ
(x)
t ,

ft(Zt)− Etft(Zt) ≤ x, (40)

and with probability at least 1− δ
(−x)
s ,

fs(Zs)− Esfs(Zs) ≥ −x, (41)

According to (40) and (41), we have that with proba-

bility at least 1− δ
(x)
t − δ

(−x)
s ,(

ft(Zt)−fs(Zs)
)
−
(
Etft(Zt)−Esfs(Zs)

)
≤ 2x. (42)

According to the assumption (A4) and (42), we have

that with the probability at least 1− δ
(x)
t − δ

(−x)
s ,∣∣∣Etft(Zt)− Esfs(Zs)

∣∣∣ ≤∣∣∣ft(Zt)− fs(Zs)
∣∣∣+ 2x

≤α∥Zt − Zs∥+ 2x. (43)

Recall (42) and note that since Zt and Zs are the sym-
bolic variables, it is valid to replace Zt (resp. Zs) with
Z ′ (resp. Z ′′). Thus, according to (42), we have that

with the probability at least 1− δ
(x)
t − δ

(−x)
s ,∣∣∣ft(Z ′)− fs(Z

′′)
∣∣∣ ≤∣∣∣Etft(Z ′)− Esfs(Z

′′)
∣∣∣+ 2x

≤α∥Zt − Zs∥+ 4x. (44)

Because x is an arbitrary nonnegative real number, we
let x = η∥Zt − Zs∥, where η > 0 is an arbitrary real
number. Then, by substituting x = η∥Zt − Zs∥ into
(38), (39), (43) and (44), we complete the proof. �
Based on Lemma 4.2, we can arrive at the proof of
Lemma 3.1.

Proof of Lemma 3.1.
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First, according to Lemma 4.2, we have that for any
fs, ft ∈ F∗, with probability at least 1− δt − δs,

∣∣∣ENft − ENfs

∣∣∣ = ∣∣∣ 1
N

N∑
n=1

ft(Ztn)−
1

N

N∑
n=1

fs(Ztn)
∣∣∣

≤ 1

N

N∑
n=1

∣∣∣ft(Ztn)− fs(Ztn)
∣∣∣ ≤ (α+ 4η)∥Zt − Zs∥,

(45)

where δt and δs are given in (21) and (22), respectively.

Thus, for any Zt and Zs, according to (14), (34) and
(45), we have that with probability at least 1− δt− δs,

|Φ(Zt)− Φ(Zs)|

=
∣∣∣ sup
f∈F

|ENf − Etf(Zt)| − sup
f∈F

|ENf − Esf(Zs)|
∣∣∣

=
∣∣∣|ENft − Etft(Zt)| − |ENfs − Esfs(Zs)|

∣∣∣
≤
∣∣∣ENft − Etft(Zt)− ENfs + Esfs(Zs)

∣∣∣
≤
∣∣∣Etft(Zt)− Esfs(Zs)

∣∣∣+ ∣∣∣ENft − ENfs

∣∣∣
≤(2α+ 6η)∥Zt − Zs∥. (46)

This completes the proof. �

4.2 Proof of Theorem 3.2

To prove Theorem 3.2, it is necessary to introduce
a concentration inequality proposed by Houdré and
Marchal (2008).

Lemma 4.3 Suppose that Z = {Zt}t≥0 is a Lévy pro-
cess with characteristic exponent (3) and f is a λ-
Lipschitz function. If assumptions (A1) − (A2) are
valid, then for any b > 0 and any c, t > 0 such that
C = hc(t) supports the assumption (A3), we have

P
(
f(Zt)− Etf(Zt) ≥ (b+ λcK)hc(t)

)
≤ Ac+ exp

{
b

λ
− (

b

λ
+ c) log

(
1 +

b

λc

)}
. (47)

Based on the above concentration inequality, we prove
the main theorem as follows.

Proof of Theorem 3.2.

We only consider the bound of Et1···tNΦ(Zt), and then
the results can be obtained by Lemma 3.1 and Lemma
4.3. According to the assumption (A5), we have

Et1···tNΦ(Zt) =Et1···tN

(
sup
f∈F

∣∣∣Etf(Zt)− 1

N

N∑
n=1

f(Ztn)
∣∣∣)

=Et1···tN

(∣∣∣Etft(Zt)− 1

N

N∑
n=1

ft(Ztn)
∣∣∣)

≤ 1

N
Et1···tN

N∑
n=1

Et

∣∣∣ft(Zt)− ftn(Ztn)
∣∣∣

≤ β

N
Et1···tN

N∑
n=1

Et

∥∥∥Zt − Ztn

∥∥∥
=
β

N

N∑
n=1

Et,tn

∥∥∥Zt − Ztn

∥∥∥. (48)

Since Lévy processes have stationary and independent
increments, according to (48), we have that

Et1···tNΦ(Zt) ≤
β

N

N∑
n=1

E|t−tn|

∥∥∥Z|t−tn|

∥∥∥. (49)

This completes the proof. �

4.3 Proof of Theorem 3.5

Proof of Theorem 3.5.

According to (23), for any c, t > 0, we have that

hc(t) =

√
tV (hc(t))

c
. (50)

According to (11) and (31), we have that

bhc(t) = b

√
tV (hc(t))

c
≤ b

√
tCν
c
.

Since b = o(
√
c) asN → ∞, we have that bhc(t) = o(1)

as N → ∞.

Similarly, according to (11), (31) and (50), we have
that

λcKhc(t) = λcK

√
tV (hc(t))

c
≤ λK

√
tCν

√
c. (51)

Since λ and K are given constants, λcKhc(t) = O(
√
c)

as N → ∞, wherein O(·) stands for the infinitesimal
of the same order, and thus we have λcKhc(t) ≤ o(1)
(N → ∞) because c = o(1). Finally, by using the

condition that
∑N
n=1 h1(|t− tn|) = o(N), we complete

the proof. �

5 Conclusion

We present the risk bounds for Lévy processes without
Gaussian components in the PAC-learning framework.
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Risk Bounds for Lévy Processes

We first briefly introduce Lévy processes and discuss
the relationship between infinitely divisible distribu-
tions and Lévy processes, which is necessary for the
proof of the main result. Concentration inequalities
are the main tools to achieve risk bounds for some
empirical processes. Houdré and Marchal (2008) pro-
posed a concentration inequality for Lévy processes
without Gaussian components. However, this concen-
tration inequality needs the condition that the func-
tion is 1-Lipschitz continuous. Thus, we first gener-
alize it to the λ-Lipschitz (λ > 0) continuous ver-
sion according to the discussion in (Houdré, 2002)
and (Houdré and Marchal, 2008). Then, by using a
concentration inequality for infinitely divisible distri-
butions (Houdré, 2002), we prove that, with a high
probability, the function Φ(Zt) is Lipschitz continu-
ous with respect to Zt. Therefore, based on these
results, we achieve the risk bounds for the Lévy pro-
cesses without Gaussian components. By using the
bound of fluctuations for Lévy processes (Houdré and
Marchal, 2008), we use the resulted risk bound to ob-
tain a convergence theorem which shows that the con-
vergence of the risk bound is mainly determined by
the Lévy measure ν. That implies that, if many large
jumps appear frequently in the path of a Lévy pro-
cess, the risk bound for the process may not converge
to zero when the sample number approaches to infin-
ity. In our future work, we will attempt to study risk
bounds for other stochastic processes via concentration
inequalities, e.g., stochastic processes with exchange-
able increments that are a well-known generalization
of stochastic processes with independent increments
(Kallenberg, 1973; Kallenberg, 1975).
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