Supplemental Material for Multi-Task Learning using Generalized t Process

1 Detailed Proofs

In this supplemental material, we provide the proofs for Eqs. (3), (4) and (8).
Before we present our proofs, we first review some relevant properties of the matrix-variate normal distribution and the Wishart distribution as given in [1].

Lemma 1 ([1], Corollary 2.3.10.1) If $\mathbf{X} \sim \mathcal{M N}_{q \times s}(\mathbf{M}, \boldsymbol{\Sigma} \otimes \Psi), \mathbf{d} \in \mathbb{R}^{q}$ and $\mathbf{c} \in \mathbb{R}^{s}$, then

$$
\mathbf{d}^{T} \mathbf{X} \mathbf{c} \sim \mathcal{N}\left(\mathbf{d}^{T} \mathbf{M c},\left(\mathbf{d}^{T} \boldsymbol{\Sigma} \mathbf{d}\right)\left(\mathbf{c}^{T} \boldsymbol{\Psi} \mathbf{c}\right)\right) .
$$

Lemma 2 ([1], Theorem 2.3.5) If $\mathbf{X} \sim \mathcal{M N}_{q \times s}(\mathbf{M}, \boldsymbol{\Sigma} \otimes \boldsymbol{\Psi})$ and $\mathbf{A} \in \mathbb{R}^{s \times s}$, then

$$
\mathbb{E}\left(\mathbf{X A X}^{T}\right)=\operatorname{tr}\left(\mathbf{A}^{T} \mathbf{\Psi}\right) \mathbf{\Sigma}+\mathbf{M A M}^{T} .
$$

Lemma 3 ([1], Theorem 3.3.16) If $\mathbf{S} \sim \mathcal{M N}_{q}(a, \boldsymbol{\Sigma})$ where $a-q-1>0$, then

$$
\mathbb{E}\left(\mathbf{S}^{-1}\right)=\frac{\boldsymbol{\Sigma}^{-1}}{a-q-1},
$$

where \mathbf{S}^{-1} denotes the inverse of \mathbf{S}.

For Eq. (3), using Lemma 1 and the fact that $\mathbf{W} \sim \mathcal{M} \mathcal{N}_{d^{\prime} \times m}\left(\mathbf{0}_{d^{\prime} \times m}, \mathbf{I}_{d^{\prime}} \otimes \boldsymbol{\Sigma}\right)$, we can get

$$
f_{j}^{i} \stackrel{\text { def }}{=} \phi\left(\mathbf{x}_{j}^{i}\right)^{T} \mathbf{w}_{i}=\phi\left(\mathbf{x}_{j}^{i}\right)^{T} \mathbf{W} \mathbf{e}_{m, i} \sim \mathcal{N}\left(0,\left(\phi\left(\mathbf{x}_{j}^{i}\right)^{T} \mathbf{I}_{d^{\prime}} \phi\left(\mathbf{x}_{j}^{i}\right)\right)\left(\mathbf{e}_{m, i}^{T} \boldsymbol{\Sigma} \mathbf{e}_{m, i}\right)\right) .
$$

Since $\phi\left(\mathbf{x}_{j}^{i}\right)^{T} \mathbf{I}_{d^{\prime}} \phi\left(\mathbf{x}_{j}^{i}\right)=k\left(\mathbf{x}_{j}^{i}, \mathbf{x}_{j}^{i}\right)$ and $\mathbf{e}_{m, i}^{T} \boldsymbol{\Sigma} \mathbf{e}_{m, i}=\Sigma_{i i}$, we can get $f_{j}^{i} \sim$ $\mathcal{N}\left(0, \Sigma_{i i} k\left(\mathbf{x}_{j}^{i}, \mathbf{x}_{j}^{i}\right)\right)$.

For Eq. (4), we have

$$
\begin{aligned}
\left\langle f_{j}^{i}, f_{s}^{r}\right\rangle & =\int \phi\left(\mathbf{x}_{j}^{i}\right)^{T} \mathbf{W} \mathbf{e}_{m, i} \mathbf{e}_{m, r}^{T} \mathbf{W}^{T} \phi\left(\mathbf{x}_{s}^{r}\right) p(\mathbf{W}) d \mathbf{W} \\
& =\phi\left(\mathbf{x}_{j}^{i}\right)^{T} \mathbb{E}\left(\mathbf{W} \mathbf{e}_{m, i} \mathbf{e}_{m, r}^{T} \mathbf{W}^{T}\right) \phi\left(\mathbf{x}_{s}^{r}\right)
\end{aligned}
$$

