Supplemental Material for
Multi-Task Learning using Generalized ¢ Process

1 Detailed Proofs

In this supplemental material, we provide the proofs for Egs. (3), (4) and (8).

Before we present our proofs, we first review some relevant properties of the
matrix-variate normal distribution and the Wishart distribution as given in [1].

Lemma 1 ([1], Corollary 2.3.10.1) If X ~ MN ;xs(M, X @ ¥), d € R? and
c € RS, then
d"Xc ~ N(d"Mc, (d"=d)(c! ®e)).

Lemma 2 ([1], Theorem 2.3.5) If X ~ MN ;xs(M,X ® ¥) and A € R***,
then

E(XAXT) = r(AT®)E + MAMT.
Lemma 3 ([1], Theorem 3.3.16) If S ~ MN,(a,X) where a — g — 1 > 0, then

2—1

E(S™!) = vt

where S™1 denotes the inverse of S.

For Eq. (3), using Lemma 1 and the fact that W ~ MN g« (04 xm, Loy @ ),
we can get

£ o) Tw; = ¢(x)  Weyn; ~ N (0, (6(xi) Ly d(x)) (el ;Bepmq)).-
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Since ¢(x )TId/¢( 1) = k(x},x!) and €], ;Te,; = i, we can get fi ~
N(O Zﬂk( ]7 ]))

For Eq. (4), we have

T = / H(x! ) Wey el W (x2)p(W)AW
—Qb( )TE(Wemze WT)¢( ),

then using Lemma 2 and the fact that W ~ MN g5 (04 sem, Iy ® ), we can
get

(5, £ = o(x5) (e e, ;) oo (x7)

= tr(emﬂae;F%E)k(x],xS)

= el Eem Tk:(x],xs)
_ElTk( ]? s)

The second last equation holds because ey, ; and ey, ,- are two vectors.

For Eq. (8), recall that the two random variables S ~ Wy (v + d' — 1,1) and
Z ~ MN g 5 (04 scm, Iy @ W) are independent and W = S—1/27_ Then we can
get

iy = / / 6 ()T wiwT $(x7 ) p(wi )p(w, )dwidw,
- / H(x )T We, s, W b (x0)p(W)dW
- / / 6(x) TS Ze,, eF, ZTS24(x)p(Z)p(S)dZdS
B / o(x1)TSTV2E(Zen el , Z7)S V2 p(xL)p(S)dS

—\Ifw/qb V'S 1p(x%)p(S)dS  (Using Lemma 2)

= Vir(x) E(S™e(x0)

\Pirk(x§,xg) .
= (Using Lemma 3)
v—2

Moreover, according to Lemma 3, v is required to be larger than 2.



2 Some More Theoretical Results

Similar to [2], we give here an upper bound on the learning curve.

It is useful to see how the matrix G = (A~ + QD ~'QT)~! changes when a new
data point from the th task is added to the training set. The change is

_ n T n
G(n I 1) _ G(n) _ G—l(n) + O_i—2SOSOTi| 1 _ G(?’L) = _52(+)sz%)£7

where ¢ is a column vector with the ith element 1/;(x%) and x’ is the newly added
data point from the sth task. To get the exact learning curve, we have to average this
change with respect to all training sets that include x’. This is difficult to achieve
though. Here we ignore the correlation between the numerator and denominator
and average them separately. Moreover, we treat n as a continuous variable and
get
OH(n)  E[G*(n)]
on o +u(H(n))’

where H(n) = E[G(n)]. We also neglect the fluctuations in G(n) and then get
E[G2(n)] = H?(n). So we can get

OH(n) _ H?(n)
on o? +tr(H(n))
P 1) P20 1) = (02 4 () 1

Since H™1(0) = A}, H'(n) = A™! 4+ 0, 2n/T where n’ needs to obey the
following

do; *n' B 1 B 1
on o2+ wu(H(n) o2+t (A7 +0,720T) 1)’
which is equivalent to

on’ -1 2 -1y —20m

Integrating both sides, we can see that n’ satisfies the following equation

n' + Z In(n’ + Uf)\j_l) =n.
J

=1.

Then we can get the upper bound as

ehp = Vci 5 [012 +tr ((A_1 + 0;271/1)_1)] .
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