
Supplemental Material for
Multi-Task Learning using Generalized t Process

1 Detailed Proofs

In this supplemental material, we provide the proofs for Eqs. (3), (4) and (8).

Before we present our proofs, we first review some relevant properties of the
matrix-variate normal distribution and the Wishart distribution as given in [1].

Lemma 1 ([1], Corollary 2.3.10.1) If X ∼ ℳN q×s(M,Σ ⊗ Ψ), d ∈ ℝq and
c ∈ ℝs, then

dTXc ∼ N (dTMc, (dTΣd)(cTΨc)).

Lemma 2 ([1], Theorem 2.3.5) If X ∼ ℳN q×s(M,Σ ⊗ Ψ) and A ∈ ℝs×s,
then

E(XAXT ) = tr(ATΨ)Σ + MAMT .

Lemma 3 ([1], Theorem 3.3.16) If S ∼ℳN q(a,Σ) where a− q − 1 > 0, then

E(S−1) =
Σ−1

a− q − 1
,

where S−1 denotes the inverse of S.

For Eq. (3), using Lemma 1 and the fact that W ∼ ℳN d′×m(0d′×m, Id′ ⊗ Σ),
we can get

f ij
def
= �(xi

j)
Twi = �(xi

j)
TWem,i ∼ N (0, (�(xi

j)
T Id′�(xi

j))(e
T
m,iΣem,i)).
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Since �(xi
j)

T Id′�(xi
j) = k(xi

j ,x
i
j) and eTm,iΣem,i = Σii, we can get f ij ∼

N (0,Σiik(xi
j ,x

i
j)).

For Eq. (4), we have

⟨f ij , f rs ⟩ =

∫
�(xi

j)
TWem,ie

T
m,rW

T�(xr
s)p(W)dW

= �(xi
j)

TE(Wem,ie
T
m,rW

T )�(xr
s),

then using Lemma 2 and the fact that W ∼ ℳN d′×m(0d′×m, Id′ ⊗ Σ), we can
get

⟨f ij , f rs ⟩ = �(xi
j)

T tr(em,re
T
m,iΣ)Id′�(xr

s)

= tr(em,re
T
m,iΣ)k(xi

j ,x
r
s)

= eTm,iΣem,rk(xi
j ,x

r
s)

= Σirk(xi
j ,x

r
s).

The second last equation holds because em,i and em,r are two vectors.

For Eq. (8), recall that the two random variables S ∼ Wd′(� + d′ − 1, Id′) and
Z ∼ℳN d′×m(0d′×m, Id′ ⊗Ψ) are independent and W = S−1/2Z. Then we can
get

⟨f ij , f rs ⟩ =

∫ ∫
�(xi

j)
Twiw

T
r �(xr

s)p(wi)p(wr)dwidwr

=

∫
�(xi

j)
TWem,ie

T
m,rW

T�(xr
s)p(W)dW

=

∫ ∫
�(xi

j)
TS−1/2Zem,ie

T
m,rZ

TS−1/2�(xr
s)p(Z)p(S)dZdS

=

∫
�(xi

j)
TS−1/2E(Zem,ie

T
m,rZ

T )S−1/2�(xr
s)p(S)dS

= Ψir

∫
�(xi

j)
TS−1�(xr

s)p(S)dS (Using Lemma 2)

= Ψir�(xi
j)

TE(S−1)�(xr
s)

=
Ψirk(xi

j ,x
r
s)

� − 2
. (Using Lemma 3)

Moreover, according to Lemma 3, � is required to be larger than 2.
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2 Some More Theoretical Results

Similar to [2], we give here an upper bound on the learning curve.

It is useful to see how the matrix G = (Λ−1 + ΩD−1ΩT )−1 changes when a new
data point from the ith task is added to the training set. The change is

G(n+ 1)−G(n) =
[
G−1(n) + �−2i ''T

]−1
−G(n) = −G(n)''TG(n)

�2i + 'TG(n)'
,

where ' is a column vector with the ith element  i(x
i
★) and xi

★ is the newly added
data point from the ith task. To get the exact learning curve, we have to average this
change with respect to all training sets that include xi

★. This is difficult to achieve
though. Here we ignore the correlation between the numerator and denominator
and average them separately. Moreover, we treat n as a continuous variable and
get

∂H(n)

∂n
= − E[G2(n)]

�2i + tr(H(n))
,

where H(n) = E[G(n)]. We also neglect the fluctuations in G(n) and then get
E[G2(n)] = H2(n). So we can get

∂H(n)

∂n
= − H2(n)

�2i + tr(H(n))

∂H−1(n)

∂n
= −H−1(n)

∂H(n)

∂n
H−1(n) = (�2i + tr(H(n)))−1I.

Since H−1(0) = Λ−1, H−1(n) = Λ−1 + �−2i n′I where n′ needs to obey the
following

∂�−2i n′

∂n
=

1

�2i + tr(H(n))
=

1

�2i + tr
(
(Λ−1 + �−2i n′I)−1

) ,
which is equivalent to

∂n′

∂n
+ tr

(
(Λ−1 + �−2i n′I)−1

)
�−2i

∂n′

∂n
= 1.

Integrating both sides, we can see that n′ satisfies the following equation

n′ +
∑
j

ln(n′ + �2i �
−1
j ) = n.

Then we can get the upper bound as

"iUB =
!

� − 2

[
�2i + tr

(
(Λ−1 + �−2i n′I)−1

)]
.
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