then using Lemma 2 and the fact that $\mathbf{W} \sim \mathcal{M} \mathcal{N}_{d^{\prime} \times m}\left(\mathbf{0}_{d^{\prime} \times m}, \mathbf{I}_{d^{\prime}} \otimes \boldsymbol{\Sigma}\right)$, we can get

$$
\begin{aligned}
\left\langle f_{j}^{i}, f_{s}^{r}\right\rangle & =\phi\left(\mathbf{x}_{j}^{i}\right)^{T} \operatorname{tr}\left(\mathbf{e}_{m, r} \mathbf{e}_{m, i}^{T} \mathbf{\Sigma}\right) \mathbf{I}_{d^{\prime}} \phi\left(\mathbf{x}_{s}^{r}\right) \\
& =\operatorname{tr}\left(\mathbf{e}_{m, r} \mathbf{e}_{m, i}^{T} \mathbf{\Sigma}\right) k\left(\mathbf{x}_{j}^{i}, \mathbf{x}_{s}^{r}\right) \\
& =\mathbf{e}_{m, i}^{T} \boldsymbol{\Sigma} \mathbf{e}_{m, r} k\left(\mathbf{x}_{j}^{i}, \mathbf{x}_{s}^{r}\right) \\
& =\Sigma_{i r} k\left(\mathbf{x}_{j}^{i}, \mathbf{x}_{s}^{r}\right)
\end{aligned}
$$

The second last equation holds because $\mathbf{e}_{m, i}$ and $\mathbf{e}_{m, r}$ are two vectors.
For Eq. (8), recall that the two random variables $\mathbf{S} \sim \mathcal{W}_{d^{\prime}}\left(\nu+d^{\prime}-1, \mathbf{I}_{d^{\prime}}\right)$ and $\mathbf{Z} \sim \mathcal{M} \mathcal{N}_{d^{\prime} \times m}\left(\mathbf{0}_{d^{\prime} \times m}, \mathbf{I}_{d^{\prime}} \otimes \boldsymbol{\Psi}\right)$ are independent and $\mathbf{W}=\mathbf{S}^{-1 / 2} \mathbf{Z}$. Then we can get

$$
\begin{align*}
\left\langle f_{j}^{i}, f_{s}^{r}\right\rangle & =\iint \phi\left(\mathbf{x}_{j}^{i}\right)^{T} \mathbf{w}_{i} \mathbf{w}_{r}^{T} \phi\left(\mathbf{x}_{s}^{r}\right) p\left(\mathbf{w}_{i}\right) p\left(\mathbf{w}_{r}\right) d \mathbf{w}_{i} d \mathbf{w}_{r} \\
& =\int \phi\left(\mathbf{x}_{j}^{i}\right)^{T} \mathbf{W} \mathbf{e}_{m, i} \mathbf{e}_{m, r}^{T} \mathbf{W}^{T} \phi\left(\mathbf{x}_{s}^{r}\right) p(\mathbf{W}) d \mathbf{W} \\
& =\iint \phi\left(\mathbf{x}_{j}^{i}\right)^{T} \mathbf{S}^{-1 / 2} \mathbf{Z} \mathbf{e}_{m, i} \mathbf{e}_{m, r}^{T} \mathbf{Z}^{T} \mathbf{S}^{-1 / 2} \phi\left(\mathbf{x}_{s}^{r}\right) p(\mathbf{Z}) p(\mathbf{S}) d \mathbf{Z} d \mathbf{S} \\
& =\int \phi\left(\mathbf{x}_{j}^{i}\right)^{T} \mathbf{S}^{-1 / 2} \mathbb{E}\left(\mathbf{Z} \mathbf{e}_{m, i} \mathbf{e}_{m, r}^{T} \mathbf{Z}^{T}\right) \mathbf{S}^{-1 / 2} \phi\left(\mathbf{x}_{s}^{r}\right) p(\mathbf{S}) d \mathbf{S} \\
& =\Psi_{i r} \int \phi\left(\mathbf{x}_{j}^{i}\right)^{T} \mathbf{S}^{-1} \phi\left(\mathbf{x}_{s}^{r}\right) p(\mathbf{S}) d \mathbf{S} \quad \quad(\text { Using Lemma 2) } \\
& =\Psi_{i r} \phi\left(\mathbf{x}_{j}^{i}\right)^{T} \mathbb{E}\left(\mathbf{S}^{-1}\right) \phi\left(\mathbf{x}_{s}^{r}\right) \quad \\
& =\frac{\Psi_{i r} k\left(\mathbf{x}_{j}^{i}, \mathbf{x}_{s}^{r}\right)}{\nu-2} . \tag{UsingLemma3}
\end{align*}
$$

Moreover, according to Lemma 3, ν is required to be larger than 2.

2 Some More Theoretical Results

Similar to [2], we give here an upper bound on the learning curve.
It is useful to see how the matrix $\mathbf{G}=\left(\boldsymbol{\Lambda}^{-1}+\boldsymbol{\Omega} \mathbf{D}^{-1} \boldsymbol{\Omega}^{T}\right)^{-1}$ changes when a new data point from the i th task is added to the training set. The change is

$$
\mathbf{G}(n+1)-\mathbf{G}(n)=\left[\mathbf{G}^{-1}(n)+\sigma_{i}^{-2} \boldsymbol{\varphi} \varphi^{T}\right]^{-1}-\mathbf{G}(n)=-\frac{\mathbf{G}(n) \boldsymbol{\varphi} \varphi^{T} \mathbf{G}(n)}{\sigma_{i}^{2}+\varphi^{T} \mathbf{G}(n) \varphi}
$$

where φ is a column vector with the i th element $\psi_{i}\left(\mathbf{x}_{\star}^{i}\right)$ and \mathbf{x}_{\star}^{i} is the newly added data point from the i th task. To get the exact learning curve, we have to average this change with respect to all training sets that include \mathbf{x}_{\star}^{i}. This is difficult to achieve though. Here we ignore the correlation between the numerator and denominator and average them separately. Moreover, we treat n as a continuous variable and get

$$
\frac{\partial \mathbf{H}(n)}{\partial n}=-\frac{\mathbb{E}\left[\mathbf{G}^{2}(n)\right]}{\sigma_{i}^{2}+\operatorname{tr}(\mathbf{H}(n))},
$$

where $\mathbf{H}(n)=\mathbb{E}[\mathbf{G}(n)]$. We also neglect the fluctuations in $\mathbf{G}(n)$ and then get $\mathbb{E}\left[\mathbf{G}^{2}(n)\right]=\mathbf{H}^{2}(n)$. So we can get

$$
\begin{aligned}
\frac{\partial \mathbf{H}(n)}{\partial n} & =-\frac{\mathbf{H}^{2}(n)}{\sigma_{i}^{2}+\operatorname{tr}(\mathbf{H}(n))} \\
\frac{\partial \mathbf{H}^{-1}(n)}{\partial n} & =-\mathbf{H}^{-1}(n) \frac{\partial \mathbf{H}(n)}{\partial n} \mathbf{H}^{-1}(n)=\left(\sigma_{i}^{2}+\operatorname{tr}(\mathbf{H}(n))\right)^{-1} \mathbf{I} .
\end{aligned}
$$

Since $\mathbf{H}^{-1}(0)=\boldsymbol{\Lambda}^{-1}, \mathbf{H}^{-1}(n)=\boldsymbol{\Lambda}^{-1}+\sigma_{i}^{-2} n^{\prime} \mathbf{I}$ where n^{\prime} needs to obey the following

$$
\frac{\partial \sigma_{i}^{-2} n^{\prime}}{\partial n}=\frac{1}{\sigma_{i}^{2}+\operatorname{tr}(\mathbf{H}(n))}=\frac{1}{\sigma_{i}^{2}+\operatorname{tr}\left(\left(\boldsymbol{\Lambda}^{-1}+\sigma_{i}^{-2} n^{\prime} \mathbf{I}\right)^{-1}\right)},
$$

which is equivalent to

$$
\frac{\partial n^{\prime}}{\partial n}+\operatorname{tr}\left(\left(\boldsymbol{\Lambda}^{-1}+\sigma_{i}^{-2} n^{\prime} \mathbf{I}\right)^{-1}\right) \sigma_{i}^{-2} \frac{\partial n^{\prime}}{\partial n}=1
$$

Integrating both sides, we can see that n^{\prime} satisfies the following equation

$$
n^{\prime}+\sum_{j} \ln \left(n^{\prime}+\sigma_{i}^{2} \lambda_{j}^{-1}\right)=n .
$$

Then we can get the upper bound as

$$
\varepsilon_{U B}^{i}=\frac{\omega}{\nu-2}\left[\sigma_{i}^{2}+\operatorname{tr}\left(\left(\boldsymbol{\Lambda}^{-1}+\sigma_{i}^{-2} n^{\prime} \mathbf{I}\right)^{-1}\right)\right] .
$$

References

[1] A. K. Gupta and D. K. Nagar. Matrix Variate Distributions. Chapman \& Hall, 2000.
[2] P. Sollich and A. Halees. Learning curves for Gaussian process regression: Approximations and bounds. Neural Computation, 14(6):1393-1428, 2002.

